Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 745
Filtrar
1.
J Ethnopharmacol ; 336: 118739, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39197805

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Danzhi Xiaoyao San (MDXS) is an effective clinical prescription for depression in China, which was deprived of Danzhi Xiaoyao San in the Ming Dynasty. MDSX has significant implications for the development of new antidepressants, but its pharmacological mechanism has been rarely studied. AIM OF THE STUDY: To reveal the active components and molecular mechanism of MDXS in treating depression through network pharmacology and experimental verification in vivo and in vitro. MATERIALS AND METHODS: UPLC-Q-TOF-MS/MS was used to identify the chemical components in the MDXS freeze-dried powder, drug-containing serum, and cerebrospinal fluid (CSF). Based on the analysis of prototype components in the CSF, the major constituents, potential therapeutic targets and possible pharmacological mechanisms of MDXS in treating depression were investigated using network pharmacological and molecular docking. Then corticosterone (CORT)-induced mice model of depression was established to investigate the antidepressant effects of MDXS. HT22 cells were cultured to verify the neuroprotective effects and core targets of the active components. RESULTS: There were 81 compounds in MDXS freeze-dried powder, 36 prototype components in serum, and 13 prototype components in CSF were identified, respectively. Network pharmacology analysis showed that these 13 prototype components in the CSF shared 190 common targets with depression, which were mainly enriched in MAPK and PI3K/AKT signaling pathways. PPI analysis suggested that AKT1 and MAPK1 (ERK1/2) were the core targets. Molecular docking revealed that azelaic acid (AA), senkyunolide A (SA), atractylenolide III (ATIII), and tokinolide B (TB) had the highest binding energy with AKT1 and MAPK1. Animal experiments verified that MDXS could reverse CORT-induced depression-like behaviors, improve synaptic plasticity, alleviate neuronal injury in hippocampal CA3 regions, and up-regulate the protein expression of p-ERK1/2 and p-AKT. In HT22 cells, azelaic acid, senkyunolide A, and atractylenolide III significantly protected the cell injury caused by CORT, and up-regulated the protein levels of p-ERK1/2 and p-AKT. CONCLUSIONS: These results suggested that MDXS may exert antidepressant effects partially through azelaic acid, senkyunolide A, and atractylenolide III targeting ERK1/2 and AKT.


Assuntos
Antidepressivos , Depressão , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Animais , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Masculino , Linhagem Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Corticosterona/sangue , Espectrometria de Massas em Tandem , Comportamento Animal/efeitos dos fármacos
2.
Drug Des Devel Ther ; 18: 3871-3889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219696

RESUMO

Background: Psoriasis is an immune-mediated chronic inflammatory disease. Qingre Lishi Decoction (QRLSD) has achieved great clinical effect in the treatment of psoriasis. However, the potential bioactive components and the mechanisms are yet unclear. Aim: To analyze the serum parameters of rats fed with QRLSD, screen out the active components of QRLSD, and explore the potential targets and pathway of QRLSD in the treatment of psoriasis. Materials and Methods: The active components of serum containing QRLSD were analyzed using ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The targets of QRLSD in the treatment of psoriasis were predicted by network pharmacology and molecular docking. In vitro experiments verified the underlying mechanism. Results: By UPLC-Q-TOF/MS, 15 prototype components and 22 metabolites were identified in serum containing QRLSD. Subsequently, 260 chemical composition targets and 218 psoriasis targets were overlapped to obtain 23 intersection targets, including LGALS3, TNF, F10, DPP4, EGFR, MAPK14, STAT3 and others. TNF, IL-10, GAPDH, STAT3, EGFR, ITGB1, LGALS3 genes were identified as potential drug targets in the PPI network analyzed by CytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that QRLSD may improve psoriasis by regulating immune and inflammatory pathways, the cytokine mediated signal transduction pathways and other signaling pathways. Molecular docking results showed that the main active components of the serum containing QRLSD had higher affinities for TNF and LGALS3. In vitro experiments confirmed that QRLSD may decrease levels of inflammatory cytokines by suppressing the NF-κB signaling pathway activated by TNF-α in human keratinocytes. Conclusion: This study explores the potential compounds, targets and signaling pathways of QRLSD in the treatment of psoriasis, which will help clarify the efficacy and mechanism of QRLSD.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Psoríase , Psoríase/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Ratos , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Ratos Sprague-Dawley , Espectrometria de Massas , Células Cultivadas
3.
Food Res Int ; 194: 114864, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232506

RESUMO

Coix seed, a prevalent medicinal and food-homologous plant, is extensively consumed in Asia. It has various pharmacological properties, such as anti-inflammatory and anticancer effects. Coix seed oil, as its main component, is widely produced. However, during the industrial production process of Coix seed oil, substantial byproducts are produced, namely, defatted Coix seeds, which are also worth researching. Currently, it remains unclear whether there will be differences in defatted Coix seeds obtained from different geographical locations, with previous studies reporting that phenolic compounds in defatted Coix seeds have a significant utilization value. In this study, firstly, the TPC and TFC of samples collected in three temperature zones were detected. Subsequently, UPLC-Q-TOF/MS was used to analyze the samples, and a metabolomics data processing strategy and chemometric analysis method were established. We have confirmed the presence of flavonoids and phenolic compounds in 30 batches of Coix seed from different temperature zones in China, and concluded that the overall quality of Coix seed from different batches is relatively stable. With the established strategy, 12 characteristic chemical markers were identified, and 5 valuable phenolic chemical markers were selected for distinguishing the origin of Coix seed and evaluating the quality of defatted Coix seed. Among them, proanthocyanidin A2 has the highest content in defatted Coix seed in subtropical regions, while the content of caffeic acid, naringin, rutin, and chlorogenic acid decreases from north to south. The strategy proposed in this study may provide some basis for the quality control and rational use of defatted Coix seeds.


Assuntos
Coix , Metabolômica , Fenóis , Sementes , Sementes/química , Metabolômica/métodos , Coix/química , Fenóis/análise , Quimiometria , Cromatografia Líquida de Alta Pressão , China , Flavonoides/análise , Biomarcadores/análise
4.
Nat Prod Res ; : 1-5, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225372

RESUMO

Triptophenolide, a major diterpenoid extracted from Tripterygium wilfordii Hook. f., has been reported to possess significant anti-tumour, anti-androgen and anti-inflammatory activities. However, the metabolic fate of triptophenolide remains unknown. Therefore, this study focused on the metabolic profiling of triptophenolide in rat plasma, urine, bile and faeces following intragastric administration. An ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with combination of extracted ion chromatogram strategy based on 71 typical metabolic reactions was established to comprehensively profile the metabolites of triptophenolide. This strategy allowed for the identification of 17 metabolites from the biosamples. Reduction, oxidation, glucuronide conjugation, and hydroxylation were considered as its main metabolic pathways in vivo. The present study will be greatly helpful for the further pharmacological studies on triptophenolide and would provide valuable information for its clinical application.

5.
Phytochem Anal ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234942

RESUMO

INTRODUCTION: Annonaceous acetogenins are a group of natural polyketide compounds possessing notable cytotoxic and antitumor properties. Mass spectrometry (MS) techniques can be used for the structural determination of these compounds, including the location of functional groups along the long alkyl chain. OBJECTIVE: This study aims to develop a convenient liquid chromatography (LC)-MS-based method for the dereplication of acetogenins in plant extracts using a molecular networking approach. METHODOLOGY: The LC-electrospray ionization (ESI)-MS/MS spectra of pure adjacent bis-tetrahydrofuran (THF) acetogenins isolated from Uvaria rufa (Annonaceae) were acquired, along with those of the crude ethyl acetate and hexanes fractions of the plant extract, followed by dereplication and molecular networking analysis using the Global Natural Products Social Molecular Networking (GNPS) platform. RESULTS: A high level of fragmentation of the protonated molecules [M + H]+ was observed at collision energies of 37.5 and 25.0 eV. The application of feature-based molecular networking (FBMN) allowed for distinguishing diastereoisomers based on different retention times in the reversed-phase high-performance liquid chromatography method. The acetogenin possessing one or more additional OH groups on the methyl-terminal chain side of the OH-flanked bis-THF ring unit were grouped separately from those lacking such substructure. Furthermore, the MS2LDA analysis revealed shared Mass2Motifs among acetogenins, confirming the structural relations within the molecular network. CONCLUSIONS: The ESI-MS/MS-based molecular networking method provided an effective strategy for the dereplication of acetogenins in plant extracts. It is anticipated that this molecular networking approach could be extended to other types of acetogenins to facilitate rapid identification of this class of compounds.

6.
J Tradit Complement Med ; 14(5): 501-509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39262656

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), turned into a global pandemic, and there remains an urgent demand for specific/targeted drugs for the disease. The 3C-like protease (3CLpro) is a promising target for developing anti-coronavirus drugs. Schisandra sphenanthera fruit is a well-known traditional Chinese medicine (TCM) with good antiviral activity. This study found that the ethanolic extract displayed a significant inhibitory effect against SARS-CoV-2 3CLpro. Forty-four compounds were identified in this extract using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Combining molecular docking and in vitro experiments, we found that two epimeric 7,8-secolignans, rel-(1S,2R)-1-(3,4-dimethoxyphenyl)-2-methyl-3-oxobutyl-3,4-dimethoxybenzoate (2) and rel-(1S,2S)-1-(3,4-dimethoxyphenyl)-2-methyl-3-oxobutyl-3,4-dimethoxybenzoate (4), potently inhibited 3CLpro with IC50 values of 4.88 ± 0.60 µM and 4.75 ± 0.34 µM, respectively. Moreover, in vivo and in vitro experiments indicated that compounds 2 and 4 were potent in regulating the inflammatory response and preventing lung injury. Our findings indicate that compounds 2 and 4 may emerge as promising SARS-CoV-2 inhibitors via 3CLpro inhibition and anti-inflammatory mechanisms.

7.
Sci Rep ; 14(1): 21086, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256453

RESUMO

Elephantopus tomentosus (ET) Linn. was reported to be an anti-tumor plant. However, the chemical composition of ET and its anti-tumor compounds and potential mechanisms still unclear. In this paper, UPLC-Q-TOF-MS/MS was firstly used to identified the ingredients in ET and UPLC was used to determine the main compounds of ET. Network pharmacology was applied to predict the potential mechanisms of anti-liver cancer. Anti-tumor nuclear activate compounds and targets of ET were obtained and the anti-liver cancer effect was validated on HepG2. Finally, Molecule docking, RT-qPCR, and western blotting were used for verification of the relationship between nuclear activate compounds and nuclear targets and the potential anti-cancer mechanisms. The result showed that 42 compounds were identified in ET, which consisted of sesquiterpene lactones, flavonoids, and phenylpropanoid compounds. Scabertopin (ST), chlorogenic acid, Isochlorogenic acid B, Isochlorogenic acid A and Isochlorogenic acid C were identified as main compounds and were determined as 0.426%, 0.457%, 0.159%, 0.701%, and 0.103% respectively. 24 compounds showed high pharmacokinetics and good drug-likeness. 520 overlapping targets of the ET compounds and liver cancer were collected. The targets were used for KEGG and GO analysis. GO enrichment analysis suggested that the targets of 24 active compound closed related to promote apoptosis, inhibit proliferation, and regulate oxidative levels. KEGG enrichment analysis suggested that pathway in cancer was enriched most and p38 MAPK/p53 signaling pathway, which closely related to promoting apoptosis and inhibiting proliferation. Compounds-targets analysis based on the parameter of Betweenness, Closeness, Information, Eigenvector, Degree, and component content indicated that ST was the nucleus anti-tumor active compound of ET. HepG2 was first used to validated the anti-tumor effect of ST and the result showed that ST significantly inhibited HepG2 proliferation with a low IC50 less than 5 µM. Nucleus active compound targets, including TP53, CASP3, BCL2, EGFR, TNF-a, IL-1ß, and IL-6 were enriched based on degree value of PPI analysis. Molecule docking suggested that ST showed a good combination to TGFBR1 with the combination energy less than - 5 kcal/mol. RT-qPCR result also suggested that ST significantly medicated the mRNA expression level of TP53, CASP3, BCL2, EGFR, TNF-a, IL-1ß, and IL-6. Protein expression of p-p38/p38 and p-p53/p53 notable increased by ST treatment. In conclude, combining with UPLC-Q-TOF-MS/MS qualitative analysis, UPLC quantitative analysis, network pharmacology analysis, molecule docking, and in vitro experiments on HepG2, we suggest that ST is an anti-tumor ingredient of ET, which may target to TGFBR1 and promote apoptosis and inhibited proliferation of HepG2 by activating p38 MAPK/p53 signaling pathway. ST can be regarded as a quality marker of ET.


Assuntos
Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Humanos , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Asteraceae/química , Simulação por Computador , Espectrometria de Massas em Tandem , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacos
8.
Biomed Chromatogr ; : e5978, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109414

RESUMO

Euphorbiae pekinensis Radix (EPR) is a traditional Chinese herb commonly used to treat edema, pleural effusion, and ascites. However, counterfeit and adulterated products often appear in the market because of the homonym phenomenon, similar appearance, and artificial forgery of Chinese herbs. This study comprehensively evaluated the quality of EPR using multiple methods. The DNA barcode technique was used to identify EPR, while the UPLC-Q-TOF-MS technique was utilized to analyze the chemical composition of EPR. A total of 15 tannin and phenolic acid components were identified. Furthermore, UPLC fingerprints of EPR and its common counterfeit products were established, and unsupervised and supervised pattern recognition models were developed using these fingerprints. The backpropagation artificial neural network and counter-propagation artificial neural network models accurately identified counterfeit and adulterated products, with a counterfeit ratio of more than 25%. Finally, the contents of the chemical markers 3,3'-di-O-methyl ellagic acid-4'-O-ß-D-glucopyranoside, ellagic acid, 3,3'-di-O-methyl ellagic acid-4'-O-ß-d-xylopyranoside, and 3,3'-di-O-methyl ellagic acid were determined to range from 0.05% to 0.11%, 1.95% to 8.52%, 0.27% to 0.86%, and 0.10% to 0.42%, respectively. This proposed strategy offers a general procedure for identifying Chinese herbs and distinguishing between counterfeit and adulterated products.

9.
Plant Foods Hum Nutr ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120828

RESUMO

Pholidota cantonensis Rolfe is an edible medicinal plant in the genus Pholidota of the family Orchidaceae. This plant is used to prepare medicated food in China and has been reported to possess anti-α-glucosidase activity. To date, little is known about the active substances responsible for the observed anti-α-glucosidase activity. In the present study, we aimed to screen and characterize the α-glucosidase inhibitory fraction of P. cantonensis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) analysis and molecular docking. As a result, the 50% ethanol fraction obtained from D101 macroporous adsorption resin column chromatography (D50 fraction) had the highest total phenol content (353.83 ± 6.06 mg GAE/g) and the most prominent α-glucosidase inhibitory activity (IC50 = 30.01 ± 7.30 µg/mL). Forty-five compounds were identified from the D50 fraction by using UPLC-Q-TOF-MS/MS analysis. Molecular docking results showed that six main constituents, namely, crepidatin, 2,7-dihydroxy-4-methoxyl-9,10-dihydrophenylene, 4,4',5,6-tetrahydroxystilbene, 4,7-dihydroxy-2-methoxyl-9,10-dihydrophenylene, (-)-lariciresinol, and thunalbene, in the D50 fraction occupied the catalytic sites of α-glucosidase through strong hydrophobic interactions, hydrogen bonding, and other patterns. The binding energies were between - 29.95 and - 11.41 kJ/mol, indicating good binding between the tested compounds and α-glucosidase. The active ingredients responsible for the α-glucosidase inhibitory activity may include phenanthrenes, stilbenes, dibenzyls, and lignans. The D50 fraction has potential value for developing innovative drugs for the prevention and treatment of diabetes mellitus (DM) and is worthy of in-depth research.

10.
Heliyon ; 10(13): e34214, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091943

RESUMO

Purpose: This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods: This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results: Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion: The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.

11.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3784-3795, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099352

RESUMO

Based on high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS~E) and molecular docking technique, bitter compounds of Ginkgo biloba extract(GBE) were characterized, and their relationship with bitter efficacy was investigated. Firstly, UPLC-Q-TOF-MS~E was used for qualitative analysis of GBE components, and 60 chemical components were identified. These chemical components were molecular-docked with bitter receptors, and 26 bitter substances were selected, mainly flavonoids. Secondly, sensory and electronic tongue bitterness evaluation techniques were used to verify that total flavones of GBE were the main bitter substances, which was consistent with the molecular docking results. Finally, network pharmacology was used to predict and analyze bitter substances. The relationship between the target of bitter substance and bitter effect was explored. The key targets of bitter substances are CYP2B6, ALOX15, and PTGS2, etc., and bitter substances may exert a bitter efficacy by ac-ting on related disease targets, indicating that bitter substances of GBE are the material basis of the bitter effect. In summary, the study indicated that the molecular docking technique had a guiding effect on the screening of bitter substances in traditianal Chinese medicine(TCM), and bitter substances of GBE had a bitter efficacy. It provides ideas and references for the study of the "taste-efficacy relationship" of TCM in the future.


Assuntos
Ginkgo biloba , Simulação de Acoplamento Molecular , Extratos Vegetais , Espectrometria de Massas em Tandem , Paladar , Ginkgo biloba/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Extrato de Ginkgo
12.
Molecules ; 29(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124867

RESUMO

Previous studies have indicated that there may be differences among the varieties of lemon flavonoids, but the details have not yet been made clear, which limits the comprehensive use of different cultivated lemon varieties. In this study, ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) and ultraviolet-visible spectroscopy (UV-Vis) were used to investigate the types and contents of flavonoids in the flesh of the main cultivated variety (Eureka) and five common lemon varieties, as well as their in vitro antioxidant activity. A total of 21 compounds were identified, five of which were common compounds. Among them, Verna, Lisbon, and Bearss each have characteristic components that can serve as potential criteria for variety identification. Each of the six varieties of lemon has strong antioxidant activity. The antioxidant activity of different lemon varieties is related to flavonoids. Therefore, Eureka and the other five varieties of lemon are good natural antioxidants, and the cultivation and industrial production of lemons should consider the needs and selection of suitable varieties.


Assuntos
Antioxidantes , Citrus , Flavonoides , Flavonoides/análise , Flavonoides/química , Antioxidantes/química , Antioxidantes/análise , Citrus/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Extratos Vegetais/análise , Espectrometria de Massas/métodos , Frutas/química
13.
J Pharm Biomed Anal ; 249: 116391, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116504

RESUMO

Sinomenii Caulis (SC), a commonly used traditional Chinese medicine for its therapeutic effects on rheumatoid arthritis, contains rich chemical components. At present, most studies mainly focus on sinomenine, with little research on other alkaloids. In this study, a comprehensive profile of compounds in SC extract, and biological samples of rats (including bile, urine, feces, and plasma) after oral administration of SC extract was conducted via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The fragmentation patterns and potential biotransformation pathways of six main types of alkaloids in SC were summarized, and the corresponding characteristic product ions, relative ion intensity, and neutral losses were obtained to achieve rapid classification and identification of complex components of SC from in vitro to in vivo. As a result, a total of 114 alkaloid compounds were identified, including 12 benzyl alkaloids, 4 isoquinolone alkaloids, 32 aporphine alkaloids, 28 protoberberine alkaloids, 34 morphinan alkaloids and 4 organic amine alkaloids. After administration of SC extract to rats, a total of 324 prototypes and metabolites were identified from rat plasma, urine, feces and bile, including 81 aporphines, 95 protoberberines, 117 morphinans and 31 benzylisoquinolines. The main types of metabolites were demethylation, hydrogenation, dehydrogenation, aldehydation, oxidation, methylation, sulfate esterification, glucuronidation, glucose conjugation, glycine conjugation, acetylation, and dihydroxylation. In summary, this integrated strategy provides an additional approach for the incomplete identification caused by compound diversity and low abundance, laying the foundation for the discovery of new bioactive compounds of SC against rheumatoid arthritis.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Alcaloides/análise , Alcaloides/química , Alcaloides/farmacocinética , Sinomenium/química , Fezes/química , Administração Oral , Bile/química , Bile/metabolismo , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Espectrometria de Massas/métodos , Medicina Tradicional Chinesa/métodos , Morfinanos/farmacocinética , Morfinanos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-39197411

RESUMO

BACKGROUND: Lianpu Drink (LPY) is a classic prescription for treating spleen-stomach damp-heat syndrome (SSDHS), known for its ability to clear heat and eliminate dampness. However, the underlying mechanisms of LPY in treating SSDHS remain unclear. OBJECTIVES: This study aims to use non-target metabolomics to unravel the effects and mechanisms of LPY on SSDHS. METHODS: A metabolomics technique based on ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to identify the endogenous small-molecule metabolites in the urine of SSDHS model rats and find the metabolites associated with the LPY treatment of SSDHS. Furthermore, a network pharmacological analysis and molecular docking experiments were used to screen and validate the key metabolic pathways regulated by LPY. RESULTS: LPY exerted therapeutic effects on SSDHS by increasing the levels of motilin and gastrin, reducing the rectal temperature, alleviating the pathological changes in gastric and colonic tissues, and regulating the metabolic pattern in SSDHS rats. A total of 25 different metabolites, including L-histidine, citric acid and isocitric acid, were identified as the potential biomarkers for SSDHS via metabolomics. Among them, 11 metabolites were substantially reversed by LPY, including L-histidine, citric acid, isocitric acid, pantothenic acid, homovanillic acid sulfate, hippuric acid, indole-3-carboxilic acid-O-sulphate, 6-hydroxy-5-methoxyindole glucuronide, 2-phenylethan-ol glucuronide, 3-hydroxydodecanedioic acid and 3-methoxy-4-hydroxy-phenylethyleneglyclol sulfate. The results of network pharmacological analysis and molecular docking experiments validated that LPY ameliorated SSDHS by regulating the citrate cycle and histidine metabolism. CONCLUSION: We preliminarily investigated the effects and mechanisms of LPY on SSDHS at the level of endogenous small-molecule metabolites. Furthermore, this study provides a novel perspective for objectively evaluating the therapeutic effects, and exploring the mechanisms of Chinese medicinal formulas on SSDHS.

15.
Phytochemistry ; 229: 114267, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216632

RESUMO

In order to elucidate the mass fragmentation patterns and unveil more undescribed ophiobolin analogs, the mass fragmentation patterns of ophiobolins were analyzed based on UPLC-Q-TOF-MS/MS experiments. Different kinds of rearrangements (including McLafferty rearrangement) were the main cleavage patterns. Twenty-six (9-31) analogs were then tentatively characterized based on their mass analysis, and three undescribed ophiobolins (6-8) and a known analogue (5) were isolated in target. Compound 5 possesses a rare polycyclic carbon skeleton only recently reported, and compound 6 contains an undescribed lactone ring system fused with A/B ring at C-3/C-21, whereas compounds 7 and 8 have a peroxyl group in the side chain, which is the first reported in all ophiobolins. Compounds 5 and 7 displayed significant cytotoxicity against MCF-7 cancer cells.

16.
Se Pu ; 42(9): 837-855, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39198943

RESUMO

Large-leaf yellow tea, a slightly fermented yellow tea that is unique to China, has a stronger hypoglycemic effect than other tea varieties, such as green and black tea. Research on large-leaf yellow tea has focused on its hypoglycemic effect owing to the lack of comprehensive techniques to characterize its chemical components; thus, its development and further promotion are limited. Therefore, the development of a reliable analytical method to fully characterize the chemical components of large-leaf yellow tea is urgently required. In this study, a reliable strategy based on the data-acquisition technology of ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q TOF/MS) was established to rapidly screen and analyze the main chemical components of large-leaf yellow tea by combining the information of neutral loss groups and characteristic fragment ions. The chromatographic separation experiments were performed on a Waters ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm) with gradient elution using 0.1% formic acid aqueous solution and acetonitrile as the mobile phases. The flow rate was 0.2 mL/min, the sample volume was 2 µL, and the column temperature was 35 ℃. The mass spectral information of the components in a large-leaf yellow tea solution was collected using the full-information tandem MS (MSE) technique in positive and negative ion modes. The specific chemical components of large-leaf yellow tea was identified as follows. First, a self-established database of tea chemical components was constructed based on the literature. The mass spectral cleavage pathways of different types of compounds in large-leaf yellow tea were then sorted using reference substances, and the characteristics of the fragment ions and neutral loss groups were summarized. The precise mass-to-charge ratio of the target chemical components were then obtained based on the mass spectral information. Finally, the structures of the compounds in large-leaf yellow tea were confirmed based on their chromatographic retention times, mass spectral cleavage pathways, characteristic fragment ions, and neutral loss groups. A total of 87 chemical components, including 10 catechins, 32 flavonoids, 16 phenolic acids, 12 tannins, 6 theaflavins, and 11 compounds in other classes, were identified in large-leaf yellow tea. Representative compounds of various classes, including gallocatechin gallate, quercetin, vitexin, gallic acid, chlorogenic acid, 1,3,6-tri-O-galloyl-ß-D-glucose, and theaflavin, were selected, and their characteristic fragment ions and neutral loss groups were investigated in detail to reveal the cleavage pathways of different types of compounds in large-leaf yellow tea. The UPLC-Q TOF/MS method established in this study can comprehensively identify the main chemical components of large-leaf yellow tea in a simple, highly sensitive, stable, and reliable manner. This study provides a scientific basis and data support for the discovery of functional ingredients and quality evaluation of large-leaf yellow tea.


Assuntos
Espectrometria de Massas , Chá , Cromatografia Líquida de Alta Pressão/métodos , Chá/química , Espectrometria de Massas/métodos , Folhas de Planta/química , Camellia sinensis/química , Catequina/análise
17.
Prep Biochem Biotechnol ; : 1-14, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178290

RESUMO

Phillinus gilvus (Schwein.) Pat has pharmacological effects such as tonifying the spleen, dispelling dampness, and strengthening the stomach, in which sterol is one of the main compounds of P. gilvus, but there has not been thought you to its extraction and detailed identification of its composition, in the present study, we used artificial neural network (ANN) and response surface methodology (RSM) to optimize the conditions of ultrasonic-assisted extraction, and the parameters of the independent and interaction effects were evaluated. Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) was used to identify the major components in the purified extract. The results showed that the optimal extraction process conditions were: ultrasonic time 96 min, ultrasonic power 140 W, liquid to material ratio 1:25 g/ml, and ultrasonic temperature 30.7 °C. The compliance rates of the predicted and experimental values for the artificial neural network model and the response surface model were 98.3% and 96.12%, respectively, indicating that both models have the potential to be used for optimizing the extraction process of P. gilvus in industry. A total of 120 compounds and 30 major steroids were identified by comparison with the reference compounds. Among the major steroidal components are these findings will contribute to the isolation and utilization of active ingredients in P. gilvus.

18.
Chin Herb Med ; 16(3): 466-480, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072205

RESUMO

Objective: Mahuang Guizhi Decoction (MGD), an essential herbal pair in traditional Chinese medicine, is able to release cold, fever and asthma, mainly containing alkaloids, flavonoids, phenylpropanoids and amino acids. However, the absorption and distribution of these four category compounds in vivo still remained unclearly. Methods: In our research, we utilized UPLC-Q-TOF-MS technique to identify the constituents within MGD, as well as the prototypes of MGD and their metabolites absorbed in plasma and brain. We further profiled the drug-time curve of prototypes and metabolites of MGD both in plasma and brain. Results: Our results showed that 105 constituents were characterized in MGD. Thirty of them could be absorbed into blood, and ten of them could be distributed into brain. We also discovered eight new bio-transformed metabolites in blood, and a half of which could pass through the blood-brain barrier. In addition, all components detected in vivo could be absorbed and distributed immediately. Conclusion: These findings provide an approachable method to analyze the potential bio-active compounds in MGD and their in vivo behaviors, which could promote the efficacious material basis study of MGD and the security of clinical utilization.

19.
Chem Biodivers ; : e202401432, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083693

RESUMO

Justicia vahliiRoth. is an important wild medicinal food plant traditionally used for treating inflammation and various common ailments. This study investigated the chemical composition,antioxidant, enzyme inhibition and toxicity profiles of n-hexane (nHEJv) and chloroform (CEJv) extracts of J. vahlii. Moreover, the effect of the extracts was evaluated on CCl4 induced liver injury. The total phenolic and flavonoid contents were present in both extracts in significant amount. The UPLC-Q-TOF-MS and GC-MS profiling of CEJv tentatively identified several important phytocompounds. The CEJv extract was comparatively more active for antioxidant activity and α-amylase inhibition, whereas the nHEJv extract presented higher inhibition potential against urease, tyrosinase, and α-glucosidase enzymes. Similarly, the in-silico study of four major compounds, i.e., 1-acetoxypinoresinol, 3-hydroxysebacic acid, nortrachelogenin, and viscidulin-III have shown a good docking score against the clinically significant enzymes. The acute oral toxicity and brine shrimp lethality assaysrevealed the extracts as non-toxic. The CCl4 treated animals showed a geared depletion of various antioxidant enzymes which were significantly reversed with the treatment of the extracts. Overall, the study's findings revealed J. vahliiwith antioxidant mediated hepatoprotective and enzyme inhibition potential and warrant further research on isolation of the bioactive compounds.

20.
Nat Prod Res ; : 1-7, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069726

RESUMO

Rehmannia glutinosa Libosch, Achyranthes bidentata Bl. (A. bidentata), Dioscorea opposita Thunb, and Chrysanthemum morifolium Ramat (C. morifolium) are known as the 'Four Huaiqing Chinese Medicine' in China, which are used as materials for functional foods. In this paper, the constituents of Four Huaiqing Chinese Medicine were identified by UPLC-Q-TOF-MS/MS, and flavones and aromatic compounds are mainly responsible for these herbs. Moreover, C. morifolium exhibited the most significant effect in cobalt chloride-induced HUVECs injury, which could decrease cell apoptosis and the overproduction of ROS, lactic dehydrogenase (LD) and pyruvic acid, and increase the migration capacity of cells. Meanwhile, A. bidentata exhibited the most significant effect in isoproterenol-induced H9C2 cell injury, which could decrease the levels of ROS overproduction, BNP, NO, LD and pyruvic acid. Western blot revealed that C. morifolium and A. bidentata also could decrease the levels of bax/bcl-2 ratio, cleaved caspase-3, cytochrome c, HIF-1ɑ, GLUT1, HKII and PFKFB3, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...