Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.714
Filtrar
1.
Int J Urol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352063

RESUMO

OBJECTIVES: This study aimed to investigate the potential for using the phosphatase and tensin homolog (PTEN) gene as a prognostic marker in post-prostatectomy patients with castration-sensitive prostate cancer (PCa). METHODS: A total of 180 patients with castration-sensitive PCa who underwent radical prostatectomy at our institution were included in this study. PTEN expression was evaluated using immunohistochemistry, and patients were classified into two groups based on the staining intensity: PTEN-Normal and PTEN-Loss. The association between PTEN expression and biochemical recurrence was analyzed using the Cox proportional hazards model. RESULTS: Patients in the PTEN-Loss group had a higher risk of biochemical recurrence (hazard ratio, 4.642; 95% confidence interval, 2.137-10.083; p < 0.001) and a lower recurrence-free rate compared to the PTEN-Normal group (35% vs. 75%). In addition to clinicopathological factors, such as the serum prostate-specific antigen level, Gleason score, and T stage, evaluation of PTEN expression improved the prediction of biochemical recurrence after prostatectomy (area under the curve, 0.577 vs. 0.688). CONCLUSIONS: Low PTEN expression is a significant predictor of biochemical recurrence in patients with castration-sensitive PCa who have already undergone prostatectomy.

2.
Cell Commun Signal ; 22(1): 470, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354571

RESUMO

PURPOSE: DNA methylation prominently inactivates tumor suppressor genes and facilitates oncogenesis. Previously, we delineated a chromosome 18 deletion encompassing the erythrocyte membrane protein band 4.1-like 3 (EPB41L3) gene, a progenitor for the tumor suppressor that is differentially expressed in adenocarcinoma of the lung-1 (DAL-1) in gastric cancer (GC). METHODS: Our current investigation aimed to elucidate EPB41L3 expression and methylation in GC, identify regulatory transcription factors, and identify affected downstream pathways. Immunohistochemistry demonstrated that DAL-1 expression is markedly reduced in GC tissues, with its downregulation serving as an independent prognostic marker. RESULTS: High-throughput bisulfite sequencing of 70 GC patient tissue pairs revealed that higher methylation of non-CpGs in the EPB41L3 promoter was correlated with more malignant tumor progression and higher-grade tissue classification. Such hypermethylation was shown to diminish DAL-1 expression, thus contributing to the malignancy of GC phenotypes. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) was found to partially restore DAL-1 expression. Moreover, direct binding of the transcription factor CDC5L to the upstream region of the EPB41L3 promoter was identified via chromosome immunoprecipitation (ChIP)-qPCR and luciferase reporter assays. Immunohistochemistry confirmed the positive correlation between CDC5L and DAL-1 protein levels. Subsequent RNA-seq analysis revealed that DAL-1 significantly influences the extracellular matrix and space-related pathways. GC cell RNA-seq post-5-Aza-CdR treatment and single-cell RNA-seq data of GC tissues confirmed the upregulation of AREG and COL17A1, pivotal tumor suppressors, in response to EPB41L3 demethylation or overexpression in GC epithelial cells. CONCLUSION: In conclusion, this study elucidates the association between non-CpG methylation of EPB41L3 and GC progression and identifies the key transcription factors and downstream molecules involved. These findings enhance our understanding of the role of EPB41L3 in gastric cancer and provide a solid theoretical foundation for future research and potential clinical applications.


The EPB41L3 gene, frequently exhibiting haplotype deletions and reduced expression in gastric cancer tissues, points to its potential role as a tumor suppressor. However, tumor suppressor genes are not only influenced by genomic deletions but also by their methylation status. Our study highlights the significantly lower expression of EPB41L3 in gastric cancer compared to adjacent non-cancerous tissues across 262 patients. We also discovered that elevated non-CpG island methylation of EPB41L3 correlates strongly with tumor malignancy progression, based on the analysis of 70 paired gastric cancer samples. Moreover, we identified CDC5L as a crucial transcription factor interacting with the EPB41L3 promoter. Integrative analyses of transcriptomic and single-cell sequencing data further revealed that AREG and COL17A1 are key downstream molecules regulated by DAL-1, with their expression tightly controlled by EPB41L3 methylation and expression levels. These insights enhance our understanding of EPB41L3's role in gastric cancer and could open new avenues for targeted therapies.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Metilação de DNA/genética , Feminino , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Linhagem Celular Tumoral , Idoso , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos
3.
Mutat Res Rev Mutat Res ; 794: 108514, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369952

RESUMO

Advanced sequencing technologies (ASTs) have revolutionized the quantitation of cancer driver mutations (CDMs) as rare events, which has utility in clinical oncology, cancer research, and cancer risk assessment. This review focuses on studies that have used ASTs to characterize clonal expansion (CE) of cells carrying CDMs and to explicate the selective pressures that shape CE. Importantly, high-sensitivity ASTs have made possible the characterization of mutant clones and CE in histologically normal tissue samples, providing the means to investigate nascent tumor development. Some ASTs can identify mutant clones in a spatially defined context; others enable integration of mutant data with analyses of gene expression, thereby elaborating immune, inflammatory, metabolic, and/or stromal microenvironmental impacts on CE. As a whole, these studies make it clear that a startlingly large fraction of cells in histologically normal tissues carry CDMs, CDMs may confer a context-specific selective advantage leading to CE, and only a small fraction of cells carrying CDMs eventually result in neoplasia. These observations were integrated with available literature regarding the mechanisms underlying clonal selection to interpret how measurements of CDMs and CE can be interpreted as biomarkers of cancer risk. Given the stochastic nature of carcinogenesis, the potential functional latency of driver mutations, the complexity of potential mutational and microenvironmental interactions, and involvement of other types of genetic and epigenetic changes, it is concluded that CDM-based measurements should be viewed as probabilistic rather than deterministic biomarkers. Increasing inter-sample variability in CDM levels (as a consequence of CE) may be interpretable as a shift away from normal tissue homeostasis and an indication of increased future cancer risk, a process that may reflect normal aging or carcinogen exposure. Consequently, analyses of variability in levels of CDMs have the potential to bolster existing approaches for carcinogenicity testing.

4.
FASEB J ; 38(19): e70098, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39373985

RESUMO

Integrin α7 (ITGA7) is an extracellular matrix-binding protein. Integrins are the main type of cell adhesive molecules in mammals, playing a role in many biological pathways. Although various studies have shown correlations between ITGA7 and various types of cancer, a comprehensive study at a pan-cancer level has not yet been conducted. In this study, we investigated the function of ITGA7 in distinct tumor types using the multi-omics relevant information, then two CeRNA regulatory network was drawn to identify the ITGA7 hub regulatory RNAs. The results indicated that the expression of ITGA7 varies in different tumors. Overexpression of ITGA7 was correlated with a worse OS in BLCA, LGG, and UVM, and the downregulation of ITGA7 was related to a worse OS in PAAD. In addition, BLCA, and UVM showed poor PFS in association with ITGA7 overexpression, and PAAD, SARC, and THCA indicated poor PFS in correlation with ITGA7 under expression. Further analyses of ITGA7 gene alteration data showed that ITGA7 amplifications may have an impact on Kidney Chromophobe prognosis. In 20 types of tumors, ITGA7 expression was linked to cancer-associated fibroblast infiltration. ITGA7 expression was linked to cancer-associated fibroblast infiltration. ITGA7-Related Gene Enrichment Analysis indicated that ITGA7 expression-correlated and functional binding genes were enriched in homotypic cell-cell adhesion, focal adhesion, and ECM-receptor interaction. This pan-cancer study found that abnormal expression of ITGA7 was correlated with poor prognosis and metastasis in different types of tumors. Thus, the ITGA7 gene may prove to be a promising biomarker for the prognosis and complication prevention of different cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Cadeias alfa de Integrinas , Neoplasias , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Oncogenes , Genes Supressores de Tumor , Antígenos CD
5.
Oncotarget ; 15: 679-696, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352796

RESUMO

The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.


Assuntos
Chaperonas Moleculares , Proteínas Supressoras de Tumor , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Mutação , Estabilidade Proteica , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Genes Supressores de Tumor
6.
Cells ; 13(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39404411

RESUMO

Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.


Assuntos
Antioxidantes , Carcinogênese , Fator 2 Relacionado a NF-E2 , Proto-Oncogene Mas , Proteína Supressora de Tumor p53 , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
MedComm (2020) ; 5(10): e758, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39399646

RESUMO

Melanoma's high metastatic potential, especially to the brain, poses significant challenges to patient survival. The blood‒brain barrier (BBB) is a major obstacle to the effective treatment of melanoma brain metastases. We screened antipsychotic drugs capable of crossing the BBB and identified penfluridol (PF) as the most active candidate. PF reduced melanoma cell viability and induced apoptosis. In animal models, PF effectively inhibited melanoma growth and metastasis to the lung and brain. Using immunoprecipitation combined with high-resolution mass spectrometry, and other techniques such as drug affinity responsive target stability, we identified CIP2A as a direct binding protein of PF. CIP2A is highly expressed in melanoma and its metastases, and is linked to poor prognosis. PF can restore Protein Phosphatase 2A activity by promoting CIP2A degradation, thereby inhibiting several key oncogenic pathways, including AKT and c-Myc. Additionally, von Hippel‒Lindau (VHL) is the endogenous E3 ligase for CIP2A, and PF enhances the interaction between VHL and CIP2A, promoting the ubiquitin‒proteasome degradation of CIP2A, thereby inhibiting melanoma growth and metastasis. Overall, this study not only suggests PF's potential in treating melanoma and its brain metastases but also highlights CIP2A degradation as a therapeutic strategy for melanoma.

8.
J Appl Toxicol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402722

RESUMO

In polluted water, cooccurrences of two carcinogens, arsenic (As) and chromium (Cr), are extensively reported. Individual effects of these heavy metals have been reported in kidney of fishes, but underlying molecular mechanisms are not well established. There is no report on combined exposure of As and Cr in kidney. Thus, the present study investigated and compared individual and combined effects of As and Cr on zebrafish (Danio rerio) kidney treating at their environmentally relevant concentrations for 15, 30, and 60 days. Increased ROS levels, lipid peroxidation, GSH level, and decreased catalase activity implied oxidative stress in treated zebrafish kidney. Damage in histoarchitecture in treated groups was also noticed. The current study involved gene expression study of Nrf2, an important transcription factor of cellular stress responses along with its negative regulator Keap1 and downstream antioxidant genes nqo1 and ho1. Results indicated activation of Nrf2-Keap1 pathway after combined exposure. Expression pattern of ogg1, apex1, polb, and creb1 revealed the inhibition of base excision repair pathway in treatments. mRNA expression of tumor suppressor genes p53 and brca2 was also altered. Expressional alteration in bax, bcl2, caspase9, and caspase 3 indicated apoptosis (intrinsic pathway) induction, which was maximum in combined group. Inhibition of DNA repair and induction of apoptosis indicated that the activated antioxidant system was not enough to overcome the damage caused by As and Cr. Overall, this study revealed additive effects of As and Cr in zebrafish kidney after chronic exposure focusing cellular antioxidant and DNA damage responses.

9.
Genes Cells ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380239

RESUMO

The cell cycle is driven by cyclin-dependent kinases (Cdks). The decision whether the cell cycle proceeds is made during G1 phase, when Cdk4/6 functions. Cyclin-dependent kinase inhibitor 2 (Cdkn2) is a specific inhibitor of Cdk4/6, and their interaction depends on D84 in Cdkn2 and R24/31 in Cdk4/6. This knowledge is based mainly on studies in mammalian cells. Here, we comprehensively analyzed Cdk4/6 and Cdkn2 in invertebrates and found that Cdk4/6 was present in most of the investigated phyla, but the distribution of Cdkn2 was rather uneven among and within the phyla. The positive charge of R24/R31 in Cdk4/6 was conserved in all analyzed species in phyla with Cdkn2. The presence of Cdkn2 and the conservation of the positive charge were statistically correlated. We also found that Cdkn2 has been tightly linked to Fas associated factor 1 (Faf1) during evolution. We discuss potential interactions between Cdkn2 and Cdk4/6 in evolution and the possible cause of the strong conservation of the microsynteny.

10.
Int J Mol Sci ; 25(19)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39409154

RESUMO

This review concerns nc886, a 101-nucleotide non-coding RNA (ncRNA). Because nc886 is transcribed by RNA polymerase III (Pol III) and contains a CpG island in its promoter region, its expression is regulated by several transcription factors and the DNA methylation status. These features drive nc886 expression in two opposing directions during tumorigenesis. The known function of nc886 is to bind to and modulate the activity of target proteins such as PKR, Dicer, and OAS1. By being differentially expressed during tumorigenesis and interacting with these proteins, nc886 plays a role in tumor surveillance, promotes or suppresses tumorigenesis, and influences the efficacy of cancer therapy. The multiple roles of nc886 have been well-documented in the literature. In this review, we have summarized this literature and critically discussed the roles and mechanisms of action of nc886 in various cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA não Traduzido , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , Metilação de DNA , Carcinogênese/genética , Ribonuclease III/metabolismo , Ribonuclease III/genética , Regiões Promotoras Genéticas , eIF-2 Quinase
11.
Biomark Insights ; 19: 11772719241287400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371614

RESUMO

Background: Clinical biomarkers, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application. Objective: Accordingly, in this study, we emphasize the potential of in silico approaches and have proposed and applied 3 novel sequential in silico pre-clinical validation steps to better identify the biomarkers that are truly desirable for clinical investment. Design: As protein biomarkers are becoming increasingly important in the clinic alongside other molecular biomarkers and lung cancer is the most common cause of cancer-related deaths, we used protein biomarkers for lung cancer as an illustrative example to apply our in silico pre-clinical validation approach. Methods: We collected the reported protein biomarkers for 3 cases (lung adenocarcinoma-LUAD, squamous cell carcinoma-LUSC, and unspecified lung cancer) and evaluated whether the protein biomarkers have cancer altering properties (i.e., act as tumor suppressors or oncoproteins and represent cancer hallmarks), are expressed in body fluids, and can be targeted by FDA-approved drugs. Results: We collected 3008 protein biomarkers for lung cancer, 1189 for LUAD, and 182 for LUSC. Of these protein biomarkers for lung cancer, LUAD, and LUSC, only 28, 25, and 6 protein biomarkers passed the 3 in silico pre-clinical validation steps examined, and of these, only 5 and 2 biomarkers were specific for lung cancer and LUAD, respectively. Conclusion: In this study, we applied our in silico pre-clinical validation approach the protein biomarkers for lung cancer cases. However, this approach can be applied and adapted to all cancer biomarkers. We believe that this approach will greatly facilitate the transition of cancer biomarkers into the clinical phase and offers great potential for future biomarker research.


Biomarkers, which are routinely used in clinics, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application. This research article highlights the challenges of translating cancer biomarkers into clinical practice and summarizes feasible step toward "in silico pre-clinical validation" using the example of lung cancer types. Accordingly, protein biomarkers proposed for lung cancer are being investigated using the "in silico pre-clinical validation" approach to determine whether they have cancer altering properties (i.e., oncoprotein, tumor suppressor, and cancer hallmark), are expressed in body fluids (i.e., plasma/serum, saliva, urine, and bronchoalveolar lavage) and can be targeted with FDA-approved drugs. We believe that the step of in silico pre-clinical validation is the future of biomarker research for all professionals involved in clinical, biological, epidemiological, biostatistical and health research, and that it will greatly facilitate the transition of biomarkers to the clinical phase.

12.
Genes (Basel) ; 15(9)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39336822

RESUMO

The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Regulação Neoplásica da Expressão Gênica
13.
Int J Mol Sci ; 25(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39337462

RESUMO

Accumulating evidence suggests that the passenger strands microRNAs (miRNAs) derived from pre-miRNAs are closely involved in cancer pathogenesis. Analysis of our miRNA expression signature of lung adenocarcinoma (LUAD) and The Cancer Genome Atlas (TCGA) data revealed that miR-144-5p (the passenger strand derived from pre-miR-144) was significantly downregulated in LUAD tissues. The aim of this study was to identify therapeutic target molecules controlled by miR-144-5p in LUAD cells. Ectopic expression assays demonstrated that miR-144-5p attenuated LUAD cell aggressiveness, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. A total of 18 genes were identified as putative cancer-promoting genes controlled by miR-144-5p in LUAD cells based on our in silico analysis. We focused on a family with sequence similarity 111 member B (FAM111B) and investigated its cancer-promoting functions in LUAD cells. Luciferase reporter assay showed that expression of FAM111B was directly regulated by miR-144-5p in LUAD cells. FAM111B knockdown assays showed that LUAD cells significantly suppressed malignant phenotypes, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. Furthermore, we investigated the FAM111B-mediated molecular networks in LUAD cells. Identifying target genes regulated by passenger strands of miRNAs may aid in the discovery of diagnostic markers and therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , MicroRNAs/genética , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Apoptose/genética , Fenótipo , Pontos de Checagem do Ciclo Celular/genética
14.
Proc Natl Acad Sci U S A ; 121(40): e2406837121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312663

RESUMO

Cancers develop resistance to inhibitors of oncogenes mainly due to target-centric mechanisms such as mutations and splicing. While inhibitors or antagonists force targets to unnatural conformation contributing to protein instability and resistance, activating tumor suppressors may maintain the protein in an agonistic conformation to elicit sustainable growth inhibition. Due to the lack of tumor suppressor agonists, this hypothesis and the mechanisms underlying resistance are not understood. In estrogen receptor (ER)-positive breast cancer (BC), androgen receptor (AR) is a druggable tumor suppressor offering a promising avenue for this investigation. Spatial genomics suggests that the molecular portrait of AR-expressing BC cells in tumor microenvironment corresponds to better overall patient survival, clinically confirming AR's role as a tumor suppressor. Ligand activation of AR in ER-positive BC xenografts reprograms cistromes, inhibits oncogenic pathways, and promotes cellular elasticity toward a more differentiated state. Sustained AR activation results in cistrome rearrangement toward transcription factor PROP paired-like homeobox 1, transformation of AR into oncogene, and activation of the Janus kinase/signal transducer (JAK/STAT) pathway, all culminating in lineage plasticity to an aggressive resistant subtype. While the molecular profile of AR agonist-sensitive tumors corresponds to better patient survival, the profile represented in the resistant phenotype corresponds to shorter survival. Inhibition of activated oncogenes in resistant tumors reduces growth and resensitizes them to AR agonists. These findings indicate that persistent activation of a context-dependent tumor suppressor may lead to resistance through lineage plasticity-driven tumor metamorphosis. Our work provides a framework to explore the above phenomenon across multiple cancer types and underscores the importance of factoring sensitization of tumor suppressor targets while developing agonist-like drugs.


Assuntos
Neoplasias da Mama , Receptores Androgênicos , Receptores de Estrogênio , Fatores de Transcrição STAT , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Animais , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Oncogenes , Janus Quinases/metabolismo , Camundongos , Transdução de Sinais , Linhagem Celular Tumoral , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica
15.
Anticancer Res ; 44(10): 4309-4315, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39348977

RESUMO

BACKGROUND/AIM: Given the high frequency and mortality rate of lung cancer, diverse molecular studies have been undertaken to understand cancer pathophysiology and develop novel treatment strategies. The PDIA4 gene, which is involved in protein assembly and endoplasmic reticulum homeostasis, is overexpressed in various lung cancer subtypes. However, its exact function in lung adenocarcinoma (LUAD) remains elusive. The study aimed to investigate the role of PDIA4 in LUAD and explore its role as double-agent gene. MATERIALS AND METHODS: PDIA4 expression was knocked out in A549 and LA-4 lung adenoma cells using the Crispr/Cas9 technology. Cell growth, migration, and apoptosis were analyzed in control and PDIA4-deficient cells. RESULTS: PDIA4 deficiency resulted in increased cell growth, enhanced migration capacity, and greater resistance to apoptosis in both A549 and LA-4 lung cancer cells. Mechanistically, up-regulation of oxidative stress followed by NF-[Formula: see text]B activation may contribute to tumor-promoting effects observed upon PDIA4 silencing. CONCLUSION: PDIA4 appears to function as a tumor suppressor in lung adenocarcinoma, suggesting that PDIA4 may act as a double-agent gene, with roles both on tumor suppression and promotion depending on the context.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Isomerases de Dissulfetos de Proteínas , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células A549 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Estresse Oxidativo , Sistemas CRISPR-Cas
16.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39226152

RESUMO

Accumulated research has revealed the multifaceted roles of thyroid hormone receptors (TRs) as potent tumor suppressors across various cancer types. This review explores the intricate mechanisms underlying TR-mediated tumor suppression, drawing insights from preclinical mouse models and cancer biology. This review examines the tumor-suppressive functions of TRs, particularly TRß, in various cancers using preclinical models, revealing their ability to inhibit tumor initiation, progression, and metastasis. Molecular mechanisms underlying TR-mediated tumor suppression are discussed, including interactions with oncogenic signaling pathways like PI3K-AKT, JAK-STAT, and transforming growth factor ß. Additionally, this paper examines TRs' effect on cancer stem cell activity and differentiation, showcasing their modulation of key cellular processes associated with tumor progression and therapeutic resistance. Insights from preclinical studies underscore the therapeutic potential of targeting TRs to impede cancer stemness and promote cancer cell differentiation, paving the way for precision medicine in cancer treatment and emphasizing the potential of TR-targeted therapies as promising approaches for treating cancers and improving patient outcomes.


Assuntos
Neoplasias , Receptores dos Hormônios Tireóideos , Humanos , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Diferenciação Celular
17.
FEBS J ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240540

RESUMO

Eukaryotic cells respond to stress by altering coding and non-coding gene expression programs. Alongside many approaches and regulatory mechanisms, long non-coding RNAs (lncRNA) are finding a significant place in gene regulation, suggesting an involvement in various cellular processes and pathophysiology. LncRNAs are regulated by many transcription factors, including SMAR1 and p53, which are tumor suppressor genes. SMAR1 inhibits cancer cell metastasis and invasion and is also known to inhibit apoptosis during low-dose stress in coordination with p53. Data mining analysis suggested that these tumor suppressor genes might coregulate the lncRNA RP11-431M3.1 in colon cancer cells. Importantly, RP11-431M3.1 expression was found to be negatively correlated with patient survival rates in a number of cancers. Oxidative stress occurs when an imbalance in the body is caused by reactive oxygen species (ROS). This imbalance is known to be important in the development/pathogenesis of colon cancer. We are researching the role and control of this lncRNA in HCT116 cells under conditions of oxidative stress. We observed a dose-dependent differential expression of lncRNA upon H2O2 treatment and found that p53 and SMAR1 bind differentially to the promoter in response to the dose of stress inducer used. RP11-431M3.1 was observed to sponge miR-138 which has an important target gene, hypoxia-inducible factor (HIF1A). miR-138 was observed to bind differentially to RP11-431M3.1 and HIF1A RNA depending on the dose of oxidative stress. Furthermore, the knockdown of RP11-431M3.1 decreased the migration and proliferation of colon cancer cells. Our results suggest a previously undescribed regulatory mechanism through which RP11-431M3.1 is transcriptionally regulated by SMAR1 and p53, target HIF1A through miR-138, and highlight its potential as a therapeutic and diagnostic marker for cancer.

18.
Biol Direct ; 19(1): 82, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285446

RESUMO

BACKGROUND: Armadillo Repeat Containing X-Linked 1 (ARMCX1), a member of the ARM Repeat X-linked protein family, exerts inhibitory function in various tumors. However, its biological role in lung adenocarcinoma (LUAD) and the underlying molecular mechanisms require further exploration. METHODS: LUAD tissue microarrays and bioinformatic databases were used to evaluate the relationship between ARMCX1 and clinicopathological features. The influence of ARMCX1 on LUAD cell proliferation, migration, and invasion in vitro was determined by colony formation, CCK-8, EdU incorporation, cell cycle, wound healing, and Transwell assays. The impact of ARMCX1 on LUAD cell growth and metastasis in vivo was determined by subcutaneously transplanted tumor and pulmonary metastasis assays. Western blot, immunoprecipitation, immunofluorescence, cycloheximide, and proteasome inhibitor assays were finally conducted to explore the potential underlying molecular mechanisms. RESULTS: ARMCX1 expression was downregulated in clinical LUAD samples due to which patient prognoses were poor. Functional experiments indicated that ARMCX1 overexpression inhibited the growth and metastasis of LUAD cells in vitro and in vivo. The molecular mechanism suggested that ARMCX1 recruits the E3 ubiquitin ligase FBXW7 for mediating ubiquitinated degradation of c-Myc, suppressing its nuclear accumulation, and ultimately inactivating cell cycle and epithelial-mesenchymal transition (EMT) signals. CONCLUSION: ARMCX1 inhibits LUAD cell proliferation and metastasis by interacting with c-Myc and enhancing its ubiquitination and degradation. Consequently, it can act as a tumor suppressor in this disease. These results suggest that ARMCX1 is a potential target in the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Proteína 7 com Repetições F-Box-WD , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-myc , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteólise , Progressão da Doença , Movimento Celular , Masculino , Camundongos Nus , Feminino , Regulação Neoplásica da Expressão Gênica
19.
Bioorg Med Chem Lett ; : 129967, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293533

RESUMO

Despite the recent progresses in therapeutic and diagnostic methods, there is still a significantly high rate of mortality among cancer patients. One of the main reasons for the high mortality rate in cancer patients is late diagnosis, which leads to the failure of therapeutic strategies. Therefore, investigation of cancer biology can lead to the introduction of early diagnostic markers in these patients. MicroRNAs (miRNAs) play an important role in regulation of cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, these factors can be considered as the non-invasive tumor markers. Deregulation of miR-382 has been widely reported in different cancers. Therefore, in this review, we investigated the role of miR-382 during tumor development. It has shown that miR-382 has mainly a tumor suppressive, which inhibits the growth of tumor cells through the regulation of signaling pathways, RNA-binding proteins, and transcription factors. Therefore, miR-382 can be suggested as a diagnostic and therapeutic marker in cancer patients.

20.
mBio ; : e0181124, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248565

RESUMO

High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...