Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 242, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985378

RESUMO

Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 µW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.

2.
Talanta ; 277: 126383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852345

RESUMO

Chemical warfare agents (CWAs) are toxic that pose a threat to the environment and human health, even trace amounts of CWAs can be fatal. In view of this, there is an urgent need to develop gas sensors for trace detection and ultrafast response of CWAs. Herein, an optical gas sensor has been proposed based on metal-organic frameworks (MOFs) three-dimensional (3D) photonic crystal to detect trace CWAs' simulant (dimethyl methylphosphonate, DMMP) in different atmospheric humidity (RH 20 %, RH 40 %, RH 60 %, RH 80 %). At relative humidity (RH) of 20 %, the sensor shows excellent selectivity of DMMP due to the specific interactions of van der Waals force between UiO-67 and phosphoryl oxygen (OP) group of DMMP (C3H9O3P), the ultrahigh sensitivity (42.7 ppb), ultrafast response (0.5 s) are profit from the ordered superstructure of 3D photonic crystal and its complete photonic bandgap. At higher humidity (RH 40%-80 %), the sensor shows excellent stability, long-term repeatability, and it still keeps ultrahigh sensitivity (12.1 ppb), ultrafast response (0.49 s) for DMMP at RH 80 %. Moreover, an optical gas sensor array has been prepared to solve the problem of cross-sensitive between DMMP and other CWAs at highest humidity (RH ≥ 80 %), the average classification accuracy can reach 98.6 %.

3.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928420

RESUMO

Self-powered wearable pressure sensors based on flexible electronics have emerged as a new trend due to the increasing demand for intelligent and portable devices. Improvements in pressure-sensing performance, including in the output voltage, sensitivity and response time, can greatly expand their related applications; however, this remains challenging. Here, we report on a highly sensitive piezoelectric sensor with novel light-boosting pressure-sensing performance, based on a composite membrane of copper phthalocyanine (CuPC) and graphene oxide (GO) (CuPC@GO). Under light illumination, the CuPC@GO piezoelectric sensor demonstrates a remarkable increase in output voltage (381.17 mV, 50 kPa) and sensitivity (116.80 mV/kPa, <5 kPa), which are approximately twice and three times of that the sensor without light illumination, respectively. Furthermore, light exposure significantly improves the response speed of the sensor with a response time of 38.04 µs and recovery time of 58.48 µs, while maintaining excellent mechanical stability even after 2000 cycles. Density functional theory calculations reveal that increased electron transfer from graphene to CuPC can occur when the CuPC is in the excited state, which indicates that the light illumination promotes the electron excitation of CuPC, and thus brings about the high polarization of the sensor. Importantly, these sensors exhibit universal spatial non-contact adjustability, highlighting their versatility and applicability in various settings.


Assuntos
Grafite , Indóis , Luz , Compostos Organometálicos , Grafite/química , Indóis/química , Compostos Organometálicos/química , Dispositivos Eletrônicos Vestíveis
4.
Bioelectrochemistry ; 156: 108598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992612

RESUMO

Owing to the high mortality and strong infection ability of COVID-19, the early rapid diagnosis is essential to reduce the risk of severe symptoms and the loss of lung function. In clinic, the commonly used detection methods, including the computed tomography (CT) and reverse transcription-polymerase chain reaction (RT-PCR), are often time-consuming with bulky instruments, which normally require more than one hour to report the results. To shorten the analytical period for testing the COVID-19 virus (SARS-CoV-2), we proposed an ultrafast and ultrasensitive DNA sensors to achieve an accurate determination of the DNA sequence by the RNA reverse transcription (rtDNA) of the SARS-CoV-2. A nanocubic architecture of the MnFe@Pt crystals was constructed to integrate both electrocatalysis and conductivity to greatly improve the biosensing performance. After the immobilization of a specific capture and report DNA on above nanocomposite, the rtDNA can be rapidly caught to the DNA sensor to form a double-helix structure, thus generating the current signal change. Within only 10 min, the as-prepared DNA sensors exhibited ultralow detection limit (1 × 10-20 M) and wide linear detection range, together with an outstanding selectivity among various interfering substances.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , DNA/genética
5.
ACS Nano ; 17(24): 25037-25044, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096421

RESUMO

Graphene possesses an exotic band structure that spans a wide range of important technological wavelength regimes for photodetection, all within a single material. Conventional methods aimed at enhancing detection efficiency often suffer from an extended response time when the light is switched off. The task of achieving ultrafast broad-band photodetection with a high gain remains challenging. Here, we propose a devised architecture that combines graphene with a photosensitizer composed of an alternating strip superstructure of WS2-WSe2. Upon illumination, n+-WS2 and p+-WSe2 strips create alternating electron- and hole-conduction channels in graphene, effectively overcoming the tradeoff between the responsivity and switch time. This configuration allows for achieving a responsivity of 1.7 × 107 mA/W, with an extrinsic response time of 3-4 µs. The inclusion of the superstructure booster enables photodetection across a wide range from the near-ultraviolet to mid-infrared regime and offers a distinctive photogating route for high responsivity and fast temporal response in the pursuit of broad-band detection.

6.
Adv Mater ; 35(41): e2304070, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37463430

RESUMO

A new manufacturing paradigm is showcased to exclude conventional mold-dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold-free manufacturing leverages high-resolution 3D-printed multiscale microstructures as the substrate and a gas-phase conformal polymer coating technique to complete the mold-free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D-printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4-ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa-1 ) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure-of-merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost-effective manufacturing manner.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122607, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921522

RESUMO

A simple D - A (donor - acceptor) type receptor ((2E, 2'E)-3, 3'-(10-octyl-10H-phenothiazine-3,7-diyl)bis(2-(benzo[d]thiazol-2-yl)acrylonitrile)) (PBTA) containing nitrile-vinyl linkage was designed and completely characterized. The receptor PBTA detects CN- ions based on "turn-off" effect with admirable spectral properties. It also owns some of the merits like "naked-eye" color change, ultrafast response (90 s), lowest detection limit (1.25 × 10-10 M) as well as quantitation limit (4.17 × 10-10 M) with the pH range 4-11 which is more suitable pH to make use of the receptor PBTA in physiological medium. The instant detecting ability of the receptor over CN- ions was proved using paper test strip and cotton balls. Further, the utilization of the receptor PBTA was also extended to track CN- ions in realistic samples (water and food samples) and in HeLa cells bioimaging.


Assuntos
Cianetos , Nitrilas , Humanos , Células HeLa , Água/química , Corantes Fluorescentes/química
8.
Nanotechnology ; 34(8)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541533

RESUMO

As a powerful complement to positive photoconductance (PPC), negative photoconductance (NPC) holds great potential for photodetector. However, the slow response of NPC relative to PPC devices limits their integration. Here, we propose a facile covalent strategy for an ultrafast NPC hybrid 2D photodetector. Our transistor-based graphene/porphyrin model device with a rise time of 0.2 ms and decay time of 0.3 ms has the fastest response time in the so far reported NPC hybrid photodetectors, which is attributed to efficient photogenerated charge transport and transfer. Both the photosensitive porphyrin with an electron-rich and large rigid structure and the built-in graphene frame with high carrier mobility are prone to the photogenerated charge transport. Especially, the intramolecular donor-acceptor system formed by graphene and porphyrin through covalent bonding promotes photoinduced charge transfer. This covalent strategy can be applied to other nanosystems for high-performance NPC hybrid photodetector.

9.
Mikrochim Acta ; 189(8): 308, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916935

RESUMO

Chemiresistive ammonia (NH3) detection at room temperature is highly desired due to the unique merits of easy miniaturization, low cost, and minor energy consumption especially for portable and wearable electronics. In this regard, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) has sparked considerable attention due to the benign room-temperature conductivity and environmental stability, but it is undesirably impeded by limited sensitivity and sluggish reaction kinetics. To overcome these, we incorporated cellulose nanofibers (CNF) into PEDOT:PSS via a facile blending. The constituent-optimized composite sensor displayed sensitive (sensitivity of ∼7.46%/ppm in the range of 0.2-3 ppm), selective, and stable NH3 sensing at 25 °C at 55% RH, with higher response and less baseline drift than pure PEDOT:PSS counterparts. Additionally, the response/recovery times (4.9 s/5.2 s toward 1 ppm NH3) ranked the best cases of conducting polymers based NH3 sensors. The humidity involved more than twofold response enhancement indicated a huge potential in exhaled breath monitoring. Furthermore, we observed an excellent flexible NH3-sensing performance with bending-tolerant features. This work provides an alternative strategy for trace NH3 sensing with low power consumption, superfast reaction, and high sensitivity.


Assuntos
Celulose , Nanofibras , Amônia , Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros
10.
ACS Appl Mater Interfaces ; 14(10): 12571-12582, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234462

RESUMO

The demand for high-performance semiconductors in electronics and optoelectronics has prompted the expansion of low-dimensional materials research to ternary compounds. However, photodetectors based on 2D ternary materials usually suffer from large dark currents and slow response, which means increased power consumption and reduced performance. Here we report a systematic study of the optoelectronic properties of well-characterized rhombohedral ZnIn2S4 (R-ZIS) nanosheets which exhibit an extremely low dark current (7 pA at 5 V bias). The superior performance represented by a series of parameters surpasses most 2D counterparts. The ultrahigh specific detectivity (1.8 × 1014 Jones), comparably short response time (τrise = 222 µs, τdecay = 158 µs), and compatibility with high-frequency operation (1000 Hz) are particularly prominent. Moreover, a gate-tunable characteristic is observed, which is attributed to photogating and improves the photoresponse by 2 orders of magnitude. Gating technique can effectively modulate the photocurrent-generation mechanism from photoconductive effect to dominant photogating. The combination of ultrahigh sensitivity, ultrafast response, and high gate tunability makes the R-ZIS phototransistor an ideal device for low-energy-consumption and high-frequency optoelectronic applications, which is further demonstrated by its excellent performance in optical neural networks and promising potential in optical deep learning and computing.

11.
Nanotechnology ; 33(25)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290961

RESUMO

Due to the wide spectral absorption and ultrafast electron dynamical response under optical excitation, topological insulator (TI) was proposed to have appealing application in next-generation photonic and optoelectronic devices. Whereas, the bandgap-free speciality of Dirac surface states usually leads to a quick relaxation of photoexcited carriers, making the transient excitons difficult to manipulate in isolated TIs. Growth of TI Bi2Te3/Ge heterostructures can promote the specific lifetime and quantity of long-lived excitons, offering the possibility of designing original near-infrared optoelectronic devices, however, the construction of TI Bi2Te3/Ge heterostructures has yet to be investigated. Herein, the high-quality Bi2Te3/Ge heterojunction with clear interface was prepared by physical vapor deposition strategy. A significant photoluminescence quenching behaviour was observed by experiments, which was attributed to the spontaneous excitation transfer of electrons at heterointerface via theoretical analysis. Then, a self-powered heterostructure photodetector was fabricated, which demonstrated a maximal detectivity of 1.3 × 1011Jones, an optical responsivity of 0.97 A W-1, and ultrafast photoresponse speed (12.1µs) under 1064 nm light illumination. This study offers a fundamental understanding of the spontaneous interfacial exciton transfer of TI-based heterostructures, and the as-fabricated photodetectors with excellent performance provided an important step to meet the increasing demand for novel optoelectronic applications in the future.

12.
ACS Appl Mater Interfaces ; 13(48): 57735-57742, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841872

RESUMO

Rubrene single crystals have received a lot of attention for their great potential in electronic and wearable nanoelectronics due to their high carrier mobility and excellent flexibility. While they exhibited remarkable electrical performances, their intrinsic potential as photon detectors has not been fully exploited. Here, we fabricate a sensitive and ultrafast organic phototransistor based on rubrene single crystals. The device covers the ultraviolet to visible range (275-532 nm), and the responsivity and detectivity can reach up to ∼4000 A W-1 and 1011 jones at 532 nm, respectively. Furthermore, the response times are highly gate-tunable down to sub-90 µs, and the cutoff frequency is ∼4 kHz, which is one of the fastest organic material-based phototransistors reported so far. Equally important is that the fabricated device exhibits stable light detection ability even after 8 months, indicating great long-term stability and excellent environmental robustness. The results suggest that the high-quality rubrene single crystal may be a promising material for future flexible optoelectronics with its intrinsic mechanical flexibility.

13.
ACS Appl Mater Interfaces ; 13(48): 57403-57410, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806376

RESUMO

The use of electrodes capable of functioning as both electrochromic windows and energy storage devices has been extended from green building development to various electronics and displays to promote more efficient energy consumption. Herein, we report the electrochromic energy storage of bimetallic NiV oxide (NiVO) thin films fabricated using chemical bath deposition. The best optimized NiVO electrode with a Ni/V ratio of 3 exhibits superior electronic conductivity and a large electrochemical surface area, which are beneficial for enhancing electrochemical performance. The color switches between semitransparent (a discharged state) and dark brown (a charged state) with excellent reproducibility because of the intercalation and deintercalation of OH- ions in an alkaline KOH electrolyte. A specific capacity of 2403 F g-1, a coloration efficiency of 63.18 cm2 C-1, and an outstanding optical modulation of 68% are achieved. The NiVO electrode also demonstrates ultrafast coloration and bleaching behavior (1.52 and 4.79 s, respectively), which are considerably faster than those demonstrated by the NiO electrode (9.03 and 38.87 s). It retains 91.95% capacity after 2000 charge-discharge cycles, much higher than that of the NiO electrode (83.47%), indicating that it has significant potential for use in smart energy storage applications. The superior electrochemical performance of the best NiVO compound electrode with an optimum Ni/V compositional ratio is due to the synergetic effect between the high electrochemically active surface area induced by V-doping-improved redox kinetics (low charge-transfer resistance) and fast ion diffusion, which provides a facile charge transport pathway at the electrolyte/electrode interface.

14.
ACS Appl Mater Interfaces ; 13(45): 54417-54427, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734698

RESUMO

The design of humidity actuators with high response sensitivity (especially actuation time) while maintaining favorable mechanical properties is important for advanced intelligent manufacturing, like soft robotics and smart devices, but still remains a challenge. Here, we fabricate a robust and conductive composite film-based humidity actuator with synergetic benefits from one-dimensional cellulose nanofibers (CNFs) and carbon nanotubes (CNTs) as well as two-dimensional graphene oxide (GO) via an efficient vacuum-assisted self-assembly method. Owing to the excellent moisture sensitivity of CNF and GO, the hydrophobic CNT favoring rapid desorption of water molecules, and the unique porous structure with numerous nanochannels for accelerating the water exchange rate, this CNF/GO/CNT composite film delivers excellent actuation including an ultrafast response/recovery (0.8/2 s), large deformation, and sufficient cycle stability (no detectable degradation after 1000 cycles) in response to ambient gradient humidity. Intriguingly, the actuator could also achieve a superior flexibility, a good mechanical strength (201 MPa), a desirable toughness (6.6 MJ/m3), and stable electrical conductivity. Taking advantage of these benefits, the actuator is conceptually fabricated into various smart devices including mechanical grippers, crawling robotics, and humidity control switches, which is expected to hold great promise toward practical applications.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 256: 119735, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819759

RESUMO

Hypochlorite (HClO/ClO-), an important reactive oxygen species (ROS), plays a significant role in the human immune system. Thus, developing a fast and efficient method for detecting ClO- is quite necessary. Herein, we designed and synthesized a fluorescent probe TPB-CN based on twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) characteristics. The probe could respond to ClO- with an ultrafast response velocity (<2 s). The detection limit was calculated to be 6.198 nM. In addition, probe TPB-CN was successfully applied for detecting ClO- in living cells and mouse.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Animais , Células HeLa , Humanos , Camundongos , Células RAW 264.7
16.
ACS Sens ; 5(11): 3404-3410, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33050692

RESUMO

Monitoring the dynamic humidity requires sensors with fast response and anti-electromagnetic interference, especially for human respiration. Here, an ultrafast fiber-optic breath sensor based on the humidity-sensitive characteristics of gelatin film is proposed and experimentally demonstrated. The sensor consists of a microknot resonator superimposed on a Mach-Zehnder (MZ) interferometer produced by a tapered single-mode fiber, which has an ultrafast response (84 ms) and recovery time (29 ms) and a large dynamic transmission range. The humidity in dynamic ambient causes changes in the refractive index of gelatin coating, which could trigger spectral intensity transients that can be explicitly distinguished between the two states. The sensing principle is analyzed using the traditional transfer-matrix analysis method. The influence of coating thickness on the sensor's trigger threshold is further investigated. Experiments on monitoring breath patterns indicate that the proposed breath sensor has high repeatability, reliability, and validity, which enable many other potential applications such as food processing, health monitoring, and other biomedical applications.


Assuntos
Tecnologia de Fibra Óptica , Refratometria , Humanos , Umidade , Reprodutibilidade dos Testes
17.
ACS Appl Mater Interfaces ; 12(34): 38708-38713, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805966

RESUMO

Ethanol sensors with ultrafast response and high sensitivity have attracted much attention to be applied to daily industrial production processes. In this work, graphene oxide-aniline (GOA) sensors are proposed to meet the requirements of detecting ethanol concentration. Graphene oxide is an outstanding material that has excellent electrical and thermal conductivity, large specific surface area, and high carrier mobility. Because of its special bonding reactions, GOA has advantages of good dispersibility, good electrical conductivity, insolubility in water, and strong plasticity. When testing ethanol concentration with sensors, there will be a lag time, which determines the sensitivity of the sensors. To the best of our knowledge, the GOA sensors in this work have the fastest response time, which is only 27 ms. The GOA ethanol sensors show a good ethanol sensing performance, including excellent sensitivity, cycle stability, and long-term stability.

18.
ACS Appl Mater Interfaces ; 12(11): 13200-13207, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32096401

RESUMO

For the development of high-performance gas sensors, ultrafast response and high selectivity are critical requirements for many practical applications. An alternative strategy is to employ hierarchical nanostructured materials in gas sensors. In this work, we report newly synthesized TiO2 hexagonal nanosheets with a hierarchical porous structure, which demonstrate an ultrafast gas response and high selectivity toward acetone vapor for the first time. A simple one-step annealing process to prepare hierarchical TiO2 nanosheets derived from layered TiSe2 nanosheet templates is reported. The hierarchical structure interlaced with anatase TiO2 nanosheets showed an open porous characteristic. The average pore size was about 20 nm examined using a high-resolution TEM. The gas sensing properties toward acetone vapor of the novel hierarchical structured TiO2 nanosheets were characterized in detail including optimal operation temperature, sensitivity, selectivity, response/recovery time, and long-term stability. The gas sensing response and recovery times were 0.75 s and 0.5 s, respectively. We attribute these superior response properties to its unique hierarchical pore structure with a high specific surface area. The results show great potential for acetone vapor detection, particularly in dynamic ultrafast monitoring by using the synthesized hierarchical structured TiO2 nanosheets.

19.
Anal Chim Acta ; 1078: 135-141, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31358211

RESUMO

Hypochlorous acid (HOCl)/hypochlorite (OCl-), important reactive oxygen species, play essential roles in many physiological and pathological progresses. Accordingly, we developed a novel dicyanomethylene-4H-pyran (DCM)-based probe DCM-OCl for colorimetric and near-infrared fluorescent turn-on detection of OCl-. The probe exhibited excellent selectivity and sensitivity for OCl- over other bio-related analytes with a detection limit of 80 nM. The excellent selectivity of DCM-OCl for OCl- was ascribed to specific oxidative cleavage of the dimethylthiocarbamate (DMTC) recognition unit by OCl-. Moreover, DCM-OCl exhibited an ultrafast turn-on response (<3 s) to OCl-, potentially allowing real-time detection of OCl-. Furthermore, DCM-OCl was successfully used to image endogenous/exogenous OCl- in living cells.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Tiocarbamatos/química , Benzopiranos/síntese química , Benzopiranos/toxicidade , Colorimetria/métodos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Limite de Detecção , Tiocarbamatos/síntese química , Tiocarbamatos/toxicidade
20.
ACS Nano ; 13(3): 3269-3279, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30790512

RESUMO

One of the primary limitations of previously reported two-dimensional (2D) photodetectors is a low frequency response (≪ 1 Hz) for sensitive devices with gain. Yet, little efforts have been devoted to improve the temporal response of photodetectors while maintaining high gain and responsivity. Here, we demonstrate a gain of 6.3 × 103 electrons per photon and a responsivity of 2.6 × 103 A/W while simultaneously exhibiting an ultrafast response time of 40-65 µs in a hybrid photodetector that consists of graphene-WS2-graphene junctions covered with indium (In) adatoms atop. The resultant responsivity is 6 orders of magnitude higher than that of conventional photodetectors comprising solely of a Au-WS2-Au junction. The photogain is provided mainly by the adsorbed In adatoms, from which photogenerated electrons can be transferred to the WS2 channel, while holes remain trapped in In adatoms, leading to a photogating effect as electrons are recirculating during the residence of holes in In adatoms. At a gate voltage near the Dirac point of graphene, a detectivity of D* = 2.2 × 1012 Jones and an ON/OFF ratio of 104 are achieved. The enhanced performance of the device can be attributed partly to the transparent graphene/WS2 contact and partly to the strong capacitive coupling of the In adatoms with the WS2 channel, which enables ultrafast carrier dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...