Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.289
Filtrar
1.
Caspian J Intern Med ; 15(4): 601-605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359436

RESUMO

Background: Tumor necrosis factor alpha (TNF-α) produces an inflammatory process and plays a critical role against infection and in the control of viral infection. The present study was conducted to determine the status of serum TNF-α in hospitalized patients with coronavirus disease-2019 (COVID-19). Methods: In this cross-sectional study the serum TNF-α level, sex, and age, were determined in patients with COVID-19. The association between variables was determined using the student t-test, analysis of variance (ANOVA) test, multiple logistic regression analysis, and the statistical package for the Social Sciences (SPSS)-18 (p < 0.05). Results: A total of 91 (women 41.75%, and men 58.24%) patients with a mean serum TNF-α level of 9.9 picograms per milliliter (pg/mL) were considered. In all (100%) patients, the TNF-α serum level was more than the normal limit (P=0.95). 95.60% of patients suffered severe COVID-19, with a TNF-a serum level of 10.20 pg/mL (P=0.87). Mean TNF-α serum levels in women and men were 11.37 pg/mL and 8.8 pg/mL, respectively (P= 0.17). In the age group of > 70 years (11.30 pg/mL), serum TNF-α concentration was higher than the other age groups (p>0.05). Conclusion: A significant proportion of women and men patients with COVID-19 in the middle and old age had a high concentration of serum TNF-α which may indicate the severity of the disease. Serum TNF-α level is different in women and men of different ages, so it can contribute to treatment strategies.

2.
Neurobiol Dis ; 201: 106687, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362568

RESUMO

Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.

3.
J Neurovirol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367281

RESUMO

During lytic or latent infection of sensory neurons with herpes simplex virus type 1 (HSV-1) there are significant changes in the expression of voltage-gated Na+ channels, which may disrupt the transmission of pain information. HSV-1 infection can also evoke the secretion of various pro-inflammatory cytokines, including TNF-α and IL-6. In this work, we hypothesized that TNF-α regulates the expression of Na+ channels during HSV-1 latency establishment in ND7/23 sensory-like neurons. Latency establishment was mimicked by culturing HSV-1 infected ND7/23 cells in the presence of acyclovir (ACV) for 3 days. Changes in the functional expression of voltage-gated Na+ channels were assessed by whole-cell recordings. Our results demonstrate that infection of ND7/23 cells with the HSV-1 strain McKrae with GFP expression (M-GFP) causes a significant decrease in sodium currents during latency establishment. Exposure of ND7/23 cells to TNF-α during latency establishment reverses the effect of HSV-1, resulting in a significant increase in sodium current density. However, Na+ currents were not restored by 3 day-treatment with IL-6. There were no changes in the pharmacological and biophysical properties of sodium currents promoted by TNF-α, including sensitivity to tetrodotoxin and the current-voltage relationship. TNF-α stimulation of ND7/23 cells increases p38 signaling. Inhibition of p38 signaling with SB203580 or SB202190 eliminates the stimulatory effect of TNF-α on sodium currents. These results indicate that TNF-α signaling in sensory neurons during latency establishment upregulates the expression of voltage-gated Na+ channels in order to maintain the transmission of pain information.

4.
BMC Immunol ; 25(1): 63, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354368

RESUMO

OBJECTIVES: Carcinoembryonic-antigen-related cell-adhesion molecule 1 (CEACAM1) is an adhesion molecule that acts as a coinhibitory receptor in the immune system. We previously demonstrated that CEACAM1 is predominantly expressed on peripheral blood neutrophils in patients with RA. The aim of the present study was to investigate the effects of Janus kinase inhibitors (JAKi) on cytokine-activated human neutrophils and CEACAM1 expression. METHODS: Peripheral blood neutrophils were obtained from healthy subjects. Isolated neutrophils were stimulated with tumor necrosis factor-alpha (TNF-α) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence or absence of JAKi. The expression of CEACAM1 in peripheral blood neutrophils was analyzed by flow cytometry. Protein phosphorylation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 was assessed by western blot using phospho-specific antibodies. RESULTS: We found that TNF-α-induced CEACAM1 expression was marginally suppressed after pretreatment with pan-JAK inhibitor, tofacitinib. Moreover, TNF-α induced STAT1 and STAT3 phosphorylation at the late stimulation phase (4 to 16 h). The expressions of CEACAM1 on neutrophils were markedly up-regulated by GM-CSF not by interleukin (IL)-6 stimulation. All JAKi inhibited GM-CSF-induced CEACAM1 expressions on neutrophils, however, the inhibitory effects of baricitinib were larger compared to those of tofacitinib or filgotinib. Moreover, CEACAM1 was marginally upregulated in interferon (IFN)-γ stimulated neutrophils. Similarly, JAKi inhibited IFN-γ-induced CEACAM1 expressions on neutrophils. CONCLUSIONS: We demonstrated that JAKi prevent GM-CSF-induced CEACAM1 expression in neutrophils, and JAKi-induced inhibition depends on their selectivity against JAK isoforms. These findings suggest that JAKi can modulate the expression of CEACAM1 in cytokine-activated neutrophils, thereby limiting their activation.


Assuntos
Antígenos CD , Moléculas de Adesão Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Inibidores de Janus Quinases , Neutrófilos , Pirimidinas , Fator de Necrose Tumoral alfa , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Antígenos CD/metabolismo , Pirimidinas/farmacologia , Inibidores de Janus Quinases/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Pirróis/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Redox Biol ; 76: 103359, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39298837

RESUMO

Intestinal permeabilization is central to the pathophysiology of chronic gut inflammation. This study investigated the efficacy of glucoraphanin (GR), prevalent in cruciferous vegetables, particularly broccoli, and its derivative sulforaphane (SF), in inhibiting tumor necrosis factor alpha (TNFα)-induced Caco-2 cell monolayers inflammation and permeabilization through the regulation of redox-sensitive events. TNFα binding to its receptor led to a rapid increase in oxidant production and subsequent elevation in the mRNA levels of NOX1, NOX4, and Duox2. GR and SF dose-dependently mitigated both these short- and long-term alterations in redox homeostasis. Downstream, GR and SF inhibited the activation of the redox-sensitive signaling cascades NF-κB (p65 and IKK) and MAPK ERK1/2, which contribute to inflammation and barrier permeabilization. GR (1 µM) and SF (0.5-1 µM) prevented TNFα-induced monolayer permeabilization and the associated reduction in the levels of the tight junction (TJ) proteins occludin and ZO-1. Both GR and SF also mitigated TNFα-induced increased mRNA levels of the myosin light chain kinase, which promotes TJ opening. Molecular docking suggests that although GR is mostly not absorbed, it could interact with extracellular and membrane sites in NOX1. Inhibition of NOX1 activity by GR would mitigate TNFα receptor downstream signaling and associated events. These findings support the concept that not only SF, but also GR, could exert systemic health benefits by protecting the intestinal barrier against inflammation-induced permeabilization, in part by regulating redox-sensitive pathways. GR has heretofore not been viewed as a biologically active molecule, but rather, the benign precursor of highly active SF. The consumption of GR and/or SF-rich vegetables or supplements in the diet may offer a means to mitigate the detrimental consequences of intestinal permeabilization, not only in disease states but also in conditions characterized by chronic inflammation of dietary and lifestyle origin.


Assuntos
Glucosinolatos , Imidoésteres , Inflamação , Isotiocianatos , Oximas , Sulfóxidos , Fator de Necrose Tumoral alfa , Humanos , Sulfóxidos/farmacologia , Isotiocianatos/farmacologia , Células CACO-2 , Fator de Necrose Tumoral alfa/metabolismo , Oximas/farmacologia , Imidoésteres/farmacologia , Imidoésteres/metabolismo , Glucosinolatos/farmacologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NF-kappa B/metabolismo
6.
Dose Response ; 22(3): 15593258241282020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224700

RESUMO

Introduction: Parkinson's disease (PD) is characterized by dopamine deficiency in the corpus striatum due to the degeneration of dopaminergic neurons in the substantia nigra. Symptoms include bradykinesia, resting tremors, unstable posture, muscular rigidity, and a shuffled gait. Thalictrum foetidum is traditionally used for neurodegenerative disorders. Objectives: This study aimed to explore the therapeutic potential of aqueous ethanolic extract of Thalictrum foetidum (AETF) against Parkinson-like symptoms and to investigate its underlying mechanism. Methodology: Thirty-six albino mice were randomly divided into 6 groups (n = 6): normal control, disease control, standard treatment (levodopa/carbidopa, 100/25 mg/kg), and 3 treatment groups (AETF at 200, 400, and 600 mg/kg). One hour before treatment, haloperidol (1 mg/kg, i. p.) was administered to induce Parkinson's disease in all groups except the normal control group. Results: Behavioral analysis showed significant improvement (P < .001) in motor function, muscular coordination, and reduced muscular rigidity and tremors. AETF also reduced oxidative stress. Histological examination of the brain showed reduced Lewy bodies, neurofibrillary tangles, and plaque formation. Conclusion: AETF alleviated PD symptoms by reducing neurodegeneration, modulating oxidative stress, and inhibiting the expression of nuclear factor-κB (NF-κB) and associated inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6).

7.
Adv Exp Med Biol ; 1460: 273-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287855

RESUMO

Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1ß) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.


Assuntos
Adipócitos , Macrófagos , Obesidade , Obesidade/metabolismo , Obesidade/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Adipócitos/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular
8.
Adv Exp Med Biol ; 1460: 297-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287856

RESUMO

Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKß)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.


Assuntos
Tecido Adiposo , Inflamação , Obesidade , Transdução de Sinais , Humanos , Obesidade/metabolismo , Obesidade/imunologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mediadores da Inflamação/metabolismo
9.
Adv Exp Med Biol ; 1460: 431-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287861

RESUMO

The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and ß-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.


Assuntos
Adiponectina , Resistência à Insulina , Insulina , Leptina , Obesidade , Humanos , Leptina/metabolismo , Leptina/sangue , Obesidade/metabolismo , Obesidade/sangue , Adiponectina/metabolismo , Adiponectina/sangue , Insulina/metabolismo , Insulina/sangue , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Transdução de Sinais , Síndrome Metabólica/metabolismo , Síndrome Metabólica/sangue
10.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287866

RESUMO

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Assuntos
Adipogenia , Epigênese Genética , MicroRNAs , Obesidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Adipogenia/genética , Animais , Adipócitos/metabolismo , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão Gênica
11.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287864

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Resistência à Insulina , Fígado/patologia , Fígado/metabolismo , Progressão da Doença , Estresse Oxidativo , Índice de Gravidade de Doença , Animais
12.
Adv Exp Med Biol ; 1460: 489-538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287863

RESUMO

Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter ß, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.


Assuntos
Endotélio Vascular , Obesidade , Humanos , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/tratamento farmacológico , Obesidade/complicações , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Estresse Oxidativo
13.
Adv Exp Med Biol ; 1460: 629-655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287867

RESUMO

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Obesidade , Triptofano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Obesidade/metabolismo , Obesidade/enzimologia , Triptofano/metabolismo , Animais , Serotonina/metabolismo , Tecido Adiposo/metabolismo , Cinurenina/metabolismo
14.
Obes Rev ; : e13838, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289905

RESUMO

INTRODUCTION: Obesity is characterized by chronic low-grade inflammation. This study presents an updated systematic review and meta-analysis on the effect of caloric restriction (CR) and intermittent fasting (IF) on plasma inflammatory biomarkers (C-reactive protein [CRP], tumor necrosis factor [TNF]-alpha, and interleukin [IL]-6) in individuals with obesity/overweight compared with unrestricted or ad libitum feeding. METHODS: PubMed, Web of Science, and SCOPUS databases were searched for randomized controlled trials (RCTs) reporting inflammatory biomarkers after at least 8 weeks of intervention. Standardized mean differences (SMDs) were calculated using a fixed effect model. Heterogeneity was determined using I2 statistics. Sensitivity analysis was conducted using the "leave-one-out" approach. RESULTS: Relatively few RCTs have investigated the effect of IF on inflammatory biomarkers than with CR (6 vs. 15). Analysis of pooled data showed that CR was associated with a significant reduction in CRP with low heterogeneity (SMD -0.15 mg/L [95% CI -0.30 to -0.00], p = 0.04; I2 = 0%, p = 0.69) and IL-6 with high heterogeneity (SMD -0.31 pg/mL [95% CI -0.51 to -0.10], p = 0.004; I2 = 73%, p = 0.001). IF was associated with a significant decrease in TNF-alpha with moderate heterogeneity (SMD -0.32 pg/mL [95% CI -0.63 to -0.02], p = 0.04; I2 = 44%, p = 0.13). No associations were detected between IF and CRP or IL-6 and CR and TNF-alpha. CONCLUSION: CR may be more effective in reducing chronic low-grade inflammation than IF. However, there were some concerns regarding the included studies' randomization and allocation sequence concealment process.

15.
J Dermatolog Treat ; 35(1): 2405554, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39299697

RESUMO

BACKGROUND: Ustekinumab is an interleukin (IL)-12/IL-23 inhibitor for the treatment of moderate-to-severe psoriasis. OBJECTIVE: This real-world study compared ustekinumab and tumor necrosis factor-alpha inhibitors (TNFis) in Chinese moderate-to-severe psoriasis patients. METHODS: Patient health records of 110 moderate-to-severe psoriasis patients initiating or switching biologics were reviewed, with 31 patients receiving ustekinumab (ustekinumab group) and 79 patients receiving TNFis (TNFi group). RESULTS: Compared with TNFi group, psoriasis area and severity index (PASI)-75 response rate at month 6 (M6) were elevated (87.1% versus 65.8%, p = 0.026) in the ustekinumab group, whereas the rates at month 1 (M1) and month 3 (M3) and PASI-90 response rates at M1, M3, and M6 only showed an increasing trend (all p > 0.050) in the ustekinumab group than the TNFi group. By subgroup analyses, ustekinumab (versus TNFi) was more effective in patients with biologics therapy history than those without. Compared with the TNFi group, the ustekinumab group had lower dermatology life quality index scores and higher patient satisfaction scores at M3 and M6 (all p < 0.050). CONCLUSION: Chinese moderate-to-severe psoriasis patients treated with ustekinumab have a better treatment response at 6 months with improved quality of life and patient satisfaction after 3-6 months of treatment when compared to TNFi.


Assuntos
Satisfação do Paciente , Psoríase , Índice de Gravidade de Doença , Ustekinumab , Humanos , Ustekinumab/uso terapêutico , Psoríase/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , China , Estudos Retrospectivos , Fármacos Dermatológicos/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , População do Leste Asiático
16.
Cureus ; 16(8): e66569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39258044

RESUMO

Certolizumab-induced liver injury is exceptionally rare, with only a few cases reported in the literature. We present the case of a 34-year-old man with axial ankylosing spondylitis (AS) who developed a drug-induced liver injury following treatment with certolizumab. Despite the initial ineffectiveness of non-steroidal anti-inflammatory drugs and an inadequate response to infliximab, the patient achieved remission of AS symptoms with certolizumab. However, he subsequently developed elevated liver enzymes indicative of hepatocellular injury. Investigations excluded viral hepatitis and autoimmune liver diseases, pointing to certolizumab as the likely cause. The updated Roussel Uclaf Causality Assessment Method confirmed a probable causal relationship between certolizumab and hepatotoxicity. Discontinuation of certolizumab led to normalization of liver enzymes without recurrence of liver injury. This case highlights the need for vigilant monitoring for hepatotoxicity in patients receiving tumor necrosis factor inhibitors.

17.
J Thorac Dis ; 16(8): 5190-5200, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39268102

RESUMO

Background: As a disease characterized by chronic neutrophilic inflammation, various sputum biomarkers have been investigated in the association with the severity and prognosis of bronchiectasis. However, there is lack of data on the association between sputum interleukin-1beta (IL-1ß), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) levels at clinical stable state and the clinical, spirometric and blood inflammatory parameters, as well as prognostic scores. The purpose of the study is to assess the association between sputum IL-1ß, IL-8 and TNF-α levels at clinical stable state and various clinical and laboratory parameters in bronchiectasis. Methods: A prospective study was conducted in a major regional hospital and tertiary respiratory referral centre in Hong Kong, including 44 Chinese patients with bronchiectasis. The correlation between stable state sputum IL-1ß, IL-8 and TNF-α levels with various clinical, laboratory and spirometric parameters in bronchiectasis, as well as FACED [forced expiratory volume in one second (FEV1), age, chronic colonisation by Pseudomonas aeruginosa, radiological extension and dyspnoea]/E-FACED (FACED plus exacerbations) scores were assessed. Results: Baseline sputum IL-1ß level was found to have significant moderate positive correlation with baseline blood high sensitivity C-reactive protein (hs-CRP) level with Pearson correlation coefficient (r) of 0.529 (P=0.001). Baseline sputum IL-8 level was found to have significant moderate positive correlation with baseline FACED and E-FACED score with r of 0.574 (P<0.001) and 0.539 (P<0.001) respectively. Baseline sputum TNF-α level was found to have significant moderate positive correlation with baseline FACED score with r of 0.520 (P<0.001). Conclusions: Sputum IL-1ß and, IL-8 and TNF-α levels were shown to have significant correlation with various clinical, laboratory and spirometry parameters in bronchiectasis, as well as more severe disease as measured by FACED and E-FACED scores.

18.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273362

RESUMO

Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and theophylline, has demonstrated strong antioxidant properties. However, its specific anti-inflammatory effects and ability to protect macrophages against PAH-induced inflammation remain unexplored. Thus, this study aimed to evaluate the anti-inflammatory properties of CCS extract on RAW 264.7 macrophage cells exposed to atmospheric PAHs, compared to chlorogenic acid (CGA), caffeine (CAF), and theophylline (THP) standards. The CCS extract was assessed for its impact on the production of nitric oxide (NO) and expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Results showed that CCS extract exhibited significant antioxidant activities and effectively inhibited protease and lipoxygenase (LOX) activities. The PAH induced the increase in intracellular reactive oxygen species, NO, TNF-α, IL-6, iNOS, and COX-2, which were markedly suppressed by CCS extract in a dose-dependent manner, comparable to the effects of chlorogenic acid, caffeine, and theophylline. In conclusion, CCS extract inhibits PAH-induced inflammation by reducing pro-inflammatory cytokines and reactive oxygen species (ROS) production in RAW 264.7 cells. This effect is likely due to the synergistic effects of its bioactive compounds. Chlorogenic acid showed strong antioxidant and anti-inflammatory activities, while caffeine and theophylline enhanced anti-inflammatory activity. CCS extract did not irritate the hen's egg chorioallantoic membrane. Therefore, CCS extract shows its potential as a promising cosmeceutical ingredient for safely alleviating inflammatory skin diseases caused by air pollution.


Assuntos
Anti-Inflamatórios , Estresse Oxidativo , Extratos Vegetais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Camundongos , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Poluição do Ar/efeitos adversos , Óxido Nítrico Sintase Tipo II/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácido Clorogênico/farmacologia , Administração Tópica , Fator de Necrose Tumoral alfa/metabolismo , Coffea/química , Cafeína/farmacologia , Material Particulado/toxicidade
19.
Cytokine ; 183: 156757, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39288647

RESUMO

OBJECTIVE: Visceral leishmaniasis is a neglected tropical disease that can be lethal if not treated. The available medicines have severe side effects, such as toxicity and drug resistance. Various investigations are looking into new anti-leishmanial compounds from natural products that have little impact on host cells. Lupeol, a triterpenoid present in the flora of many edible plants, has been shown to have antimicrobial properties. The present study investigated the immunomodulatory effects of lupeol on U937 macrophages infected with Leishmania donovani, focusing on the expression of key cytokines and enzymes involved in the immune response. METHODS: U937 macrophages were infected with Leishmania donovani amastigotes and treated with varying concentrations of lupeol throughout three days. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) were measured using real-time polymerase chain reaction (RT-PCR). A positive simulation of gene expression was estimated using ΔΔCT to assess relative expression. RESULTS: The results demonstrated that lupeol significantly upregulated iNOS and TNF-α expression, especially at higher concentrations, indicating enhanced pro-inflammatory and anti-leishmanial activity. Interestingly, IL-10 expression also increased, suggesting a complex immunomodulatory role of lupeol that involves both pro-inflammatory and anti-inflammatory pathways. Pearson correlation analysis revealed a strong association between iNOS and TNF-α (0.97692), as well as a moderate correlation between iNOS and IL-10 (0.51603). CONCLUSION: These findings suggest that lupeol may promote a balanced immune response, enhancing the body's ability to combat L. donovani while potentially mitigating excessive inflammation. Lupeol can potentially serve as a novel therapeutic agent against visceral leishmaniasis.


Assuntos
Interleucina-10 , Leishmania donovani , Macrófagos , Óxido Nítrico Sintase Tipo II , Triterpenos Pentacíclicos , Fator de Necrose Tumoral alfa , Leishmania donovani/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células U937 , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/metabolismo , Lupanos
20.
Life (Basel) ; 14(9)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39337983

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) has seen a rise in prevalence, and the immune system's role in brain development is increasingly recognized. This study investigates the relationship between immune dysregulation and ASD by examining serum concentrations of interleukin 6 (IL-6), interleukin 8 (CXCL8), and tumor necrosis factor alpha (TNF-alpha) in children. METHODS: Serum samples from 45 children with ASD and 30 controls, aged 2 to 12 years, were analyzed using electrochemiluminescence, chemiluminescent microparticle immunoassay, and chemiluminescent immunoassay. ASD symptoms were assessed using the Autism Spectrum Rating Scale (ASRS) and Social Communication Questionnaire (SCQ). RESULTS: No significant correlation was observed between CXCL8 levels and ASD. IL-6 levels showed a trend toward elevation in boys with ASD. TNF-alpha levels were significantly higher in children with ASD under 5 years compared to older children and controls, though no correlation with symptom severity was found. CONCLUSIONS: TNF-alpha may be a potential biomarker for early ASD detection, especially in younger children. Further research on larger cohorts is needed to understand the role of immune dysregulation in ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...