Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Microbiol ; 14: 1233327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700867

RESUMO

Background: Western Lake Erie is suffering from harmful cyanobacterial blooms, primarily toxic Microcystis spp., affecting the ecosystem, water safety, and the regional economy. Continued bloom occurrence has raised concerns about public health implications. However, there has been no investigation regarding the potential increase of Legionella and antibiotic resistance genes in source water, and disinfection byproducts in municipal treated drinking water caused by these bloom events. Methods: Over 2 years, source water (total n = 118) and finished water (total n = 118) samples were collected from drinking water plants situated in western Lake Erie (bloom site) and central Lake Erie (control site). Bloom-related parameters were determined, such as microcystin (MC), toxic Microcystis, total organic carbon, N, and P. Disinfection byproducts (DBPs) [total trihalomethanes (THMs) and haloacetic acids (HAAs)] were assessed in finished water. Genetic markers for Legionella, antibiotic resistance genes, and mobile genetic elements were quantified in source and finished waters. Results: Significantly higher levels of MC-producing Microcystis were observed in the western Lake Erie site compared to the control site. Analysis of DBPs revealed significantly elevated THMs concentrations at the bloom site, while HAAs concentrations remained similar between the two sites. Legionella spp. levels were significantly higher in the bloom site, showing a significant relationship with total cyanobacteria. Abundance of ARGs (tetQ and sul1) and mobile genetic elements (MGEs) were also significantly higher at the bloom site. Discussion: Although overall abundance decreased in finished water, relative abundance of ARGs and MGE among total bacteria increased after treatment, particularly at the bloom site. The findings underscore the need for ongoing efforts to mitigate bloom frequency and intensity in the lake. Moreover, optimizing water treatment processes during bloom episodes is crucial to maintain water quality. The associations observed between bloom conditions, ARGs, and Legionella, necessitate future investigations into the potential enhancement of antibiotic-resistant bacteria and Legionella spp. due to blooms, both in lake environments and drinking water distribution systems.

2.
Water Res ; 245: 120598, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722140

RESUMO

Ion exchange resins (IEX) are used in drinking water utilities to remove natural organic matter (NOM) from surface water; however, the disposal of used brine can be a major drawback. Recently, biological ion exchange (BIEX) has been proposed as an alternative to biological activated carbon (BAC) for removing natural organic matter (NOM). The present study is, to the best of our knowledge, the first attempt to use a hybrid BIEX and BAC (BIEX+BAC) system for drinking water treatment. The removal of NOM, assimilable organic carbon, and trihalomethane formation potential was investigated by operating four columns comprising IEX, BIEX, BAC, and BIEX+BAC with 18,000 bed volumes. The BIEX+BAC system was the most effective at removing dissolved organic carbon (59.9%). Based on fluorescence excitation-emission matrix spectroscopy, the BIEX+BAC column showed the maximum removal rates in all peak regions of T1, T2, and A. Using liquid chromatography-organic carbon detection, resin-containing columns were found to effectively remove humic substances, which are the principal precursors of trihalomethanes. The lowest potential for trihalomethane formation was observed in BIEX+BAC. BIEX+BAC also had the highest assimilable organic carbon removal efficiency (61.2%) followed by BIEX (52.3%), BAC (49.5%), and IEX (47.1%). The BIEX+BAC hybrid was found to be the most effective method for removing NOM fractions and reducing the formation of disinfection byproducts.

3.
Environ Pollut ; 335: 122227, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479166

RESUMO

Ensuring effective drinking water disinfection, remaining a certain amount of residual chlorine, and controlling disinfection by-product formation were very important for guarantying water quality safety and protecting public health; thus, the chlorine decay model and corresponding disinfection by-product formation model were necessary. This paper proposed a mixed-order chlorine bulk decay model (two parameters) based on Taylor's formula and derived its analytical solution. The accuracy of the mixed-order model was evaluated by comparing it with the nth-order model. To optimize the model and reduce the number of parameters required to be calibrated, the relationship of parameters with temperature, initial chlorine concentration, TOC and inorganic substance (ammonia nitrogen and iodide ion) was explored. The result proved that one of the parameters could be regarded as temperature dependent only. Meanwhile, the temperature equation of the model parameters was established by the Arrhenius formula. Subsequently, this paper selected trihalomethane as the target and study the linear relationship between chlorine consumption and trihalomethane formation. The results indicated that the liner slope had little correlation with initial chlorine concentration and temperature. On this basis, the corresponding trihalomethane model was built and its performance was proven to be good. The modeling developed in this work could be applied to drinking water distribution systems for residual chlorine and trihalomethane prediction, and provided a reference for the decision involving water quality.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Purificação da Água/métodos , Trialometanos/análise , Desinfecção/métodos , Poluentes Químicos da Água/análise
4.
Water Environ Res ; 95(7): e10908, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37417474

RESUMO

Powdered activated carbon was immobilized by casting it in a polysulfone polymer membrane, which was then tested for disinfection byproduct (chloroform) and bacteria (Escherichia coli) removal. The membrane prepared using 90% T20 carbon and 10% polysulfone (M20-90) provided a filtration capacity of 2783 L m-2 , adsorption capacity of 2.85 mg g-1 , and 95% chloroform removal in a 10 s empty bed contact time. Flaws and cracks on the membrane surface caused by the carbon particles appeared to reduce chloroform and E. coli removal. To overcome this challenge, up to six layers of the M20-90 membrane were overlapped, which improved chloroform filtration capacity by 94.6%, to 5416 L m-2 , and increased the adsorption capacity by 93.3%, to 5.51 mg g-1 . E. coli removal also increased from 2.5 logs reduction using a single membrane layer to 6.3 logs using six layers under 10 psi feed pressure. The filtration flux declined from 6.94 m3  m-2  day-1  psi-1 for a single layer (0.45 mm thick) to 1.26 m3  m-2  day-1  psi-1 for the six-layer membrane system (2.7 mm thick). This work demonstrated the feasibility of using powdered activated carbon immobilized on a membrane to improve chloroform adsorption and filtration capacity while simultaneously removing microbes. PRACTITIONER POINTS: Powdered activated carbon was immobilized on a membrane to improve chloroform adsorption and filtration capacity while simultaneously removing microbes. Membranes made with the smaller carbon particles (T20) delivered better chloroform adsorption performance. Use of multiple layers of the membrane further improved chloroform and Escherichia coli removal.


Assuntos
Carvão Vegetal , Purificação da Água , Clorofórmio , Desinfecção , Pós , Escherichia coli , Filtração , Polímeros , Adsorção , Membranas Artificiais
5.
Chemosphere ; 335: 139085, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263514

RESUMO

Chlorination is widely used to disinfect drinking water to keep humans safe from microorganisms. During chlorination, chlorine and its compounds react with contaminants to form disinfection by-products (DBPs). Toxicological and epidemiological studies have demonstrated that trihalomethanes (THMs) are the most widely investigated DBPs in drinking water, and their exposure has been associated with some adverse health effects. However, studies about risk characteristics in this field are limited. We estimated the health risks of THMs exposure in drinking water through multi-pathways, and systematically analyzed the factors influencing health risks of THMs in Wuxi, China. A total of 488 drinking water samples were collected and analyzed for THMs from four water treatment utilities from 2008 to 2016 in Wuxi. And water exposure parameters were obtained from 602 participants by structured questionnaires. The median concentration of THMs ranged from 6.71 µg/L to 9.18 µg/L. The cumulative cancer risk of THMs exposure through multi-pathways was 1.26 × 10-4, and CHBr2Cl made the largest contribution to the total cancer risk (48.25%). The non-cancer risk of THMs exposure was 2.02 × 10-1. Health risks of the exposure to THMs in drinking water in summer were significantly higher than that in winter (P = 0.0003 for cancer risk, and P = 5.95 × 10-7 for non-cancer risk). In our study, the average individual disability-adjusted life years (DALYs) lost was 1.27 × 10-4 per person-year (ppy). This study attempted to use DALYs for risk assessment of THMs, which will provide useful information for risk comparison and prioritization of hazards in drinking water. This suggested that potential higher risk might exist, and possible measures could be considered to decrease the health risks.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Trialometanos/toxicidade , Trialometanos/análise , Desinfecção , Cloretos , Medição de Risco , China , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Desinfetantes/análise
6.
Membranes (Basel) ; 12(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36005676

RESUMO

Lab-scale anoxic/oxic membrane bioreactor (A/O-MBR) and oxic membrane bioreactor (O-MBR) systems using a submerged polysulfone hollow-fiber membrane module with a pore size of 0.01 µm and a total surface area of 1.50 m2 were used to treat domestic wastewater. The sludge retention time (SRT) of each system was examined by setting the SRT to 10, 20, and infinity (no sludge withdrawal). The results showed that the total nitrogen removal efficiency of the A/O-MBR was more significant than that of the O-MBR at a SRT of infinity, with figures of 72.3% and 33.1% being found, respectively. The COD removal efficiencies of the A/O-MBR system with a SRT of 10 days, 20 days, and infinity were 82.4%, 84.3%, and 91.5%, respectively. The COD removal efficiencies of the O-MBR system with a SRT of 10 days, 20 days, and infinity were 79.3%, 81.5%, and 89.8%, respectively. An increase in the SRT resulted in an increase in the COD removal efficiency. The FEEM peak of the influent tended to decrease after an increase in the SRT for both systems (A/O-MBR and O-MBR). For the A/O-MBR system, the trihalomethane formation potential (THMFP) was significantly reduced by 88.91% (at a SRT of infinity). The THMFP declined significantly by 85.39% for the O-MBR system at a SRT of infinity. The A/O-MBR system showed a slightly higher efficiency than the O-MBR system in terms of the COD removal and the THMFP reduction. These results indicated that the MBR process, and the A/O-MBR system, in particular, could be used as an effective wastewater treatment process for many developing countries that are troubled by the emerging contamination of water and wastewater.

7.
J Environ Manage ; 315: 115099, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500481

RESUMO

The selective adsorption mechanisms involved in the competitive adsorption of five iodinated trihalomethanes (I-THMs) onto dithiolglycol and (3-mercaptopropyl)-trimethoxy functionalized HKUST-1 (HK-SH and HK-MPTS, respectively) were investigated by single- and mixed-batch adsorption. HK-SH had the highest adsorption rates and capacities for the five I-THMs, followed by HK-MPTS and pristine HKUST-1, even though the porosity and surface area decreased after modification. The primary adsorptive mechanism of HK-SH consists of ion-dipole interactions of I-THMs with the protonated hydroxyl and thiol groups at the metal (Cu) node, which is supported by Lewis acid-base reactions via Cu-Cu complex and π-π interactions. In a mixed solute, bromodiiodomethane, which was the most hydrophobic and had the smallest molecular size, exhibited the most competitive adsorption on HK-SH. In contrast, the selective adsorption of I-THMs onto HK-MPTS was affected by their log Kow values, causing hydrophobic partitioning onto the alkyl chain of the mercaptopropyl group. Iodinated haloforms tend to achieve a higher adsorption rate and capacity than chlorinated and brominated haloforms via hydrophobic partitioning. Moreover, dithiolglycol grafted onto HK-SH can better promote the excellent selective adsorption performance of iodoacetamide than dichloroiodomethane and iodoacetic acid in both single- and mixed-solute solutions due to hydrogen bonding via the -NH2 group of diiodoacetamide.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Estruturas Metalorgânicas , Soluções , Compostos de Sulfidrila , Trialometanos , Poluentes Químicos da Água/química
8.
Sci Total Environ ; 832: 154850, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35351514

RESUMO

The degradation efficiency and mechanisms of ciprofloxacin (CIP), a typical antibiotic, by a medium-pressure ultraviolet/chloramine (MPUV/NH2Cl) treatment were investigated. The results showed that CIP degradation by MPUV/NH2Cl was significantly higher than that by NH2Cl oxidation and MPUV photolysis, and that this degradation processes were consistent with pseudo-first-order kinetics. The initial CIP concentration (7.5-30.2 µM) and the presence of HCO3- (0.5-10 mM) significantly inhibited CIP degradation with kobs,CIP 0.0090-0.0069 and 0.0078-0.0048 cm2/mJ. In contrast, NO3- (50-500 µM) and Br- (0.5-10 mM) significantly promoted the degradation with kobs,CIP 0.0078-0.0102 and 0.0078-0.0124 cm2/mJ. The effect of Cl- (0.5-10 mM) and natural organic matter (1-5 mg/L) were negligible. The NH2Cl dosage (30-60 µM) presented a dual effect, in which its increase within the optimal concentration range (30-40 µM) accelerated CIP degradation due to the formation of reactive radicals, whereas an excessive increase (40-60 µM) quenched the free radicals, ultimately quenching the free radicals and inhibiting the degradation. The optimum pH for CIP degradation under MPUV/NH2Cl treatment was 7.0. The contribution of reactive halogen species (i.e., reactive chlorine species and reactive nitrogen species) to CIP degradation was substantially greater than that of hydroxyl radicals under acidic or neutral conditions. We identified the degradation products of CIP and proposed degradation pathways, which included defluorination and cracking of the piperazine ring, with the latter being dominant. Compared to haloacetic acid (HAA) and nitrogenous disinfection byproducts (N-DBPs), MPUV/NH2Cl significantly reduced trihalomethane (THM) production and theoretical cytotoxicity by 80.1% and 78.4% respectively, compared to the background experiment in natural water at a UV dose of 300 mJ/cm2.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloraminas , Cloretos , Cloro , Ciprofloxacina , Desinfecção , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
9.
Water Res ; 211: 118039, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999315

RESUMO

The minimization of disinfection by-product (DBP) formation by the removal of its precursors before water disinfection is a highly effective approach. Granular activated carbon (GAC) filtration is widely used for water treatment, but our understanding of molecular dissolved organic matter (DOM) remains insufficient. This research investigates the removal of DOM and the minimization of DBP formation by pilot-scale coal- and coconut-based granular activated carbon filtrations (coAC and ccAC, respectively) using unknown screening analysis with Orbitrap mass spectrometry. DOM adsorption rates by both GACs were fitted with pseudo-second order models with initial adsorption rates of 0.005 mg g-1 min-1 and 0.022 mg g-1 min-1 for ccAC and coAC, respectively. Based on observations, ccAC was more effective in the removal of dissolved organic carbon and prolonged adsorption longer than coAC, as the breakthrough of coAC was found on Day 10. ccAC removed compounds with carbon, hydrogen, and oxygen (CHO features) with a wide range of oxidation states, as indicated by the carbon oxidation state (Cos), and a wide range of unsaturation, as indicated by oxygen subtracted double bond equivalent per carbon ([DBE-O]/C), while coAC selectively removed only those CHO features with less oxidized characters. Less oxidized compounds (low Cos) were preferentially removed with less contact time, while more oxidized compounds needed more contact time to adsorb on the GACs. A biofilm was developed on Day 60, and many CHO features were found to have increased after GAC treatment on Day 60, indicating the formation of microbial products. Chlorination resulted in a decrease in many CHO and CHO with Cl atom (CHOCl) features and the formation of CHOCl DBPs more than CHO DBP features. ccAC was effective in the minimization of trihalomethane (THM) and CHOCl DBP feature formations on Day 10 and Day 60, while coAC was found to be much less effective.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Desinfecção , Matéria Orgânica Dissolvida , Espectrometria de Massas , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 822: 153323, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35066044

RESUMO

Water contamination through anthropogenic and industrial activities has led to the emergence and necessity of disinfection methods. Chlorine and bromine gases, often used to disinfect water, resulted in the by-product formation by reacting with organic matter. The Disinfectant by-products (DBP) led to the formation of Trihaloaceticacid (TAA), Trihalomethane (THM), and other minor components. The release of chemicals has also led to the outbreak of diseases like infertility, asthma, stillbirth, and types of cancer. There are new approaches that are found to be useful to compensate for the generation of toxic by-products and involve membrane technologies, namely reverse osmosis, ultrafiltration, and nanofiltration. This review mainly focuses on the toxicology effects of DBPs and various approaches to mitigate the same. The health hazards caused by different DBPs and the various treatment techniques available for the removal are discussed. In addition, a critical comparison of the different removal techniques was discussed.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Desinfetantes/toxicidade , Desinfecção/métodos , Halogenação , Trialometanos/análise , Trialometanos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
11.
Chemosphere ; 286(Pt 1): 131586, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303907

RESUMO

Monitoring of disinfection by-products (DBPs) in water supply system is important to ensure safety of drinking water. Yet it is a laborious job. Developing predictive DBPs models using simple and easy parameters is a promising way. Yet current models could not be well applied into practice because of the improper dataset (e.g. not from real tap water) they used or involving the parameters that are difficult to measure or require expensive instruments. In this study, four simple and easy water quality parameters (temperature, pH, UVA254 and Cl2) were used to predict trihalomethane (THMs) occurrence in tap water. Linear/log linear regression models (LRM) and radial basis function artificial neural network (RBF ANN) were adopted to develop the THMs models. 64 observations from tap water samples were used to develop and test models. Results showed that only one or two parameters entered LRMs, and their prediction ability was very limited (testing datasets: N25 = 46-69%, rp = 0.334-0.459). Different from LRM, the prediction accuracy of RBF ANNs developed with pH, temperature, UVA254 and Cl2 can be improved continuously by tweaking the maximum number of neuron (MN) and Gaussian function spread (S) until it reached best. The optimum RBF ANNs of T-THMs, TCM and BDCM were obtained when setting MN = 20, S = 100, 100.1 and 60, respectively, where the N25 and rp values for testing datasets reached 85-92% and 0.813-0.886, respectively. Accurate predictions of THMs by RBF ANNs with these four simple and easy parameters paved an economic and convenient way for THMs monitoring in real water supply system.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfecção , Redes Neurais de Computação , Trialometanos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água
12.
Sci Total Environ ; 804: 149890, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520927

RESUMO

Wildfires are a concern for water quality in the United States, particularly in the wildland-urban interface of populous areas. Wildfires combust vegetation and surface soil organic matter, reduce plant nutrient uptake, and can alter the composition of runoff and receiving waters. At the wildland-urban interface, fires can also introduce contaminants from the combustion of man-made structures. We examine post-wildfire effects on drinking water quality by evaluating concentrations and maximum contaminant level (MCL) violations of selected contaminants regulated in the U.S. at public drinking water systems (PWSs) located downstream from wildfire events. Among contaminants regulated under the U.S. Safe Drinking Water Act, nitrate, arsenic, disinfection byproducts, and volatile organic compounds (VOCs) were analyzed in watersheds that experienced major wildfires. Surface water sourced drinking water (SWDW) nitrate violations increased by an average of 0.56 violations per PWS and concentrations increased by 0.044 mg-N/L post-wildfire. Groundwater sourced drinking water (GWDW) nitrate violations increased by 0.069 violations per PWS and concentrations increased by 0.12 mg-N/L post-wildfire. SWDW total trihalomethane (TTHM) violations increased by 0.58 violations per PWS and concentrations increased by 10.4 µg/L. SWDW total haloacetic acid (HAA5) violations increased by 0.82 violations per PWS and concentrations increased by 8.5 µg/L. Arsenic violations increased by 1.08 violations per PWS and concentrations increased by 0.92 µg/L. There was no significant effect of wildfires on average VOC violations. Nitrate violations increased in 75% of SWDW sites and 34% of GWDW sites post-wildfire, while about 71% and 50% of SWDW sites showed an increase in TTHM and HAA5 violations. Violations also increased for 35% of arsenic and 44% of VOC sites post-wildfire. These findings support the need for increased awareness about the impact of wildfires on drinking water treatment to help PWS operators adapt to the consequences of wildfires on source water quality, particularly in wildfire-prone regions.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Incêndios Florestais , Desinfecção , Humanos , Nitratos , Estados Unidos , Poluentes Químicos da Água/análise
13.
Environ Monit Assess ; 193(12): 845, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837550

RESUMO

Despite there being numerous models of trihalomethane (THM) formation, they are limited by high estimation errors, which can be close to the regulatory limits for THMs, due to the fluorescence quenching effect. In this research, the estimation error for THM formation was reduced by correcting the quenching effect. The trihalomethane formation potential (THMFP) test was conducted in the presence of chlorine and bromine, individually and in mixtures. The THM precursors used in this study were protein (bovine serum albumin; BSA), amino acids (tryptophan and tyrosine), chlorine, bromine, and Suwannee River natural organic matter (SWNOM). BSA tended to form bromodichloromethane (BDCM) rather than trichloromethane (TCM) during chlorination in the presence of bromide (Br-). In contrast, SWNOM tended to form chlorinated THMs (TCM) rather than brominated THMs (BDCM and dibromochloromethane; DBCM), and no TBMs were formed in these processes. BSA with SWNOM decreased the formation of TCM due to the decrease in the amount of TCM precursor in SWNOM through binding with BSA. The concentration of each THM species was predicted from the fluorescence intensity of peak C, corrected fluorescence intensity of peak T, and Br- concentration. The use of humic-like and corrected protein-like fluorescence in the excitation-emission matrix model for predicting THM species reduced the prediction error. In this research, correction of the fluorescence quenching decreased the mean percentage estimation error for TCM, BDCM, and DBCM from 47%, 35%, and > 100% in classical approaches to 6.6%, 26.9%, and 2.0%, respectively. This study is expected to make contributions in reporting the relationship between the concentration of natural organic matter compositions and the formation of THM species.


Assuntos
Poluentes Químicos da Água , Cloro , Monitoramento Ambiental , Fluorescência , Trialometanos/análise , Poluentes Químicos da Água/análise
14.
Water Res ; 207: 117804, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763282

RESUMO

Iron deposits stimulate chlorine consumption and trihalomethane (THM) formation in drinking water distribution systems through distinct mechanisms. In this study, a second-order chlorine decay model with a variable reaction-rate coefficient was developed to quantitatively evaluate the influences of iron deposits on chlorine reactions by considering the characteristics of dissolved organic matter (DOM), the type and dosages of deposits, as well as the initial chlorine concentrations. Based on a reliable prediction of residual chlorine, the concept that THM formation had a linear relationship with chlorine consumption was further validated by chlorination of DOM in the presence of iron deposits. Due to the catalysis influences, the reactivity of DOM towards chlorine decay or THM formation was accelerated. Although iron deposits activated the reactivity of DOM with bromine and chlorine, THM slightly shifted toward chlorinated species. Due to the adsorption influences, the maximum chlorine demand increased with the increasing deposit dosages whereas the extent of enhancement mainly relied on the DOM properties. Low-molecular-weight DOM with a hydrophilic characteristic was prone to be elevated by iron deposits. Based on the model simulation, approximately 20% of chlorine consumption and 37% of THM formation were contributed by deposits after 168 h reaction. The data provided herein emphasize the role of iron deposits in chlorine consumption and THM formation, which assist the water quality management in drinking water distribution systems.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Matéria Orgânica Dissolvida , Ferro , Trialometanos/análise , Poluentes Químicos da Água/análise
15.
Environ Pollut ; 290: 118044, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454197

RESUMO

Despite the wide applications of end member mixing analysis (EMMA) for assigning the sources of dissolved organic matter (DOM) in aquatic environment, there was no study attempting to test the applicability of EMMA for predicting environmental reactivity of DOM. This study aimed to explore the feasibility of EMMA, or the concept of ideal mixing behavior of end members, for describing several well-known DOM reactivities using two DOM end member sources (i.e., soil and algae) at varying mixing ratios. The selected DOM reactivities were trihalomethane formation potential (THMFP), mineral adsorption amount, pyrene binding, membrane resistance, and biodegradation potential. Among the tested DOM functions, all were found to follow the ideal mixing behavior, presenting the linear relationships between the source mixing ratios and the tested reactivity with the R2 value of >0.80. The ideal mixing behavior of the DOM functions was more pronounced than that based on several spectroscopic indicators derived from UV absorption and fluorescence spectroscopy. This study provided insight into potential applicability and limitation of EMMA approach in monitoring and predicting environmental functions of DOM in aquatic systems where identified DOM sources are mixed and vary dynamically with the mixing ratios.


Assuntos
Solo , Trialometanos , Adsorção , Biodegradação Ambiental , Espectrometria de Fluorescência
16.
Environ Res ; 199: 111288, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33965388

RESUMO

BACKGROUND: Water total trihalomethanes (TTHMs) are disinfectant byproducts found in municipal water supplies. TTHM exposure has been linked to cancer and may be associated with adverse reproductive outcomes. A non-optimal cervicovaginal microbiota and low cervicovaginal beta-defensin-2 levels are associated with increased risk of spontaneous preterm birth. Whether TTHM exposure increases the risk of spontaneous preterm birth or alters the cervicovaginal microbial or immune state is unknown. OBJECTIVE: Investigate associations of water TTHM levels with spontaneous preterm birth, a non-optimal cervicovaginal microbiota, and beta-defensin-2 levels in a completed, diverse, urban pregnancy cohort. We hypothesized that higher TTHM levels would be associated with spontaneous preterm birth, a non-optimal cervicovaginal microbiota, and lower beta-defensin-2 levels. DESIGN: Methods: This was a secondary analysis of participants (n = 474) in the Motherhood & Microbiome (M&M) study (n = 2000), who lived in Philadelphia and had cervicovaginal samples analyzed for cervicovaginal microbiota composition and beta-defensin-2 levels. The microbiota was classified into community state types (CSTs). CST IV (non-optimal microbiota) is characterized by a paucity of Lactobacillus species and wide array of anaerobes. Municipal water TTHM levels were obtained from 16 sites monthly across the city of Philadelphia to establish mean residential water supply levels for each participant for the first four months of pregnancy (prior to vaginal swab collection at 16-20 weeks' gestation). Associations of water TTHM levels with spontaneous preterm birth and a non-optimal cervicovaginal microbiota birth were analyzed using multivariable logistic regression. Multivariable linear regression was used to model associations of water TTHM levels with log-transformed cervicovaginal beta-defensin-2 levels. Since water TTHM levels vary by season and beta-defensin-2 levels have been shown to differ by race, stratified models by warm (April-September) and cold (October-March) seasons as well as by self-identified race were utilized. RESULTS: Participants' water supply TTHM levels (mean µg/L [SD]) were higher in the warm (53.5 [9.4]) than cold (33.4 [7.5]) season (p < 0.0001). TTHM levels were non-significantly higher among Black participants than non-Black participants (44.8 [13.5] vs. 41.8 [11.8], p = 0.07). No associations were detected between TTHM with spontaneous preterm birth (per SD increment of TTHM, aOR 0.94, 95%CI: 0.66, 1.34) or with CST IV (aOR 0.94, 95%CI: 0.86, 1.16). Counter to our hypothesis, we observed positive associations of water TTHM with log-transformed cervicovaginal beta-defensin-2 levels in unadjusted models (ß 0.20 [95%CI: 0.02, 0.39]) per SD increment of TTHM), but the association was null after adjustment for season. However, in models adjusted for covariates including season and stratified by race, TTHM was significantly associated with lower beta-defensin-2 levels among non-Black participants (ß -0.75 [95%CI: -1.43, -0.08]) but not among Black participants (ß 0.17 [95%CI: -0.15, 0.49]), interaction p = 0.013). CONCLUSION: We did not detect associations of water TTHM levels with spontaneous preterm birth or the structure of the cervicovaginal microbiota. However, the finding of a significant interaction between TTHM and race on beta-defensin-2 levels suggest that environmental exposures may contribute to differences in reproductive tract innate immune function by race. Future studies to delineate environmental contributions to the cervicovaginal microbial-immune state, a potentially important biologic underpinning for preterm birth, are warranted.


Assuntos
Desinfetantes , Microbiota , Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , Trialometanos/toxicidade , Abastecimento de Água
17.
Environ Sci Pollut Res Int ; 28(38): 54137-54146, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34043169

RESUMO

The generation of hazardous disinfection by-product is one of the major problems in drinking water chlorination. This study aims to investigate the potential of potassium ferrate (K2FeO4) on by-product control. Filtered raw water from a water treatment plant in Jinan was used to evaluate the effects of K2FeO4 dose, pH, ammonia nitrogen, and Br- concentration on trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP). The results present that 3 mg/L K2FeO4 effectively reduced ultraviolet absorbance at 254 nm (UV254) by 45%, but removed little dissolved organic carbon (DOC) by 12% at pH 7.40, since K2FeO4 tends to attack the electron-rich part of organic matter molecules but with restricted mineralization ability. Fluorescence excitation-emission matrix (EEM) analyses indicate the effective removal of fulvic acid and humic acid. Increasing K2FeO4 dose reduced THMFP but increased HAAFP, due to their precursors reacting with K2FeO4 in different pathway, while the rising pH or Br- concentration increased THMFP but decreased HAAFP. Both THMFP and HAAFP decrease with increasing ammonia nitrogen concentrations. Additionally, it was found that under alkaline conditions, trihalomethanes (THMs) were dominated by haloacetic acids (HAAs).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Compostos de Ferro , Compostos de Potássio , Trialometanos/análise , Poluentes Químicos da Água/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-33028020

RESUMO

High concentrations of trihalomethanes (THMs) in public water supplies potentially pose a health hazard, but exposure assessment remains a complex task. To interpret research findings and monitoring data for THMs, it is important to evaluate spatial and temporal variations in both total THM and the individual constituent compounds (including brominated species). We therefore aimed to determine the concentrations, and spatial and temporal variability of concentrations, of THMs public water supplies in Perth, Western Australia, which is known historically to have high brominated THM concentrations. We analysed water samples from 21 water distribution zones around Perth (including Busselton and Bunbury) across different seasons over a period of two years. A total of 250 samples provided a median total THM of 72 µg/L (range of 0-157 µg/L), which falls well within Australia's National Health and Medical Research Council guidelines. The concentration of all species, including brominated forms, also fell the World Health Organization's guidelines. Total THM concentrations were typically higher in spring and summer. A high degree of spatial variability was detected and appears to relate to the source water. Both the temporal and spatial variability in THM concentrations have implications for epidemiological studies, and monitoring.


Assuntos
Bromo/análise , Trialometanos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Abastecimento de Água , Austrália Ocidental
19.
Sci Total Environ ; 737: 140300, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783868

RESUMO

Vacuum ultraviolet (VUV) treatment is a promising advanced oxidation process for the removal of organic contaminants during water treatment. Here, we investigated the formation of disinfection by-products from coexisting organic matter during VUV or ultraviolet (UV) treatment following pre-chlorination, and their fates after post-chlorination, in a standard Suwannee River humic acid water and a natural lake water. VUV treatment after pre-chlorination decreased the total trihalomethane (THM) concentration but increased total aldehyde and chloral hydrate concentrations; total haloacetic acid (HAA) and haloacetonitrile (HAN) concentrations did not change. UV treatment after pre-chlorination produced similar changes in the by-products as those observed for VUV treatment, with the exception that the total THM concentration was not changed, and the total HAN concentration was increased. The final concentrations of by-products after post-chlorination were increased by VUV or UV treatment, except for the total HAA concentration, which remained unchanged after UV treatment. The increases were greater after VUV treatment than after UV treatment, probably because the larger amount of hydroxyl radicals generated during VUV treatment compared with during UV treatment transformed coexisting organic matter into precursors of by-products that were then converted to by-products during post-chlorination.

20.
Talanta ; 215: 120902, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312447

RESUMO

In this study, we have developed a simple and effective hybrid extraction method based on the incorporation of raw carbon nanosorbents and octanol in the pores of a hollow-fiber membrane for improving the extraction efficiency of relatively polar organic compounds. Trihalomethanes (THMs) were used as model analytes. Three types of carbon nanosorbents (graphite, graphene, and multi-walled carbon nanotubes) were studied. The carbon sorbent incorporating membrane was used in a two-phase mode liquid-phase microextraction, with 1-octanol as the acceptor solution. Using a graphite-reinforced hollow-fiber membrane and an extraction time of 10 min, enrichment factors of 40-71 were obtained for trichloromethane, bromodichloromethane, bromoform, and chlorodibromomethane. Linear working ranges of 0.2-100 µg L-1 and limits of detection ranging from 0.01 µg L-1 (for CHCl2Br and CHClBr2) to 0.1 µg L-1 (for CHCl3) were achieved. The minimum detectable concentrations were far below the maximum concentration levels (60-200 µg L-1) set by the WHO for drinking water. The carbon-sorbent-reinforced hollow-fiber liquid-phase microextraction afforded higher extraction efficiency and shorter extraction time compared with conventional hollow-fiber liquid-phase microextraction. Finally, the method was applied to the analysis of real water samples, such as drinking water, tap water, and swimming pool water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...