Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
mSphere ; : e0043324, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254324

RESUMO

Blake Billmyre uses functional genomics to help understand the biology of fungal pathogens, with an emphasis on evolution of virulence relevant traits and drug resistance. In this mSphere of Influence article, he reflects on how two papers (Liachko et al., "High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast," Genome Research, 2013, and Guo et al., "Integration profiling of gene function with dense maps of transposon integration," Genetics, 2013) impacted his research trajectory and goals. These articles show the power of creative use of sequencing as a tool to drive understanding of fundamental biology.

2.
mLife ; 3(2): 277-290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948139

RESUMO

Most in silico evolutionary studies commonly assumed that core genes are essential for cellular function, while accessory genes are dispensable, particularly in nutrient-rich environments. However, this assumption is seldom tested genetically within the pangenome context. In this study, we conducted a robust pangenomic Tn-seq analysis of fitness genes in a nutrient-rich medium for Sinorhizobium strains with a canonical open pangenome. To evaluate the robustness of fitness category assignment, Tn-seq data for three independent mutant libraries per strain were analyzed by three methods, which indicates that the Hidden Markov Model (HMM)-based method is most robust to variations between mutant libraries and not sensitive to data size, outperforming the Bayesian and Monte Carlo simulation-based methods. Consequently, the HMM method was used to classify the fitness category. Fitness genes, categorized as essential (ES), advantage (GA), and disadvantage (GD) genes for growth, are enriched in core genes, while nonessential genes (NE) are over-represented in accessory genes. Accessory ES/GA genes showed a lower fitness effect than core ES/GA genes. Connectivity degrees in the cofitness network decrease in the order of ES, GD, and GA/NE. In addition to accessory genes, 1599 out of 3284 core genes display differential essentiality across test strains. Within the pangenome core, both shared quasi-essential (ES and GA) and strain-dependent fitness genes are enriched in similar functional categories. Our analysis demonstrates a considerable fuzzy essential zone determined by cofitness connectivity degrees in Sinorhizobium pangenome and highlights the power of the cofitness network in understanding the genetic basis of ever-increasing prokaryotic pangenome data.

3.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39047065

RESUMO

Candida glabrata (also called Nakaseomyces glabratus) is an opportunistic pathogen that can resist common antifungals and rapidly acquire multidrug resistance. A large amount of genetic variation exists between isolates, which complicates generalizations. Portable transposon-sequencing (Tn-seq) methods can efficiently provide genome-wide information on strain differences and genetic mechanisms. Using the Hermes transposon, the CBS138 reference strain and a commonly studied derivative termed 2001 were subjected to Tn-seq in control conditions and after exposure to varying doses of the clinical antifungal micafungin. The approach revealed large differences between these strains, including a 131-kb tandem duplication and a variety of fitness differences. Additionally, both strains exhibited up to 1,000-fold increased transposon accessibility in subtelomeric regions relative to the BG2 strain, indicative of open subtelomeric chromatin in these isolates and large epigenetic variation within the species. Unexpectedly, the Pdr1 transcription factor conferred resistance to micafungin through targets other than CDR1. Other micafungin resistance pathways were also revealed including mannosyltransferase activity and biosynthesis of the lipid precursor sphingosine, the inhibition of which by SDZ 90-215 and myriocin enhanced the potency of micafungin in vitro. These findings provide insights into the complexity of the C. glabrata species as well as strategies for improving antifungal efficacy.


Assuntos
Antifúngicos , Candida glabrata , Elementos de DNA Transponíveis , Farmacorresistência Fúngica , Epigênese Genética , Micafungina , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Micafungina/farmacologia , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Variação Genética , Genoma Fúngico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Synth Syst Biotechnol ; 9(3): 540-548, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38680947

RESUMO

The chromosomal position effect can significantly affect the transgene expression, which may provide an efficient strategy for the inauguration of alien genes in new hosts, but has been less explored rationally. The bacterium Myxococcus xanthus harbors a large circular high-GC genome, and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products. In this study, we conducted transposon insertion at TA sites on the M. xanthus genome, and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites. The enrichment sites are characteristically distributed along the genome, and the dilution sites are overlapped well with the horizontal transfer genes. We experimentally demonstrated the enrichment sites as high expression integration sites (HEISs), and the dilution sites unsuitable for gene integration expression. This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.

5.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337947

RESUMO

Plants may harbor the human pathogen Salmonella enterica. Interactions between S. enterica and different plant species have been studied in individual reports. However, disparities arising from the distinct experimental conditions may render a meaningful comparison very difficult. This study explored interaction patterns between different S. enterica strains including serovars Typhimurium 14028s and LT2 and serovar Senftenberg, and different plants (Arabidopsis, lettuce, and tomato) in one approach. Better persistence of S. enterica serovar Typhimurium strains was observed in all tested plants, whereas the resulting symptoms varied depending on plant species. Genes encoding pathogenesis-related proteins were upregulated in plants inoculated with Salmonella. Furthermore, transcriptome of tomato indicated dynamic responses to Salmonella, with strong and specific responses already 24 h after inoculation. By comparing with publicly accessible Arabidopsis and lettuce transcriptome results generated in a similar manner, constants and variables were displayed. Plants responded to Salmonella with metabolic and physiological adjustments, albeit with variability in reprogrammed orthologues. At the same time, Salmonella adapted to plant leaf-mimicking media with changes in biosynthesis of cellular components and adjusted metabolism. This study provides insights into the Salmonella-plant interaction, allowing for a direct comparison of responses and adaptations in both organisms.

6.
ISME Commun ; 4(1): ycad001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282642

RESUMO

Caballeronia insecticola is a bacterium belonging to the Burkholderia genus sensu lato, which is able to colonize multiple environments like soils and the gut of the bean bug Riptortus pedestris. We constructed a saturated Himar1 mariner transposon library and revealed by transposon-sequencing that 498 protein-coding genes constitute the essential genome of Caballeronia insecticola for growth in free-living conditions. By comparing essential gene sets of Caballeronia insecticola and seven related Burkholderia s.l. strains, only 120 common genes were identified, indicating that a large part of the essential genome is strain-specific. In order to reproduce specific nutritional conditions that are present in the gut of Riptortus pedestris, we grew the mutant library in minimal media supplemented with candidate gut nutrients and identified several condition-dependent fitness-defect genes by transposon-sequencing. To validate the robustness of the approach, insertion mutants in six fitness genes were constructed and their growth deficiency in media supplemented with the corresponding nutrient was confirmed. The mutants were further tested for their efficiency in Riptortus pedestris gut colonization, confirming that gluconeogenic carbon sources, taurine and inositol, are nutrients consumed by the symbiont in the gut. Thus, our study provides insights about specific contributions provided by the insect host to the bacterial symbiont.

7.
mSystems ; 9(2): e0132623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38270456

RESUMO

Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.


Assuntos
Amoeba , Dictyostelium , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Virulência/genética , Microglia , Mycobacterium marinum/genética , Dictyostelium/genética , Lipídeos
8.
mBio ; 15(1): e0283023, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063424

RESUMO

IMPORTANCE: The Gram-negative bacterium Bacteroides fragilis is a common member of the human gut microbiota that colonizes multiple host niches and can influence human physiology through a variety of mechanisms. Identification of genes that enable B. fragilis to grow across a range of host environments has been impeded in part by the relatively limited genetic tractability of this species. We have developed a high-throughput genetic resource for a B. fragilis strain isolated from a UC pouchitis patient. Bile acids limit microbial growth and are altered in abundance in UC pouches, where B. fragilis often blooms. Using this resource, we uncovered pathways and processes that impact B. fragilis fitness in bile and that may contribute to population expansions during bouts of gut inflammation.


Assuntos
Bacteroides fragilis , Pouchite , Humanos , Bacteroides fragilis/metabolismo , Ácidos e Sais Biliares/metabolismo , Inflamação , Bile
9.
Microbiol Spectr ; 12(1): e0289523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054714

RESUMO

IMPORTANCE: Rifamycins are a group of antibiotics with a wide antibacterial spectrum. Although the binding target of rifamycin has been well characterized, the mechanisms underlying the discrepant killing efficacy between gram-negative and gram-positive bacteria remain poorly understood. Using a high-throughput screen combined with targeted gene knockouts in the gram-negative model organism Escherichia coli, we established that rifampicin efficacy is strongly dependent on several cellular pathways, including iron acquisition, DNA repair, aerobic respiration, and carbon metabolism. In addition, we provide evidence that these pathways modulate rifampicin efficacy in a manner distinct from redox-related killing. Our findings provide insights into the mechanism of rifamycin efficacy and may aid in the development of new antimicrobial adjuvants.


Assuntos
Rifampina , Rifamicinas , Rifampina/farmacologia , Escherichia coli/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
10.
Microbiol Immunol ; 68(2): 36-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105571

RESUMO

The Gram-negative pathogenic bacterium Bordetella bronchiseptica is a respiratory pathogen closely related to Bordetella pertussis, the causative agent of whooping cough. Despite sharing homologous virulence factors, B. bronchiseptica infects a broad range of mammalian hosts, including some experimental animals, whereas B. pertussis is strictly adapted to humans. Therefore, B. bronchiseptica is often used as a representative model to explore the pathogenicity of Bordetella in infection experiments with laboratory animals. Although Bordetella virulence factors, including toxins and adhesins have been studied well, our recent study implied that unknown virulence factors are involved in tracheal colonization and infection. Here, we investigated bacterial genes contributing to tracheal colonization by high-throughput transposon sequencing (Tn-seq). After the screening, we picked up 151 candidate genes of various functions and found that a rpoN-deficient mutant strain was defective in tracheal colonization when co-inoculated with the wild-type strain. rpoN encodes σ54 , a sigma factor that regulates the transcription of various genes, implying its contribution to various bacterial activities. In fact, we found RpoN of B. bronchiseptica is involved in bacterial motility and initial biofilm formation. From these results, we propose that RpoN supports bacterial colonization by regulating various bacteriological functions.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Bordetella , Animais , Humanos , Bordetella bronchiseptica/genética , RNA Polimerase Sigma 54 , Bordetella pertussis/genética , Fatores de Virulência de Bordetella/genética , Fatores de Virulência/genética , Mamíferos
11.
Cell Rep ; 43(1): 113517, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38142397

RESUMO

Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.


Assuntos
Elementos de DNA Transponíveis , Sequenciamento de Nucleotídeos em Larga Escala , Elementos de DNA Transponíveis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Clonagem Molecular , Biblioteca Gênica , Bactérias/genética , Mutagênese Insercional/genética
12.
Antimicrob Agents Chemother ; 67(12): e0110223, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37966228

RESUMO

We describe a genome-scale approach to identify the essential biological process targeted by a new antibiotic. The procedure is based on the identification of essential genes whose inactivation sensitizes a Gram-negative bacterium (Acinetobacter baylyi) to a drug and employs recently developed transposon mutant screening and single-mutant validation procedures. The approach, based on measuring the rates of loss of newly generated knockout mutants in the presence of antibiotic, provides an alternative to traditional procedures for studying essential functions using conditional expression or activity alleles. As a proof of principle study, we evaluated whether mutations enhancing sensitivity to the ß-lactam antibiotic meropenem corresponded to the known essential target process of the antibiotic (septal peptidoglycan synthesis). We found that indeed mutations inactivating most genes needed for peptidoglycan synthesis and cell division strongly sensitized cells to meropenem. Additional classes of sensitizing mutations in essential genes were also identified, including those that inactivated capsule synthesis, DNA replication, or envelope stress response regulation. The essential capsule synthesis mutants appeared to enhance meropenem sensitivity by depleting a precursor needed for both capsule and peptidoglycan synthesis. The replication mutants may sensitize cells by impairing division. Nonessential gene mutations sensitizing cells to meropenem were also identified in the screen and largely corresponded to functions subordinately associated with the essential target process, such as in peptidoglycan recycling. Overall, these results help validate a new approach to identify the essential process targeted by an antibiotic and define the larger functional network determining sensitivity to it.


Assuntos
Antibacterianos , Genes Essenciais , Antibacterianos/farmacologia , Meropeném/farmacologia , Peptidoglicano/metabolismo , Elementos de DNA Transponíveis
13.
Microbiol Resour Announc ; 12(11): e0036523, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37795997

RESUMO

Salmonella enterica is an important foodborne pathogen. Here, we present the construction and characterization of a high-density transposon sequencing library of the Salmonella Typhimurium ATCC 14028 strain. Essential, advantageous, and disadvantageous genes for growth in rich culture medium were identified on the chromosome and the pSLT plasmid.

14.
J Bacteriol ; 205(10): e0020823, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37791755

RESUMO

Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of ΔahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen. IMPORTANCE Streptococcus pneumoniae is a human pathogen that causes pneumonia, bacteremia, and meningitis. Vaccination provides protection only against a quarter of the known S. pneumoniae serotypes, and the bacterium is rapidly becoming resistant to antibiotics. As such, new treatments are required. One strategy is to sensitize the bacteria to killing by the immune system. In this study, we performed a genome-wide screen to identify genes that help this bacterium resist oxidative stress exerted by the host at sites of colonization and infection. By identifying a number of critical pneumococcal defense mechanisms, our work provides novel targets for antimicrobial therapy.


Assuntos
Anti-Infecciosos , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Antioxidantes/metabolismo , Glutationa Redutase/metabolismo , Oxidantes/metabolismo , Anti-Infecciosos/metabolismo
15.
Elife ; 122023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665120

RESUMO

Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2's role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane-cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.


Assuntos
Álcool Benzílico , Parede Celular , Membrana Celular , Mycobacterium smegmatis
16.
Infect Immun ; 91(10): e0022823, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37676013

RESUMO

Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Infecções Estafilocócicas/metabolismo , Sistema Respiratório , Fibrose Cística/complicações , Virulência/genética
17.
Int J Biol Macromol ; 253(Pt 5): 127059, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769756

RESUMO

The absolute amount of nutrients on plant leaves is usually low, and the growth of epiphytic bacteria is typically limited by nutrient content. Thus, is of great significance to study the survival mechanism of epiphytes under nutritional stress for plant disease control. In this paper, Pantoea agglomerans CHTF15 isolated from walnut leaves was used to detect the key genes for the survival of the bacterium under simulated nutrient stress in artificial medium. Genome sequencing was combined with transposon insertion sequencing (Tn-seq) for the detection technique. A total of 105 essential genes were screened from the whole genome. The genes were mainly related to the nucleotide metabolism, protein metabolism, biological oxidation and the gene repair of bacteria analyzed by gene ontology (GO) enrichment analysis. Volcano map analysis demonstrated that the functions of the 15 genes with the most significant differences were generally related to the synthesis of amino acids or proteins, the nucleotide metabolism and homologous recombination and repair. Competitive index analysis revealed that the deletion of the genes dksA and epmA regulating protein synthesis, the gene ribB involved in the nucleotide metabolism and the gene xerD involved in recombination repair induced a significant reduction in the survival ability of the corresponding mutants in the 0.10 % YEP medium and the walnut leaf surface. The results act as a foundation for further in-depth research on the infection process and the mechanisms of pathogenic bacteria.


Assuntos
Pantoea , Pantoea/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sequência de Bases , Nucleotídeos/metabolismo
18.
Mol Microbiol ; 120(2): 141-158, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37278255

RESUMO

Advances in sequencing technologies have enabled unprecedented insights into bacterial genome composition and dynamics. However, the disconnect between the rapid acquisition of genomic data and the (much slower) confirmation of inferred genetic function threatens to widen unless techniques for fast, high-throughput functional validation can be applied at scale. This applies equally to Mycobacterium tuberculosis, the leading infectious cause of death globally and a pathogen whose genome, despite being among the first to be sequenced two decades ago, still contains many genes of unknown function. Here, we summarize the evolution of bacterial high-throughput functional genomics, focusing primarily on transposon (Tn)-based mutagenesis and the construction of arrayed mutant libraries in diverse bacterial systems. We also consider the contributions of CRISPR interference as a transformative technique for probing bacterial gene function at scale. Throughout, we situate our analysis within the context of functional genomics of mycobacteria, focusing specifically on the potential to yield insights into M. tuberculosis pathogenicity and vulnerabilities for new drug and regimen development. Finally, we offer suggestions for future approaches that might be usefully applied in elucidating the complex cellular biology of this major human pathogen.


Assuntos
Elementos de DNA Transponíveis , Mycobacterium tuberculosis , Humanos , Elementos de DNA Transponíveis/genética , Genômica/métodos , Mutagênese , Mycobacterium tuberculosis/genética , Fenótipo , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Front Plant Sci ; 14: 1154110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223796

RESUMO

Dickeya and Pectobacterium species are necrotrophic pathogens that macerate stems (blackleg disease) and tubers (soft rot disease) of Solanum tuberosum. They proliferate by exploiting plant cell remains. They also colonize roots, even if no symptoms are observed. The genes involved in pre-symptomatic root colonization are poorly understood. Here, transposon-sequencing (Tn-seq) analysis of Dickeya solani living in macerated tissues revealed 126 genes important for competitive colonization of tuber lesions and 207 for stem lesions, including 96 genes common to both conditions. Common genes included acr genes involved in the detoxification of plant defense phytoalexins and kduD, kduI, eda (=kdgA), gudD, garK, garL, and garR genes involved in the assimilation of pectin and galactarate. In root colonization, Tn-seq highlighted 83 genes, all different from those in stem and tuber lesion conditions. They encode the exploitation of organic and mineral nutrients (dpp, ddp, dctA, and pst) including glucuronate (kdgK and yeiQ) and synthesis of metabolites: cellulose (celY and bcs), aryl polyene (ape), and oocydin (ooc). We constructed in-frame deletion mutants of bcsA, ddpA, apeH, and pstA genes. All mutants were virulent in stem infection assays, but they were impaired in the competitive colonization of roots. In addition, the ΔpstA mutant was impaired in its capacity to colonize progeny tubers. Overall, this work distinguished two metabolic networks supporting either an oligotrophic lifestyle on roots or a copiotrophic lifestyle in lesions. This work revealed novel traits and pathways important for understanding how the D. solani pathogen efficiently survives on roots, persists in the environment, and colonizes progeny tubers.

20.
Front Microbiol ; 14: 1146496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168111

RESUMO

Introduction: DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods: In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results: We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion: Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...