RESUMO
Uridine diphosphate (UDP) glycosyltransferases (UGTs) are widely involved in various metabolic processes. In the present study, we performed a genome-wide survey and identified 199 Oryza sativa UGT genes (OsUGTs), which were classified into 17 groups. We showed that tandem duplication played a major role in the expansion of the OsUGT family, which experienced purifying selection during the evolution process. 163 OsUGTs were expressed in at least one of the six tested tissues, and were clustered into three groups according to their tissue expression profiles. By using the RFGB database, we identified different haplotypes of seven OsUGTs that were highly expressed in seeds, and showed significant differences in grain size among different haplotypes. Moreover, our results also uncovered differential responses of OsUGTs expression to abiotic stresses and hormone treatments, including drought, salt, cold, heat, ABA, JA and AUXIN. By using quantitative real-time PCR, we further confirmed the differential expression of nine selected OsUGTs under ABA, JA, salt, drought and cold treatments, among which OsUGT5 and OsUGT182 were induced by all these five treatments. Our results provide insight into the role of several UGT genes for physiological responses, which will facilitate to investigate their function in regulating rice development and abiotic stress responses.
Assuntos
Regulação da Expressão Gênica de Plantas , Glicosiltransferases , Oryza , Proteínas de Plantas , Estresse Fisiológico , Oryza/genética , Oryza/crescimento & desenvolvimento , Estresse Fisiológico/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Grão Comestível/genética , Filogenia , Haplótipos , SecasRESUMO
There is an urgent need to identify effective drugs for the treatment of nerve injury caused by unconjugated bilirubin (UCB). Our previous research found that cystatin C (CST3) alleviates UCB-induced neurotoxicity by promoting autophagy in nerve cells, but that autophagy inhibitors did not completely inhibit the effects of CST3. This study investigated whether CST3 could alleviate the neurotoxicity of UCB by promoting the secretion and transport of exosomes containing UCB to the liver for metabolism. It demonstrated that hyperbilirubinemia mice treated with CST3 had a higher number of serum exosomes than those in hyperbilirubinemia mice treated with phosphate-buffered saline. CST3-mediated protection against UCB-induced damage was abolished when autophagy and extracellular vesicle inhibitors were used in combination. The number of exosomes in the CST3 overexpression group was higher than that in the control group. Molecular docking experiments showed that UCB and CST3 had high docking score (-8.2). These results suggest that UCB may be excreted from cells by exosomes, and CST3 may promote this process by binding to UCB and entering the exosomes. We demonstrated that the effect of CST3 relied on liver cells with normal UDP-glucuronyl transferase1A1 (UGT1A1) activity in a coculture system of HT22 and L02 cells. CST3 levels were lower in exosomes secreted by L02 cells than in those secreted by human umbilical vein endothelial cells (HUVECs), whereas CST3 levels were higher in the culture supernatants of L02 cells than in the culture supernatants of HUVECs. This suggests that UCB exosomes in L02 cells may be released and internalized by CST3 and that UCB is then processed by UGT1A1 to conjugate UCB, thus reducing its toxicity. These results suggest that CST3 might alleviate UCB-induced neurotoxicity by promoting the clearance of UCB from cells via exosomes and that these effects are dependent on UGT1A1 activity in liver cells.
RESUMO
Stevia rebaudiana is associated with the production of calorie-free steviol glycosides (SGs) sweetener, receiving worldwide interest as a sugar substitute for people with metabolic disorders. The aim of this investigation is to show the promising role of endophytic bacterial strains isolated from Stevia rebaudiana Egy1 leaves as a biofertilizer integrated with Azospirillum brasilense ATCC 29,145 and gibberellic acid (GA3) to improve another variety of stevia (S. rebaudiana Shou-2) growth, bioactive compound production, expression of SGs involved genes, and stevioside content. Endophytic bacteria isolated from S. rebaudiana Egy1 leaves were molecularly identified and assessed in vitro for plant growth promoting (PGP) traits. Isolated strains Bacillus licheniformis SrAM2, Bacillus paralicheniformis SrAM3 and Bacillus paramycoides SrAM4 with accession numbers MT066091, MW042693 and MT066092, respectively, induced notable variations in the majority of PGP traits production. B. licheniformis SrAM2 revealed the most phytohormones and hydrogen cyanide (HCN) production, while B. paralicheniformis SrAM3 was the most in exopolysaccharides (EPS) and ammonia production 290.96 ± 10.08 mg/l and 88.92 ± 2.96 mg/ml, respectively. Treated plants significantly increased in performance, and the dual treatment T7 (B. paramycoides SrAM4 + A. brasilense) exhibited the highest improvement in shoot and root length by 200% and 146.7%, respectively. On the other hand, T11 (Bacillus cereus SrAM1 + B. licheniformis SrAM2 + B. paralicheniformis SrAM3 + B. paramycoides SrAM4 + A. brasilense + GA3) showed the most elevation in number of leaves, total soluble sugars (TSS), and up-regulation in the expression of the four genes ent-KO, UGT85C2, UGT74G1 and UGT76G1 at 2.7, 3.3, 3.4 and 3.7, respectively. In High-Performance Liquid Chromatography (HPLC) analysis, stevioside content showed a progressive increase in all tested samples but the maximum was exhibited by dual and co-inoculations at 264.37% and 289.05%, respectively. It has been concluded that the PGP endophytes associated with S. rebaudiana leaves improved growth and SGs production, implying the usability of these strains as prospective tools to improve important crop production individually or in consortium.
Assuntos
Bacillus , Diterpenos do Tipo Caurano , Giberelinas , Folhas de Planta , Stevia , Stevia/metabolismo , Stevia/crescimento & desenvolvimento , Stevia/genética , Giberelinas/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Bacillus/metabolismo , Bacillus/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/genética , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Endófitos/metabolismo , Endófitos/genética , Glicosídeos/biossíntese , Glicosídeos/metabolismoRESUMO
Developmental and epileptic encephalopathies (DEEs) are severe forms of epilepsy characterized by seizure onset in infancy or childhood. The seizures are typically drug-resistant and often accompanied by significant alterations in the electroencephalogram (EEG). DEEs are associated with neurodevelopmental impairment, which can arise from both the epileptic activity itself and the underlying etiology, which is most often genetic in origin. We present the clinical and molecular features of two patients with DEE associated with a pathogenic variant in the UGDH gene. This gene encodes a protein that converts uridine diphosphate (UDP)-glucose into UDP-glucuronate, which plays a crucial role in the biosynthesis of glycosaminoglycans, essential components of the connective tissue and extracellular matrix. Both patients started with epileptic spasms associated with a pattern of hypsarrhythmia in the EEG at 4 months of age. Both developed global developmental delay and the physical examination revealed hypotonia and mildly dysmorphic features. In both families, there was another affected sibling with a similar clinical presentation, although genetic studies were not performed in one of these children. A homozygous pathogenic variant in the UGDH gene, NM_003359.4:c.131C>T - p.(Ala44Val), previously reported to be associated with the described phenotype, was identified.
RESUMO
BACKGROUND AND OBJECTIVES: Phase I and phase II drug-metabolizing enzymes are crucial for the metabolism and elimination of various endogenous and exogenous compounds, such as small-molecule hormones, drugs, and xenobiotic carcinogens. While in vitro and animal studies have suggested a link between genetic mutations in these enzymes and an increased risk of cancer, human in vivo studies have provided limited supportive evidence. METHODS: Genome-wide association studies (GWASs) are a powerful tool for identifying genes associated with specific diseases by comparing two large groups of individuals. In the present study, we analyzed a GWAS database to identify key diseases genetically associated with drug-metabolizing enzymes, focusing on UDP-glucuronosyltransferases (UGTs). RESULTS: Our analysis confirmed a strong association between the UGT1 gene and hyperbilirubinemia. Additionally, over ten studies reported a link between the UGT1 gene and increased low-density lipoprotein (LDL) cholesterol levels. UGT2B7 was found to be associated with testosterone levels, total cholesterol levels, and vitamin D levels. CONCLUSIONS: Despite the in vitro capability of UGT1 and UGT2 family enzymes to metabolize small-molecule carcinogens, the GWAS data did not indicate their genetic association with cancer, except for one study that linked UGT2B4 to ovarian cancer. Further investigations are necessary to fill the gap between in vitro, animal, and human in vivo data.
Assuntos
Estudo de Associação Genômica Ampla , Glucuronosiltransferase , Humanos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , LDL-Colesterol/genéticaRESUMO
Ginsenoside Ro, as one of the few oleanane-type ginsenosides, is well known for its unique molecular structure and biological activities. Currently, research on the biosynthesis of ginsenoside Ro is still in its early stages. Therefore, the establishment of a new ginsenoside Ro cell factory is of great significance for the in-depth development and utilization of genes related to ginsenoside Ro synthesis, as well as for the exploration of pathways to obtain ginsenoside Ro. In this study, we cloned endogenous constitutive promoters, terminators, and other genetic elements from S. cerevisiae BY4741. These elements were then sequentially assembled with the uridine diphosphate glucuronic acid transferase gene identified in our previously study (PgUGAT252645) and several other reported key enzyme genes, to construct DNA fragments used for integration into the genome of S. cerevisiae BY4741. By sequentially transferring these DNA fragments into chemically competent cells of engineering strains and conducting screening and target product detection, we successfully constructed an engineered S. cerevisiae strain (BY-Ro) for ginsenoside Ro biosynthesis using S. cerevisiae BY4741 as the host cell. Strain BY-Ro produced 253.32 µg/L of ginsenoside Ro under optimal fermentation conditions. According to subsequent measurements and calculations, this equates to 0.033 mg/g DCW, corresponding to approximately 31% of the ginsenoside Ro content found in plant samples. This study not only included a deeper investigation into the function of PgUGAT252645 but also provides a novel engineering platform for ginsenoside Ro biosynthesis.
Assuntos
Fermentação , Ginsenosídeos , Engenharia Metabólica , Panax , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ginsenosídeos/biossíntese , Ginsenosídeos/metabolismo , Panax/genética , Panax/metabolismo , Engenharia Metabólica/métodos , Vias Biossintéticas/genéticaRESUMO
Uridine diphosphate-glycosyltransferases (UGTs) catalyze sugar conjugation of endogenous and exogenous molecules in insects. In this study, 45 putative UGT genes in 11 families were identified from the genome of S. litura. Exposure to Bt toxins in 5th-instar larvae of the WT strain led to a significant upregulation of midgut UGT40 expression, particularly of SlUGT40D20, SlUGT40D22, and SlUGT40F25. This upregulation was not observed following exposure to chemical pesticides. Knockout of the UGT genes SlUGT40D20 and SlUGT40D22 in S. litura (mutant strains SlUGT40D20-KO and SlUGT40D22-KO) via CRISPR/Cas9-mediated mutagenesis increased susceptibility of S. litura to Bacillus thuringiensis (Bt) insecticidal proteins. However, in comparison with the wild-type (WT) strain, the mutants did not change susceptibility to chemical pesticides. Observations of 5th-instar larval midgut by electron microscopy revealed severe damage to the midgut epithelium caused by Cry1Ac toxin at 10 µg/g in the SlUGT40D20-KO strain compared to the WT. SDS-PAGE and LC MS/MS analyses identified a specific protein band corresponding to putative proteoglycans in the peritrophic matrix of the WT strain, which was absent in the SlUGT40D20-KO strain. Our study suggests an inverse correlation between expression of some UGTs and the susceptibility of S. litura larvae to some Bt toxins.
RESUMO
Here, we enzymatically produced a novel α-1,2-glucan, glucosylsucrose, that has a chemical structure significantly different from that of other glucans. This structural difference suggests its potential to modulate new physiological activities compared to known glucans. The enzyme TeGSS catalyzes the synthesis of this α-1,2-glucan from sucrose and UDP-glucose (UDPG). Using NMR spectroscopy, we elucidated the chemical structures of TeGSS-synthesized glucosylsucrose tri-, tetra-, and penta-saccharides in which the monosaccharide units are linked by α-1,2-glycosidic bonds. We also report the crystal structures of TeGSS co-crystallized with UDP and glucosylsucrose tri- and tetra-saccharides. Site-directed mutagenesis of residues in and around the TeGSS catalytic center has allowed us to propose a concerted SNi mechanism of action. Finally, we developed an enzyme-coupled reaction involving TeGSS and SuSyAc that allows production of UDPG for the synthesis of α-1,2-glucan.
Assuntos
Glucanos , Glucosiltransferases , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Glucanos/química , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/química , Modelos MolecularesRESUMO
UDP-rhamnose: rhamnosyltransferases (URTs)in Rehmarmia glutinosa (RgURT1-RgURT4)may catalyze two key downstream steps of acteoside biosynthesis. Moreover, they were identified from Rehmarmia glutinosa and preliminarily characterized, but their bioinformatics analysis and functions remain to be further explored. The present study mainly focused on investigating their bioinformatics function prediction, genotype-dependent expression, and roles for acteoside biosynthesis and pest resistance with CRISPR/Cas9 technology.Some key findings were as follows:they had a low identity but a typical PSPG box of rhamnosyltransferases, belonging to Glycosyltansferase-GTB type superfamily; They could be expressed depending on genotype,but RgURT4 expression is the highest; Based on RgURT4, two sgRNAs were designed and cloned into pBWA(V)HS-zmpl vector to construct a pBWA(V)HS-Cas9-RgURT vector. It was transferred to Rehmarmia glutinosa using Agrobacterium-mediated transformation so that hygromycin-resistant R. glutinosa plants were obtained. Sequencing indicated that CRISPR/Cas9 targeted editing resulted in base replacements in RgURT4,while its expression was decreased among these edited plants; A few of them had yellower leaves with white dots, lower acteoside and a little higher decaffeoylacteoside than WTs; Tetranychus cinnbarinus among them was observed by stereomicroscope. The results demonstrated that CRISPR/Cas9-mediated RgURT4 editing reduced the acteoside content and pest resistance but decaffeoylacteoside content of Rehmarmia glutinosa. This study will contribute to the function analyses of rhamnosyltransferases gene and downstream steps of acteoside biosynthesis as well as its CRISPR-Cas9-based molecular breeding.
RESUMO
Darolutamide is a potent second-generation, selective nonsteroidal androgen receptor inhibitor (ARI), which has been approved by the US Food and Drug Administration (FDA) in treating castrate-resistant, non-metastatic prostate cancer (nmCRPC). Whether darolutamide affects the activity of UDP-glucuronosyltransferases (UGTs) is unknown. The purpose of the present study is to evaluate the inhibitory effect of darolutamide on recombinant human UGTs and pooled human liver microsomes (HLMs), and explore the potential for drug-drug interactions (DDIs) mediated by darolutamide through UGTs inhibition. The product formation rate of UGTs substrates with or without darolutamide was determined by HPLC or UPLC-MS/MS to estimate the inhibitory effect and inhibition modes of darolutamide on UGTs were evaluated by using the inhibition kinetics experiments. The results showed that 100 µM darolutamide exhibited inhibitory effects on most of the 12 UGTs tested. Inhibition kinetic studies of the enzyme revealed that darolutamide noncompetitively inhibited UGT1A1 and competitively inhibited UGT1A7 and 2B15, with the Ki of 14.75 ± 0.78 µM, 14.05 ± 0.42 µM, and 6.60 ± 0.08 µM, respectively. In particular, it also potently inhibited SN-38, the active metabolite of irinotecan, glucuronidation in HLMs with an IC50 value of 3.84 ± 0.46 µM. In addition, the in vitro-in vivo extrapolation (IVIVE) method was used to quantitatively predict the risk of darolutamide-mediated DDI via inhibiting UGTs. The prediction results showed that darolutamide may increase the risk of DDIs when administered in combination with substrates of UGT1A1, UGT1A7, or UGT2B15. Therefore, the combined administration of darolutamide and drugs metabolized by the above UGTs should be used with caution to avoid the occurrence of potential DDIs.
Assuntos
Interações Medicamentosas , Glucuronosiltransferase , Microssomos Hepáticos , Pirazóis , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/metabolismo , Cinética , Inibidores Enzimáticos/farmacologia , Espectrometria de Massas em Tandem , Proteínas Recombinantes/metabolismoRESUMO
Cellular auxin (indole-3-acetic acid, IAA) levels are coordinately regulated by IAA biosynthesis and inactivation. IAA is synthesized through sequential reactions by two enzymes, TAA1 and YUCCA, in a linear indole-3-pyruvic acid (IPA) pathway. TAA1 converts tryptophan to IPA, and YUCCA catalyzes the oxidative decarboxylation of IPA into IAA. Arabidopsis UDP-glycosyltransferase UGT76F2 (At3g55710) was previously reported to catalyze the glycosylation of IPA and consequently modulate IAA levels. We carefully analyzed the physiological roles of UGT76F2 and its close homolog UGT76F1 (At3g55700) in IAA homeostasis. We generated two independent ugt76f1 ugt76f2 double null Arabidopsis mutants (ugt76f1f2) with a 2.7 kb deletion, along with two independent ugt76f2 single null mutants by CRISPR/Cas9 gene editing technology. Surprisingly, these null mutants exhibited indistinguishable phenotypes from the wild-type seedlings under our laboratory conditions. Our results indicate that UGT76F1 and UGT76F2 do not play important roles in regulating IAA biosynthesis via IPA glycosylation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glicosiltransferases , Homeostase , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosilação , Regulação da Expressão Gênica de Plantas , Mutação , Sistemas CRISPR-Cas , Fenótipo , Indóis/metabolismoRESUMO
Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.
Assuntos
Proteínas de Bactérias , Listeria monocytogenes , Peptidoglicano , Fosforilação , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peptidoglicano/metabolismo , Citosol/metabolismo , Parede Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Regulação Bacteriana da Expressão GênicaRESUMO
Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs involved in immune regulation and antiviral immune responses. Recent studies have elucidated the metabolic profile of pDCs and reported that perturbations in amino acid metabolism can modulate their immune functions. Glycolipid metabolism is suggested to be highly active in pDCs; however, its significance remains unclear. In this study, bulk RNA-sequencing analysis confirmed the known pDC-marker expressions, including interleukin (IL)-3R (CD123), BDCA-2 (CD303), BDCA-4 (CD304), and toll-like receptor 9, compared with that of myeloid DCs (mDCs). Among the differentially expressed genes, UDP-glucose-ceramide glucosyltransferase (UGCG) expression was significantly upregulated in pDCs than in mDCs. Moreover, pDC-specific UGCG expression was observed at both the mRNA and protein levels in pDCs and pDC-like cell lines, including CAL-1 and PMDC05 cell lines. Pharmacological or clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated genetic inhibition of UGCG did not affect the pDC phenotype as evidenced by the persistent expression of IL-3R and BDCA-2 in pDC-like cell lines. However, UGCG knockout resulted in reduced type I interferon production in pDCs upon CpG activation. In addition, UGCG-knockout pDC-like cell lines exhibited reduced transduction by vesicular stomatitis virus-G pseudo-typed lentiviral vectors, suggesting that low UGCG expression hinders infectivity. Collectively, our findings suggest that pDC-specific UGCG expression is critical for cytokine production and antiviral immune responses in pDCs.
Assuntos
Células Dendríticas , Glucosiltransferases , Interferon Tipo I , Regulação para Cima , Humanos , Linhagem Celular , Ilhas de CpG , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Interferon Tipo I/metabolismoRESUMO
UDP-glycosyltransferases (UGTs) play a crucial role in the glycosylation of secondary metabolites in plants, which is of significant importance for growth and response to biotic or abiotic stress. Despite the wide identification of UGT family members in various species, limited information is available regarding this family in citrus. In this study, we identified 87 UGT genes from the Citrus sinensis genome and classified them into 14 groups. We characterized their gene structures and motif compositions, providing insights into the molecular basis underlying discrepant functions of UGT genes within each evolutionary branch. Tandem duplication events were found to be the main driving force behind UGT gene expansion. Additionally, we identified numerous cis-acting elements in the promoter region of UGT genes, including those responsive to light, growth factors, phytohormones, and stress conditions. Notably, light-responsive elements were found with a frequency of 100 %. We elucidated the expression pattern of UGTs during fruit development in Citrus aurantium using RNA-seq and quantitative real-time PCR (qRT-PCR), revealing that 10 key UGT genes are closely associated with biosynthesis of bitter flavanone neohesperidosides (FNHs). Furthermore, we identified Ca1,2RhaT as a flavonoid 1-2 rhamnosyltransferase (1,2RhaT) involved in FNHs biosynthesis for the first time. Isolation and functional characterization of the gene Ca1,2RhaT from Citrus aurantium in vitro and in vivo indicated that Ca1,2RhaT encoded a citrus 1,2RhaT and possessed rhamnosyl transfer activities. This work provides comprehensive information on the UGT family while offering new insights into understanding molecular mechanisms regulating specific accumulation patterns of FNHs or non-bitter flavanone rutinosides (FRTs) in citrus.
RESUMO
Lamotrigine is a phenyltriazine anticonvulsant that is primarily metabolized by phase II UDP-glucuronosyltransferases (UGT) to a quaternary N2-glucuronide, which accounts for ~ 90% of the excreted dose in humans. While there is consensus that UGT1A4 plays a predominant role in the formation of the N2-glucuronide, there is compelling evidence in the literature to suggest that the metabolism of lamotrigine is catalyzed by another UGT isoform. However, the exact identity of the UGT isoform that contribute to the formation of this glucuronide remains uncertain. In this study, we harnessed a robust reaction phenotyping strategy to delineate the identities and its associated fraction metabolized (fm) of the UGTs involved in lamotrigine N2-glucuronidation. Foremost, human recombinant UGT mapping experiments revealed that the N2-glucuronide is catalyzed by multiple UGT isoforms. (i.e., UGT1A1, 1A3, 1A4, 1A9, 2B4, 2B7, and 2B10). Thereafter, scaling the apparent intrinsic clearances obtained from the enzyme kinetic experiments with our in-house liver-derived relative expression factors (REF) and relative activity factors (RAF) revealed that, in addition to UGT1A4, UGT2B10 was involved in the N2-glucuronidation of lamotrigine. This was further confirmed via chemical inhibition in human liver microsomes with the UGT1A4-selective inhibitor hecogenin and the UGT2B10-selective inhibitor desloratadine. By integrating various orthogonal approaches (i.e., REF- and RAF-scaling, and chemical inhibition), we quantitatively determined that the fm for UGT1A4 and UGT2B10 ranged from 0.42 - 0.64 and 0.32 - 0.57, respectively. Finally, we also provided nascent evidence that the pharmacokinetic interaction between lamotrigine and valproic acid likely arose from the in vivo inhibition of its UGT2B10-mediated pathway.
Assuntos
Anticonvulsivantes , Interações Medicamentosas , Glucuronosiltransferase , Lamotrigina , Microssomos Hepáticos , Ácido Valproico , Lamotrigina/metabolismo , Lamotrigina/farmacocinética , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Microssomos Hepáticos/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacocinética , Isoenzimas/metabolismo , Glucuronídeos/metabolismo , Triazinas/metabolismo , Triazinas/farmacocinéticaRESUMO
Licorice is a crude drug that is used in traditional Japanese Kampo medicine and is also used as a sweetener. Occasionally, it causes pseudoaldosteronism (PsA) as a side effect. The major symptoms include hypokalemia, hypertension, edema, and low plasma aldosterone levels. PsA might be caused by the metabolites of glycyrrhizinic acid (GL), a component of licorice. The development of PsA markedly varies among individuals; however, the factors that cause these individual differences remain unknown. In this study, 78 patients who consumed Kampo medicines containing licorice were enrolled, and their laboratory data, including serum potassium levels, plasma aldosterone concentrations (PAC), and the concentrations of GL metabolites in the residual blood and/or urine samples were evaluated. Of the 78 participants, 18ß-glycyrrhetinic acid (GA), 3-epi-GA, 3-oxo-GA, 18ß-glycyrrhetinyl-30-O-glucuronide (GA30G), and 3-epi-GA30G were detected in the serum samples of 65, 47, 63, 62, and 3 participants, respectively. Of the 29 urine samples collected, GA30G and 3-epi-GA30G were detected in 27 and 19 samples. 3-epi-GA30G is a newly found GL metabolite. Moreover, 3-epi-GA, 3-oxo-GA, and 3-epi-GA30G were identified in human samples for the first time. High individual differences were found in the appearances of 3-epi-GA in serum and 3-epi-GA30G in urine, and the concentrations of these metabolites were correlated with serum PsA markers. The inhibitory titers of 3-epi-GA, 3-oxo-GA, GA30G, and 3-epi-GA30G on human 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) were almost similar. These findings suggest that 3-epi-GA and/or 3-epi-GA30G are associated with individual differences in the development of PsA. Significance Statement In this study, we detected 3-epi-GA in human serum for the first time. We also identified 3-epi-GA30G as a novel GL metabolite in human urine. These GL metabolite levels showed correlations with markers of PsA. Additionally, there are individual differences in whether or not they appear in the serum/urine. In conclusion, 3-epi-GA/3-epi-GA30G correlates with individual differences in the development of PsA.
RESUMO
Nucleoside disaccharides are essential glycosides that naturally occur in specific living organisms. This study developed an enhanced UDP-glucose regeneration system to facilitate the in vitro multienzyme synthesis of nucleoside disaccharides by integrating it with nucleoside-specific glycosyltransferases. The system utilizes maltodextrin and polyphosphate as cost-effective substrates for UDP-glucose supply, catalyzed by α-glucan phosphorylase (αGP) and UDP-glucose pyrophosphorylase (UGP). To address the low activity of known polyphosphate kinases (PPKs) in the UDP phosphorylation reaction, a sequence-driven screening identified RhPPK with high activity against UDP (>1000 U/mg). Computational design further led to the creation of a double mutant with a 2566-fold increase in thermostability at 50 °C. The enhanced UDP-glucose regeneration system increased the production rate of nucleoside disaccharide synthesis by 25-fold. In addition, our UDP-glucose regeneration system is expected to be applied to other glycosyl transfer reactions.
Assuntos
Glicosiltransferases , Fosfotransferases (Aceptor do Grupo Fosfato) , Uridina Difosfato Glucose , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/química , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Dissacarídeos/metabolismo , Dissacarídeos/química , Escherichia coli/genética , Escherichia coli/metabolismoRESUMO
A significant consequence of climate change is the rising incidence of wildfires. When wildfires occur close to wine grape (Vitis vinifera) production areas, smoke-derived volatile phenolic compounds can be taken up by the grape berries, negatively affecting the flavor and aroma profile of the resulting wine and compromising the production value of entire vineyards. Evidence for the permeation of smoke-associated compounds into grape berries has been provided through metabolomics; however, the basis for grapevines' response to smoke at the gene expression level has not been investigated in detail. To address this knowledge gap, we employed time-course RNA sequencing to observe gene expression-level changes in grape berries in response to smoke exposure. Significant increases in gene expression (and enrichment of gene ontologies) associated with detoxification of reactive compounds, maintenance of redox homeostasis, and cell wall fortification were observed in response to smoke. These findings suggest that the accumulation of volatile phenols from smoke exposure activates mechanisms that render smoke-derived compounds less reactive while simultaneously fortifying intracellular defense mechanisms. The results of this work lend a better understanding of the molecular basis for grapevines' response to smoke and provide insight into the origins of smoke-taint-associated flavor and aroma attributes in wine produced from smoke-exposed grapes.
Assuntos
Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fumaça , Vitis , Vitis/genética , Vitis/metabolismo , Frutas/metabolismo , Frutas/genética , Fumaça/efeitos adversos , Transcriptoma , Compostos Orgânicos Voláteis/metabolismo , Incêndios Florestais , Fenóis/metabolismo , Inativação Metabólica/genéticaRESUMO
While much attention has been devoted to understanding the transcriptional changes underlying resistance to insecticides, comparatively little is known about the transcriptional response of naive insects to agrochemicals. In this study, we analyze the transcriptomic response of an insecticide susceptible strain of Drosophila melanogaster to nine agrochemicals using a robust method that goes beyond classical replication standards. Our findings demonstrate that exposure to piperonyl butoxide (PBO), but not to eight other compounds, elicits a robust transcriptional response in a wild-type strain of Drosophila melanogaster. PBO exposure leads to the upregulation of a subset of Cyps, GSTs, UGTs and EcKls. This response is both time and concentration-dependent, suggesting that the degree of inhibition of P450 activity correlates with the magnitude of the transcriptional response. Furthermore, the upregulation of these enzymes is excluded from reproductive organs. Additionally, different sets of genes are regulated in the digestive/secretory tract and the carcass. Our results suggest that P450s play a role in metabolizing yet unidentified endogenous compounds and are involved in an as-yet-unknown physiological regulatory feedback loop.
Assuntos
Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster , Butóxido de Piperonila , Animais , Butóxido de Piperonila/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inseticidas/toxicidade , Inseticidas/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transcrição Gênica/efeitos dos fármacosRESUMO
Biosynthesis of specific secondary metabolites in plants involves fine regulation of gene expression. Camellia chekiangoleosa has important economic value: the seeds contain high-quality unsaturated fatty acids and the pericarp is rich in tea saponins. As an important posttranscriptional regulator, the role of microRNAs (miRNAs) in controlling secondary metabolism in C. chekiangoleosa is not fully studied. Here, we investigated the role of miRNAs and their targets in the secondary metabolic regulatory network by comprehensively analyzing small RNAs, transcriptomes, and degradomes from different tissues. We identified 168 known miRNAs and 74 novel miRNAs in the C. chekiangoleosa genome and revealed 15 tandem clusters containing 35 miRNAs. By establishing a gene regulatory network containing miRNAs, target genes, and transcription factors, we unravelled the multiplicity of miRNA tissue-specific regulation of gene expression, which may be tightly linked to the synthesis of secondary metabolites. Furthermore, we characterized a novel long-noncoding miRNA gene (cch-miR3633) that targeted a UDP-transferase gene (CchUGT94E5). We showed that, ectopic expression of CchUGT94E5 caused outgrowth of shoot branching and changes in cytokinin contents in Arabidopsis, indicating a potential role of regulating secondary metabolism. This work provides valuable information for the study of miRNA regulation of secondary metabolism.