Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339529

RESUMO

The Erysimum latent virus (ELV), a tymovirus, was first isolated from several wild and cultivated brassicas in Germany. Its virions were shown to be serologically distinct from those of the turnip yellow mosaic virus (TYMV), which is also found in wild and cultivated plants in several European countries but also in other parts of the world. TYMV and ELV were among the first plant viruses to have had their genomes sequenced, and when other tymovirus genomes were sequenced, it was found that, in phylogenies, ELV is probably the basal outlier to all other tymoviruses. Here, we report the near-complete genomic sequence of another isolate of ELV from Czechia. This isolate was found in 1990 in Sisymbrium altissimum plants showing mosaic symptoms. It was detected using ELISA tests and electron microscopy. We have now sequenced the full coding sequence of this isolate using contemporary high throughput methods and found that the German and Czech isolates of ELV are closely related and are of the same virus species.

2.
Virol J ; 21(1): 211, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232804

RESUMO

Leafcutter ants are dominant herbivores in the Neotropics and rely on a fungus (Leucoagaricus gongylophorus) to transform freshly gathered leaves into a source of nourishment rather than consuming the vegetation directly. Here we report two virus-like particles that were isolated from L. gongylophorus and observed using transmission electron microscopy. RNA sequencing identified two +ssRNA mycovirus strains, Leucoagaricus gongylophorus tymo-like virus 1 (LgTlV1) and Leucoagaricus gongylophorus magoulivirus 1 (LgMV1). Genome annotation of LgTlV1 (7401 nt) showed conserved domains for methyltransferase, endopeptidase, viral RNA helicase, and RNA-dependent RNA polymerase (RdRp). The smaller genome of LgMV1 (2636 nt) contains one open reading frame encoding an RdRp. While we hypothesize these mycoviruses function as symbionts in leafcutter farming systems, further study will be needed to test whether they are mutualists, commensals, or parasites.


Assuntos
Formigas , Micovírus , Genoma Viral , RNA Viral , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Micovírus/fisiologia , Animais , Formigas/microbiologia , Formigas/virologia , RNA Viral/genética , Filogenia , Fases de Leitura Aberta , Simbiose , RNA Polimerase Dependente de RNA/genética , Microscopia Eletrônica de Transmissão , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia , Agaricales/virologia , Agaricales/genética
3.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675951

RESUMO

Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.


Assuntos
Armillaria , Micovírus , Genoma Viral , Filogenia , RNA Viral , República Tcheca , Armillaria/genética , Armillaria/virologia , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , RNA Viral/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Análise de Sequência de RNA
4.
Virol J ; 20(1): 17, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710353

RESUMO

Leaves of hollyhock (Alcea rosea) exhibiting vein chlorosis and yellow mosaic symptoms were collected at public sites in Lausanne and Nyon, two cities of western Switzerland. Diagnostic methods untangled in samples from both sites the mixed infections of a novel isometric virus, tentatively named "Alcea yellow mosaic virus" (AYMV) with the carlavirus Gaillardia latent virus. A new potyvirus was also identified in samples from Nyon. A combination of Illumina, Nanopore and Sanger sequencing was necessary to assemble the full-length genome of AYMV, revealing an exceptionally high cytidine content and other features typically associated with members of the genus Tymovirus. The host range of AYMV was found to be restricted to mallows, including ornamentals as well as economically important plants. Phylogenetic analyses further showed that AYMV belongs to a Tymovirus subclade that also gathers the other mallow-infecting members. The virus was readily transmitted by sap inoculation, and the weevil species Aspidapion radiolus was evidenced as a vector. Transmission assays using another weevil or other insect species did not succeed, and seed transmission was not observed.


Assuntos
Coinfecção , Malvaceae , Vírus do Mosaico , Tymovirus , Gorgulhos , Animais , Tymovirus/genética , Filogenia , Doenças das Plantas
5.
J Virol Methods ; 309: 114595, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931228

RESUMO

Turnip yellow mosaic virus (TYMV) is a well-studied icosahedral plant virus that has attractive properties for nanoscience applications. Stable empty particles devoid of viral genomic RNA have historically been generated from virions by: 1. high pressure; 2. extreme alkaline pH; and 3. freeze-thaw using liquid nitrogen. Herein we report a fourth and more convenient avenue for empty particle formation through EDTA treatment, implicating chelation of virion-associated cations. We present findings that confirm TYMV virions purified in an EDTA-based buffer are converted to 94 % empty on average during purification. Additional experimentation revealed TYMV virions purified through CsCl vs. sucrose gradients are more readily converted to empty particles after freeze thaw. These studies are novel as they show a purification method through EDTA-treatment that can generate stable empty particles devoid of viral genome. The convenience of this method should prove suitable for scientists seeking to use TYMV capsids in nanoscience-inspired applications. Importantly, these findings provide insight into historical discrepancies in creating empty particles after freeze-thaw, as the method in which TYMV virions are purified influences the downstream virion-to-empty conversion process.


Assuntos
Tymovirus , Capsídeo/química , Cátions Bivalentes/análise , Ácido Edético/análise , Nitrogênio/análise , RNA Viral/análise , Sacarose/análise , Tymovirus/química , Tymovirus/genética , Vírion/genética
6.
Virus Genes ; 52(2): 303-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26837893

RESUMO

Maize rayado fino virus (MRFV) possesses an open reading frame (ORF43) predicted to encode a 43 kDa protein (p43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to either prevent initiation from three potential AUG initiation codons near the 5'-end of ORF43 or prematurely terminate translation of ORF43. Inoculation of maize seed via vascular puncture inoculation (VPI) resulted in plants exhibiting symptoms typical of MRFV infection for all mutants tested. Furthermore, corn leafhoppers (Dalbulus maidis) transmitted the virus mutants to healthy plants at a frequency similar to that for wild-type MRFV-US. Viral RNA recovered from plants infected with mutants both prior to and after leafhopper transmission retained mutations blocking ORF43 expression. The results indicate that ORF43 of MRFV is dispensable for both systemic infection of maize and transmission by leafhoppers.


Assuntos
Hemípteros/virologia , Fases de Leitura Aberta , Doenças das Plantas/virologia , Tymoviridae/genética , Zea mays/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Ordem dos Genes , Genoma Viral , RNA Viral
7.
Virology ; 489: 86-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26744993

RESUMO

We isolated a novel mycovirus, Fusarium graminearum mycotymovirus 1 (FgMTV1/SX64), which is related to members of the family Tymoviridae, from the plant pathogenic fungus F. graminearum strain SX64. The complete 7863 nucleotide sequence of FgMTV1/SX64, excluding the poly (A) tail, was determined. The genome of FgMTV1/SX64 is predicted to contain four open reading frames (ORFs). The largest ORF1 is 6723 nucleotides (nt) in length and encodes a putative polyprotein of 2242 amino acids (aa), which contains four conserved domains, a methyltransferase (Mtr), tymovirus endopeptidase (Pro), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp), of the replication-associated proteins (RPs) of the positive-strand RNA viruses. ORFs 2-4 putatively encode three putative small hypothetical proteins, but their functions are still unknown. Sequence alignments and phylogenetic analyses based on the putative RP protein and the three conserved domains (Mtr, Hel and RdRp) showed that FgMTV1/SX64 is most closely related to, but distinctly branched from, the viruses from the family Tymoviridae. Although FgMTV1/SX64 infection caused mild or no effect on conidia production, biomass and virulence of its host F. graminearum strain SX64, its infection had significant effects on the growth rate, colony diameter and deoxynivalenol (DON) production. This is the first molecular characterization of a tymo-like mycovirus isolated from a plant pathogenic fungus. It is proposed that the mycovirus FgMTV1/SX64 is a representative member of new proposed lineage Mycotymovirus in the family Tymoviridae.


Assuntos
Micovírus/isolamento & purificação , Fusarium/virologia , Tymoviridae/isolamento & purificação , Sequência de Aminoácidos , Micovírus/classificação , Micovírus/genética , Genoma Viral , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Alinhamento de Sequência , Triticum/virologia , Tymoviridae/classificação , Tymoviridae/genética
8.
Virus Genes ; 52(2): 294-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810401

RESUMO

The complete genome of a tymovirus infecting Solanum violaefolium was sequenced. The genome comprised 6284 nt, with a 5'-UTR of 137 nt and a comparatively longer 3'-UTR of 121 nt. Sequence analysis confirmed three ORFs encoding a movement protein, a polyprotein, and a coat protein (CP). The isolate was considered to be the Tomato blistering mosaic virus (ToBMV) based on a CP amino acid sequence identity of 95.3 %. The nucleotide sequence of the complete genome of the S. violaefolium isolate, however, differed markedly from the other two reported ToBMV isolates, with identities of 76.6 and 76.3 %, below one of the demarcation criteria of the genus Tymovirus (overall genome identity of 80 %). No recombination signals were detected in the genome of this isolate. The high identity of the CP amino acid sequence and similar host responses suggest that the S. violaefolium isolate belongs to the same species as the Tomato blistering mosaic virus. The sequence analysis of this ToBMV isolate thus suggests that the demarcation criterion of 80 % overall genome sequence identity in the genus Tymovirus may require revision.


Assuntos
Solanum/virologia , Tymovirus/genética , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Genômica , Conformação de Ácido Nucleico , Filogenia , RNA Viral , Análise de Sequência de DNA , Tymovirus/isolamento & purificação
9.
Viruses ; 7(7): 3586-602, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26154017

RESUMO

Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).


Assuntos
Abelhas/virologia , Genoma Viral , Varroidae/virologia , Vírus/genética , Vírus/isolamento & purificação , Animais , Feminino , Tamanho do Genoma , Masculino , Dados de Sequência Molecular , Filogenia , Vírus/classificação
10.
J Virol Methods ; 222: 11-5, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25986144

RESUMO

The construction of full-length infectious clones of RNA viruses is often laborious due to the many cloning steps required and the DNA exclusion within the plasmid during Escherichia coli transformation. We demonstrate single-step cloning procedure of an infectious cDNA of the tomato blistering mosaic virus (ToBMV) using Gibson Assembly (GA), which drastically reduces the number of cloning steps. By agro-inoculation with the construct obtained by this procedure, ToBMV was recovered six days post-inoculation in Nicotiana benthamiana plants. The symptoms induced by the recovered virus were indistinguishable from those caused by the wild-type virus. We conclude that the GA is very useful method particularly to construct a full-length cDNA clone of a plant RNA virus in a binary vector.


Assuntos
Clonagem Molecular/métodos , Genética Reversa/métodos , Tymovirus/genética , DNA Complementar/genética , Escherichia coli/genética , Vetores Genéticos , Plasmídeos , RNA Viral/genética , Nicotiana/virologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...