Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234048

RESUMO

Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using ΔG binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.

2.
Elife ; 122024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285487

RESUMO

Viral inclusion bodies (IBs) commonly form during the replication of Ebola virus (EBOV) in infected cells, but their role in viral immune evasion has rarely been explored. Here, we found that interferon regulatory factor 3 (IRF3), but not TANK-binding kinase 1 (TBK1) or IκB kinase epsilon (IKKε), was recruited and sequestered in viral IBs when the cells were infected by EBOV transcription- and replication-competent virus-like particles (trVLPs). Nucleoprotein/virion protein 35 (VP35)-induced IBs formation was critical for IRF3 recruitment and sequestration, probably through interaction with STING. Consequently, the association of TBK1 and IRF3, which plays a vital role in type I interferon (IFN-I) induction, was blocked by EBOV trVLPs infection. Additionally, IRF3 phosphorylation and nuclear translocation induced by Sendai virus or poly(I:C) stimulation were suppressed by EBOV trVLPs. Furthermore, downregulation of STING significantly attenuated VP35-induced IRF3 accumulation in IBs. Coexpression of the viral proteins by which IB-like structures formed was much more potent in antagonizing IFN-I than expression of the IFN-I antagonist VP35 alone. These results suggested a novel immune evasion mechanism by which EBOV evades host innate immunity.


Assuntos
Doença pelo Vírus Ebola , Evasão da Resposta Imune , Corpos de Inclusão Viral , Fator Regulador 3 de Interferon , Interferon Tipo I , Humanos , Ebolavirus , Doença pelo Vírus Ebola/imunologia
3.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647113

RESUMO

Filoviruses encode viral protein 24 (VP24) which effectively inhibit the innate immune responses in infected cells. Here we systematically analysed the effects of nine mammalian filovirus VP24 proteins on interferon (IFN)-induced immune response. We transiently expressed Ebola, Bombali, Bundibugyo, Reston, Sudan and Taï Forest ebolavirus (EBOV, BOMV, BDBV, RESTV, SUDV, TAFV, respectively), Lloviu virus (LLOV), Mengla dianlovirus (MLAV) and Marburgvirus (MARV) VP24 proteins and analysed their ability to inhibit IFN-α-induced activation of myxovirus resistance protein 1 (MxA) and interferon-induced transmembrane protein 3 (IFITM3) promoters. In addition, we analysed the expression of endogenous MxA protein in filovirus VP24-expressing cells. Eight filovirus VP24 proteins, including the VP24s of the recently discovered MLAV, BOMV and LLOV, inhibited IFN-induced MxA and IFITM3 promoter activation. MARV VP24 was the only protein with no inhibitory effect on the activation of either promoter. Endogenous MxA protein expression was impaired in cells transiently expressing VP24s with the exception of MARV VP24. We mutated nuclear localization signal (NLS) of two highly pathogenic filoviruses (EBOV and SUDV) and two putatively non-pathogenic filoviruses (BOMV and RESTV), and showed that the inhibitory effect on IFN-induced expression of MxA was dependent on functional cluster 3 of VP24 nuclear localization signal. Our findings suggest that filovirus VP24 proteins are both genetically and functionally conserved, and that VP24 proteins of most filovirus species are capable of inhibiting IFN-induced antiviral gene expression thereby efficiently downregulating the host innate immune responses.


Assuntos
Ebolavirus , Marburgvirus , Animais , Sinais de Localização Nuclear , Imunidade Inata , Interferon-alfa , Antivirais , Marburgvirus/genética , Proteínas da Matriz Viral , Mamíferos
4.
Biotechnol Lett ; 45(10): 1327-1337, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526868

RESUMO

PURPOSE: Viruses, such as Ebola virus (EBOV), evolve rapidly and threaten the human health. There is a great demand to exploit efficient gene-editing techniques for the identification of virus to probe virulence mechanism for drug development. METHODS: Based on lambda Red recombination in Escherichia coli (E. coli), counter-selection, and in vitro annealing, a high-efficiency genetic method was utilized here for precisely engineering viruses. EBOV trVLPs assay and dual luciferase reporter assay were used to further test the effect of mutations on virus replication. RESULTS: Considering the significance of matrix protein VP24 in EBOV replication, the types of mutations within vp24, including several single-base substitutions, one double-base substitution, two seamless deletions, and one targeted insertion, were generated on the multi-copy plasmid of E. coli. Further, the length of the homology arms for recombination and in vitro annealing, and the amount of DNA cassettes and linear plasmids were optimized to create a more elaborate and cost-efficient protocol than original approach. The effects of VP24 mutations on the expression of a reporter gene (luciferase) from the EBOV minigenome were determined, and results indicated that mutations of key sites within VP24 have significant impacts on EBOV replication. CONCLUSION: This precise mutagenesis method will facilitate effective and simple editing of viral genes in E. coli.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virais/genética , Doença pelo Vírus Ebola/genética , Ebolavirus/genética , Ebolavirus/metabolismo , Engenharia Genética , Recombinação Genética
5.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243162

RESUMO

Members of the Ebolavirus genus demonstrate a marked differences in pathogenicity in humans with Ebola (EBOV) being the most pathogenic, Bundibugyo (BDBV) less pathogenic, and Reston (RESTV) is not known to cause a disease in humans. The VP24 protein encoded by members of the Ebolavirus genus blocks type I interferon (IFN-I) signaling through interaction with host karyopherin alpha nuclear transporters, potentially contributing to virulence. Previously, we demonstrated that BDBV VP24 (bVP24) binds with lower affinities to karyopherin alpha proteins relative to EBOV VP24 (eVP24), and this correlated with a reduced inhibition in IFN-I signaling. We hypothesized that modification of eVP24-karyopherin alpha interface to make it similar to bVP24 would attenuate the ability to antagonize IFN-I response. We generated a panel of recombinant EBOVs containing single or combinations of point mutations in the eVP24-karyopherin alpha interface. Most of the viruses appeared to be attenuated in both IFN-I-competent 769-P and IFN-I-deficient Vero-E6 cells in the presence of IFNs. However, the R140A mutant grew at reduced levels even in the absence of IFNs in both cell lines, as well as in U3A STAT1 knockout cells. Both the R140A mutation and its combination with the N135A mutation greatly reduced the amounts of viral genomic RNA and mRNA suggesting that these mutations attenuate the virus in an IFN-I-independent attenuation. Additionally, we found that unlike eVP24, bVP24 does not inhibit interferon lambda 1 (IFN-λ1), interferon beta (IFN-ß), and ISG15, which potentially explains the lower pathogenicity of BDBV relative to EBOV. Thus, the VP24 residues binding karyopherin alpha attenuates the virus by IFN-I-dependent and independent mechanisms.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Interferons/metabolismo , Ebolavirus/fisiologia , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Proteínas Virais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo
6.
Viruses ; 13(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452514

RESUMO

Viral interferon (IFN) antagonist proteins mediate evasion of IFN-mediated innate immunity and are often multifunctional, with distinct roles in viral replication. The Ebola virus IFN antagonist VP24 mediates nucleocapsid assembly, and inhibits IFN-activated signaling by preventing nuclear import of STAT1 via competitive binding to nuclear import receptors (karyopherins). Proteins of many viruses, including viruses with cytoplasmic replication cycles, interact with nuclear trafficking machinery to undergo nucleocytoplasmic transport, with key roles in pathogenesis; however, despite established karyopherin interaction, potential nuclear trafficking of VP24 has not been investigated. We find that inhibition of nuclear export pathways or overexpression of VP24-binding karyopherin results in nuclear localization of VP24. Molecular mapping indicates that cytoplasmic localization of VP24 depends on a CRM1-dependent nuclear export sequence at the VP24 C-terminus. Nuclear export is not required for STAT1 antagonism, consistent with competitive karyopherin binding being the principal antagonistic mechanism, while export mediates return of nuclear VP24 to the cytoplasm where replication/nucleocapsid assembly occurs.


Assuntos
Núcleo Celular/virologia , Citoplasma/virologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Interferon Tipo I/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ebolavirus/química , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Sinais de Localização Nuclear , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
7.
Virus Res ; 302: 198467, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062193

RESUMO

White spot syndrome virus (WSSV) is the major pathogen that leads to severe mortalities in cultured shrimp worldwide. The envelope proteins VP28 and VP24 of WSSV are considered potential vaccine candidate antigens. In this study, we utilized a Saccharomyces cerevisiae (S. cerevisiae) surface display system to demonstrate the feasibility of this platform for developing a vaccine candidate against WSSV. EBY100/pYD1-VP28-VP24 was generated, and the fusion protein VP28-VP24 was present on the surface of S. cerevisiae. Penaeus vannamei (P. vannamei) was used as an animal model. Oral administration of EBY100/pYD1-VP28-VP24 could induce significant activities of immune-related enzymes such as superoxide dismutase (SOD) and phenoloxidase (PO). Importantly, WSSV challenge indicated that oral administration of EBY100/pYD1-VP28-VP24 could confer 100% protection with a corresponding decrease in the viral load. The collective results strongly highlight the potential of a S. cerevisiae-based oral vaccine as an efficient control strategy for combating WSSV infection in shrimp aquaculture.


Assuntos
Penaeidae , Vacinas Virais , Vírus da Síndrome da Mancha Branca 1 , Administração Oral , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas do Envelope Viral , Vírus da Síndrome da Mancha Branca 1/genética
8.
Front Immunol ; 12: 694105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069519

RESUMO

Filovirus family consists of highly pathogenic viruses that have caused fatal outbreaks especially in many African countries. Previously, research focus has been on Ebola, Sudan and Marburg viruses leaving other filoviruses less well studied. Filoviruses, in general, pose a significant global threat since they are highly virulent and potentially transmissible between humans causing sporadic infections and local or widespread epidemics. Filoviruses have the ability to downregulate innate immunity, and especially viral protein 24 (VP24), VP35 and VP40 have variably been shown to interfere with interferon (IFN) gene expression and signaling. Here we systematically analyzed the ability of VP24 proteins of nine filovirus family members to interfere with retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated antigen 5 (MDA5) induced IFN-ß and IFN-λ1 promoter activation. All VP24 proteins were localized both in the cell cytoplasm and nucleus in variable amounts. VP24 proteins of Zaire and Sudan ebolaviruses, Lloviu, Taï Forest, Reston, Marburg and Bundibugyo viruses (EBOV, SUDV, LLOV, TAFV, RESTV, MARV and BDBV, respectively) were found to inhibit both RIG-I and MDA5 stimulated IFN-ß and IFN-λ1 promoter activation. The inhibition takes place downstream of interferon regulatory factor 3 phosphorylation suggesting the inhibition to occur in the nucleus. VP24 proteins of Mengla (MLAV) or Bombali viruses (BOMV) did not inhibit IFN-ß or IFN-λ1 promoter activation. Six ebolavirus VP24s and Lloviu VP24 bound tightly, whereas MARV and MLAV VP24s bound weakly, to importin α5, the subtype that regulates the nuclear import of STAT complexes. MARV and MLAV VP24 binding to importin α5 was very weak. Our data provides new information on the innate immune inhibitory mechanisms of filovirus VP24 proteins, which may contribute to the pathogenesis of filovirus infections.


Assuntos
Proteína DEAD-box 58/imunologia , Filoviridae/imunologia , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , Interleucinas/imunologia , Regiões Promotoras Genéticas/imunologia , Receptores Imunológicos/imunologia , Proteínas Virais/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/genética , Filoviridae/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferons/genética , Interleucinas/genética , Receptores Imunológicos/genética , Proteínas Virais/genética
9.
Viruses ; 12(8)2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784484

RESUMO

Viral protein 24 (VP24) from Ebola virus (EBOV) was first recognized as a minor matrix protein that associates with cellular membranes. However, more recent studies shed light on its roles in inhibiting viral genome transcription and replication, facilitating nucleocapsid assembly and transport, and interfering with immune responses in host cells through downregulation of interferon (IFN)-activated genes. Thus, whether VP24 is a peripheral protein with lipid-binding ability for matrix layer recruitment has not been explored. Here, we examined the lipid-binding ability of VP24 with a number of lipid-binding assays. The results indicated that VP24 lacked the ability to associate with lipids tested regardless of VP24 posttranslational modifications. We further demonstrate that the presence of the EBOV major matrix protein VP40 did not promote VP24 membrane association in vitro or in cells. Further, no protein-protein interactions between VP24 and VP40 were detected by co-immunoprecipitation. Confocal imaging and cellular membrane fractionation analyses in human cells suggested VP24 did not specifically localize at the plasma membrane inner leaflet. Overall, we provide evidence that EBOV VP24 is not a lipid-binding protein and its presence in the viral matrix layer is likely not dependent on direct lipid interactions.


Assuntos
Lipídeos/química , Proteínas Virais/metabolismo , Citosol/metabolismo , Genoma Viral , Células HEK293 , Humanos , Ligação Proteica , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/genética , Replicação Viral
10.
Artigo em Inglês | MEDLINE | ID: mdl-32366711

RESUMO

Ebola virus (EBOV) is among the most devastating pathogens causing fatal hemorrhagic fever in humans. The epidemics from 2013 to 2016 resulted in more than 11,000 deaths, and another outbreak is currently ongoing. Since there is no FDA-approved drug so far to fight EBOV infection, there is an urgent need to focus on drug discovery. Considering the tight correlation between the high EBOV virulence and its ability to suppress the type I interferon (IFN-I) system, identifying molecules targeting viral protein VP24, one of the main virulence determinants blocking the IFN response, is a promising novel anti-EBOV therapy approach. Hence, in the effort to find novel EBOV inhibitors, a screening of a small set of flavonoids was performed; it showed that quercetin and wogonin can suppress the VP24 effect on IFN-I signaling inhibition. The mechanism of action of the most active compound, quercetin, showing a half-maximal inhibitory concentration (IC50) of 7.4 µM, was characterized to significantly restore the IFN-I signaling cascade, blocked by VP24, by directly interfering with the VP24 binding to karyopherin-α and thus restoring P-STAT1 nuclear transport and IFN gene transcription. Quercetin significantly blocked viral infection, specifically targeting EBOV VP24 anti-IFN-I function. Overall, quercetin is the first identified inhibitor of the EBOV VP24 anti-IFN function, representing a molecule interacting with a viral binding site that is very promising for further drug development aiming to block EBOV infection at the early steps.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Interferons , Quercetina , Antivirais/farmacologia , Antivirais/uso terapêutico , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Quercetina/farmacologia , Proteínas Virais/antagonistas & inibidores
11.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32102881

RESUMO

While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.


Assuntos
Ebolavirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Linhagem Celular , Genoma Viral/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Vírion/genética , Montagem de Vírus/genética , Replicação Viral/fisiologia
12.
Viruses ; 11(11)2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717793

RESUMO

Ebola virus (EBOV) is a zoonotic pathogen that poses a significant threat to public health, causing sporadic yet devastating outbreaks that have the potential to spread worldwide, as demonstrated during the 2013-2016 West African outbreak. Mouse models of infection are important tools for the development of therapeutics and vaccines. Exposure of immunocompetent mice to clinical isolates of EBOV is nonlethal; consequently, EBOV requires prior adaptation in mice to cause lethal disease. Until now, the only immunocompetent EBOV mouse model was based on the Mayinga variant, which was isolated in 1976. Here, we generated a novel mouse-adapted (MA)-EBOV based on the 2014 Makona isolate by inserting EBOV/Mayinga-MA mutations into the EBOV/Makona genome, followed by serial passaging of the rescued virus in suckling mice. The resulting EBOV/Makona-MA causes lethal disease in adult immunocompetent mice within 6 to 9 days and has a lethal dose (LD50) of 0.004 plaque forming units (PFU). Two additional mutations emerged after mouse-adaptation in the viral nucleoprotein (NP) and membrane-associated protein VP24. Using reverse genetics, we found the VP24 mutation to be critical for EBOV/Makona-MA virulence. EBOV/Makona-MA infected mice that presented with viremia, high viral burden in organs, increased release of pro-inflammatory cytokines/chemokines, and lymphopenia. Our mouse model will help advance pre-clinical development of countermeasures against contemporary EBOV variants.


Assuntos
Modelos Animais de Doenças , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Animais , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Genoma Viral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Carga Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597768

RESUMO

Some viruses take advantage of conjugation of ubiquitin or ubiquitin-like proteins to enhance their own replication. One example is Ebola virus, which has evolved strategies to utilize these modification pathways to regulate the viral proteins VP40 and VP35 and to counteract the host defenses. Here, we show a novel mechanism by which Ebola virus exploits the ubiquitin and SUMO pathways. Our data reveal that minor matrix protein VP24 of Ebola virus is a bona fide SUMO target. Analysis of a SUMOylation-defective VP24 mutant revealed a reduced ability to block the type I interferon (IFN) pathway and to inhibit IFN-mediated STAT1 nuclear translocation, exhibiting a weaker interaction with karyopherin 5 and significantly diminished stability. Using glutathione S-transferase (GST) pulldown assay, we found that VP24 also interacts with SUMO in a noncovalent manner through a SIM domain. Mutation of the SIM domain in VP24 resulted in a complete inability of the protein to downmodulate the IFN pathway and in the monoubiquitination of the protein. We identified SUMO deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7) as an interactor and a negative modulator of VP24 ubiquitination. Finally, we show that mutation of one ubiquitination site in VP24 potentiates the IFN modulatory activity of the viral protein and its ability to block IFN-mediated STAT1 nuclear translocation, pointing to the ubiquitination of VP24 as a negative modulator of the VP24 activity. Altogether, these results indicate that SUMO interacts with VP24 and promotes its USP7-mediated deubiquitination, playing a key role in the interference with the innate immune response mediated by the viral protein.IMPORTANCE The Ebola virus VP24 protein plays a critical role in escape of the virus from the host innate immune response. Therefore, deciphering the molecular mechanisms modulating VP24 activity may be useful to identify potential targets amenable to therapeutics. Here, we identify the cellular proteins USP7, SUMO, and ubiquitin as novel interactors and regulators of VP24. These interactions may represent novel potential targets to design new antivirals with the ability to modulate Ebola virus replication.


Assuntos
Ebolavirus/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Proteína SUMO-1/química , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Virais/química , Animais , Sítios de Ligação , Chlorocebus aethiops , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Proteína SUMO-1/genética , Proteína SUMO-1/imunologia , Transdução de Sinais , Sumoilação , Peptidase 7 Específica de Ubiquitina/imunologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia , alfa Carioferinas/genética , alfa Carioferinas/imunologia
14.
Comput Biol Med ; 113: 103414, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31536833

RESUMO

BACKGROUND: The impact of Ebola virus disease (EVD) is devastating with concomitant high fatalities. Currently, various drugs and vaccines are at different stages of development, corroborating the need to identify new therapeutic molecules. The VP24 protein of the Ebola virus (EBOV) plays a key role in the pathology and replication of the EVD. The VP24 protein interferes with the host immune response to viral infections and promotes nucleocapsid formation, thus making it a viable drug target. This study sought to identify putative lead compounds from the African flora with potential to inhibit the activity of the EBOV VP24 protein using pharmacoinformatics and molecular docking. METHODS: An integrated library of 7675 natural products originating from Africa obtained from the AfroDB and NANPDB databases, as well as known inhibitors were screened against VP24 (PDB ID: 4M0Q) utilising AutoDock Vina after energy minimization using GROMACS. The top 19 compounds were physicochemically and pharmacologically profiled using ADMET Predictor™, SwissADME and DataWarrior. The mechanisms of binding between the molecules and EBOV VP24 were characterised using LigPlot+. The performance of the molecular docking was evaluated by generating a receiver operating characteristic (ROC) by screening known inhibitors and decoys against EBOV VP24. The prediction of activity spectra for substances (PASS) and machine learning-based Open Bayesian models were used to predict the anti-viral and anti-Ebola activity of the molecules, respectively. RESULTS: Four natural products, namely, ZINC000095486070, ZINC000003594643, ZINC000095486008 and sarcophine were found to be potential EBOV VP24-inhibitiory molecules. The molecular docking results showed that ZINC000095486070 had high binding affinity of -9.7 kcal/mol with EBOV VP24, which was greater than those of the known VP24-inhibitors used as standards in the study including Ouabain, Nilotinib, Clomiphene, Torimefene, Miglustat and BCX4430. The area under the curve of the generated ROC for evaluating the performance of the molecular docking was 0.77, which was considered acceptable. The predicted promising molecules were also validated using induced-fit docking with the receptor using Schrödinger and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The molecules had better binding mechanisms and were pharmacologically profiled to have plausible efficacies, negligible toxicity as well as suitable for designing anti-Ebola scaffolds. ZINC000095486008 and sarcophine (NANPDB135) were predicted to possess anti-viral activity, while ZINC000095486070 and ZINC000003594643 to be anti-Ebola compounds. CONCLUSION: The identified compounds are potential inhibitors worthy of further development as EBOV biotherapeutic agents. The scaffolds of the compounds could also serve as building blocks for designing novel Ebola inhibitors.


Assuntos
Antivirais/química , Ebolavirus/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Proteínas Virais , Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Compostos Fitoquímicos/uso terapêutico , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química
15.
Vaccine ; 37(47): 6942-6950, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31324500

RESUMO

Ebola virus (EBOV) is among the deadliest pathogens known to man causing infrequent outbreaks of hemorrhagic disease. In humans, the case fatality rates in the outbreaks can reach 90%. During the West African epidemic almost 30,000 people were infected and of these over 11,000 fatalities were reported. Currently, we are facing an uncontained larger outbreak in the Democratic Republic of the Congo. Even though EBOV was discovered in 1976, extensive efforts to develop countermeasures, particularly therapeutics and vaccines, started late and there is still no FDA-approved product available. Nevertheless, one candidate vaccine, the rVSV-ZEBOV, is being used in clinical trials during the current outbreak with the hope of ending the human transmission chains. However, adverse reactions to administration of some EBOV vaccines have been reported; therefore, we have developed a safe and efficacious formulation of insect-cell derived adjuvanted protein vaccines. Vaccine candidates containing the EBOV glycoprotein with or without matrix proteins VP24 and VP40 formulated with one of three different adjuvants were tested in guinea pigs for immunogenicity and efficacy against lethal EBOV challenge. The results demonstrated that these vaccine candidates engendered high titers of antigen-specific antibodies in immunized animals and two of these vaccine candidates afforded complete or nearly complete protection against lethal challenge. Interestingly, we found a sex bias in partially protected immunized groups with male guinea pigs succumbing to disease and females surviving. In summary, we developed a safe and immunogenic adjuvanted subunit vaccine uniformly protective against EBOV disease in guinea pigs.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Glicoproteínas/imunologia , Cobaias , Imunização/métodos , Masculino , Vacinação/métodos , Células Vero
16.
Infect Disord Drug Targets ; 19(4): 362-374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30468131

RESUMO

Upon viral infection, the interferon (IFN) system triggers potent antiviral mechanisms limiting viral growth and spread. Hence, to sustain their infection, viruses evolved efficient counteracting strategies to evade IFN control. Ebola virus (EBOV), member of the family Filoviridae, is one of the most virulent and deadly pathogen ever faced by humans. The etiological agent of the Ebola Virus Disease (EVD), EBOV can be undoubtedly considered the perfect example of a powerful inhibitor of the host organism immune response activation. Particularly, the efficacious suppression of the IFN cascade contributes to disease progression and severity. Among the EBOVencoded proteins, the Viral Proteins 35 (VP35) and 24 (VP24) are responsible for the EBOV extreme virulence, representing the core of such inhibitory function through which EBOV determines its very effective shield to the cellular immune defenses. VP35 inhibits the activation of the cascade leading to IFN production, while VP24 inhibits the activation of the IFN-stimulated genes. A number of studies demonstrated that both VP35 and VP24 is validated target for drug development. Insights into the structural characteristics of VP35 and VP24 domains revealed crucial pockets exploitable for drug development. Considered the lack of therapy for EVD, restoring the immune activation is a promising approach for drug development. In the present review, we summarize the importance of VP35 and VP24 proteins in counteracting the host IFN cellular response and discuss their potential as druggable viral targets as a promising approach toward attenuation of EBOV virulence.


Assuntos
Antivirais/farmacologia , Desenvolvimento de Medicamentos , Ebolavirus/efeitos dos fármacos , Interferons/imunologia , Proteínas Virais/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Animais , Ebolavirus/imunologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
17.
Viruses ; 10(2)2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495311

RESUMO

The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z'- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance.


Assuntos
Ebolavirus/genética , Genes Reporter/genética , Interferon beta/genética , Luciferases/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Descoberta de Drogas , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferon-alfa/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas Virais/efeitos dos fármacos
18.
Annu Rep Med Chem ; 51: 135-173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32287476

RESUMO

Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.

19.
Dev Comp Immunol ; 81: 303-311, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274789

RESUMO

White spot syndrome virus (WSSV) is a major viral pathogen in global shrimp farming, causing huge economic damage. Through penetrating the outer surface of the target tissues, WSSV enters into the cells of the target tissue to complete the replication process in the host. In the present study, a cuticle protein gene from Litopenaeus vannamei, designated as LvAMP13.4, was identified and proved to be involved in WSSV invasion. The deduced amino acid sequence of LvAMP13.4 contained a signal peptide and a conserved chitin-binding domain type 4 (ChBD4). This cuticle protein gene was mainly expressed in stomach, gill and epidermis. The expression level of LvAMP13.4 was significantly changed during WSSV infection. Silencing of LvAMP13.4 by dsRNA interference apparently reduced the mortality rate and the WSSV copy number in shrimp upon WSSV infection. Furthermore, yeast two-hybrid system and Co-IP assay were performed to confirm that LvAMP13.4 could interact with the major envelop protein VP24 of WSSV. These data indicated that LvAMP13.4 was involved in the invasion process of WSSV through interaction with VP24. The present results could provide new insights for us in understanding the role of host cuticle proteins during virus invasion.


Assuntos
Exoesqueleto/fisiologia , Artemia/imunologia , Proteínas de Artrópodes/genética , Infecções por Vírus de DNA/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Aquicultura , Artemia/virologia , Proteínas de Artrópodes/metabolismo , Quitina/metabolismo , Clonagem Molecular , Inativação Gênica , Imunidade Inata , Ligação Proteica , RNA de Cadeia Dupla/genética , Frutos do Mar , Carga Viral , Proteínas Virais/metabolismo , Replicação Viral
20.
Vaccine ; 36(22): 3090-3100, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28216187

RESUMO

Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development.


Assuntos
Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Ebolavirus , Feminino , Doença pelo Vírus Ebola/imunologia , Imunidade Celular , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...