RESUMO
Introduction: Ovarian cancer (OC) is the malignant tumor with the highest mortality among gynecological cancers. Chemotherapy resistance is a major obstacle to OC therapy. Circular RNAs (circRNAs) play crucial roles in cancer development and chemoresistance. However, the role and potential mechanism of has-circ-001567 (circ-VPS13C) in chemoresistance of OC remain unknown. Material and methods: The levels of circ-VPS13C, miR-106b-5p and 14-3-3 zeta (YWHAZ) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability and calculate the half inhibition concentration (IC50) of cisplatin (DDP). The levels of autophagy-related markers were measured by western blot assay. Cell apoptosis and migration were evaluated by flow cytometry and transwell assay, respectively. The binding relationship between miR-106b-5p and circ-VPS13C or YWHAZ was confirmed by dual-luciferase reporter assay. Xenograft assay was performed to explore the role of circ-VPS13C in vivo. Results: Circ-VPS13C and YWHAZ were up-regulated, while miR-106b-5p was down-regulated in DDP-resistant OC tissues and cells. Knockdown of circ-VPS13C enhanced DDP sensitivity by repressing autophagy in DDP-resistant cells. Circ-VPS13C increased DDP resistance via sponging miR-106b-5p. Moreover, miR-106b-5p directly targeted YWHAZ. Up-regulation of YWHAZ alleviated the decrease in DDP resistance caused by circ-VPS13C depletion. In addition, circ-VPS13C silencing decreased DDP resistance in vivo. Conclusions: Circ-VPS13C knockdown enhanced DDP sensitivity of OC through modulation of autophagy via the miR-106b-5p/YWHAZ axis, providing a new biomarker for improving the efficacy of OC chemotherapy.
RESUMO
Chorea-acanthocytosis (ChAc) and McLeod syndrome are diseases with shared clinical manifestations caused by mutations in VPS13A and XK, respectively. Key features of these conditions are the degeneration of caudate neurons and the presence of abnormally shaped erythrocytes. XK belongs to a family of plasma membrane (PM) lipid scramblases whose action results in exposure of PtdSer at the cell surface. VPS13A is an endoplasmic reticulum (ER)-anchored lipid transfer protein with a putative role in the transport of lipids at contacts of the ER with other membranes. Recently VPS13A and XK were reported to interact by still unknown mechanisms. So far, however, there is no evidence for a colocalization of the two proteins at contacts of the ER with the PM, where XK resides, as VPS13A was shown to be localized at contacts between the ER and either mitochondria or lipid droplets. Here we show that VPS13A can also localize at ER-PM contacts via the binding of its PH domain to a cytosolic loop of XK, that such interaction is regulated by an intramolecular interaction within XK, and that both VPS13A and XK are highly expressed in the caudate neurons. Binding of the PH domain of VPS13A to XK is competitive with its binding to intracellular membranes that mediate other tethering functions of VPS13A. Our findings support a model according to which VPS13A-dependent lipid transfer between the ER and the PM is coupled to lipid scrambling within the PM. They raise the possibility that defective cell surface exposure of PtdSer may be responsible for neurodegeneration.
Assuntos
Proteínas de Transporte , Membrana Celular , Lipídeos , Proteínas de Transporte Vesicular , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Humanos , Neuroacantocitose/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
VPS13C is a protein-coding gene involved in the regulation of mitochondrial function through the endolysosomal pathway in neurons. Homozygous and compound heterozygous VPS13C mutations are etiologically associated with early-onset Parkinson's disease (PD). Moreover, recent studies linked biallelic VPS13C mutations with the development of dementia with Lewy bodies (DLB). Neuropathological studies on two mutated subjects showed diffuse Lewy body disease. In this article, we report the clinical and genetic findings of two subjects affected by early-onset PD carrying three novel VPS13C mutations (i.e., one homozygous and one compound heterozygous), and review the previous literature on the genetic and clinical findings of VPS13C-mutated patients, contributing to the knowledge of this rare genetic alpha-synucleinopathy.
Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Homozigoto , Humanos , Doença por Corpos de Lewy/complicações , Mutação/genética , Doença de Parkinson/complicações , Proteínas/genéticaRESUMO
OBJECTIVE: We aimed to estimate the role of vacuolar protein sorting 13C (VPS13C) gene single nucleotide polymorphism (SNP) rs2414739 variant in the risk of PD by meta-analysis. METHODS: Five eligible case-control studies including 2796 PD cases and 4138 health controls involved in this meta-analysis. The fixed or random effect model was selected based on the heterogeneity of the included studies which detected by I2 and Q tests. The association between rs2414739 polymorphism and the risk of PD was evaluated using the pooled odds ratios (OR) and 95 % confidence interval (95 %CI). Sensitivity analysis was used to test the stability of the results. Funnel plot and Begg's test were employed to verified publication bias. RESULTS: The results of our meta-analysis showed a significant correlation between VPS13C rs2424739 gene polymorphism and PD susceptibility in Allele model (A versus vs. G: ORâ¯=â¯1.14, 95 %CIâ¯=â¯1.05-1.23, pâ¯=â¯0.002), dominant model (GGâ¯+â¯AG vs. AA: ORâ¯=â¯0.86, 95 %CIâ¯=â¯0.78-0.95, pâ¯=â¯0.004), heterozygote model (AG vs. AA: ORâ¯=â¯0.87, 95 %CIâ¯=â¯0.77-0.99, pâ¯=â¯0.04), homozygote model (GG vs. AA: ORâ¯=â¯0.76, 95 %CIâ¯=â¯0.60-0.96, pâ¯=â¯0.02). Surprisingly, we did not find a significant statistical difference between VPS13C rs2414739 polymorphism and PD risk in Chinese cohort in the regional stratified analysis. CONCLUSIONS: This meta-analysis suggests that VPS13C rs2414739 polymorphism might act as a genetic predisposition factor for PD, whereas does not include Chinese population.
Assuntos
Predisposição Genética para Doença , Doença de Parkinson/genética , Proteínas/genética , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Estudos de Associação Genética , Humanos , Doença de Parkinson/epidemiologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are clinically, pathologically and etiologically disorders embedded in the Lewy body disease (LBD) continuum, characterized by neuronal α-synuclein pathology. Rare homozygous and compound heterozygous premature termination codon (PTC) mutations in the Vacuolar Protein Sorting 13 homolog C gene (VPS13C) are associated with early-onset recessive PD. We observed in two siblings with early-onset age (< 45) and autopsy confirmed DLB, compound heterozygous missense mutations in VPS13C, p.Trp395Cys and p.Ala444Pro, inherited from their healthy parents in a recessive manner. In lymphoblast cells of the index patient, the missense mutations reduced VPS13C expression by 90% (p = 0.0002). Subsequent, we performed targeted resequencing of VPS13C in 844 LBD patients and 664 control persons. Using the optimized sequence kernel association test, we obtained a significant association (p = 0.0233) of rare VPS13C genetic variants (minor allele frequency ≤ 1%) with LBD. Among the LBD patients, we identified one patient with homozygous missense mutations and three with compound heterozygous missense mutations in trans position, indicative for recessive inheritance. In four patients with compound heterozygous mutations, we were unable to determine trans position. The frequency of LBD patient carriers of proven recessive compound heterozygous missense mutations is 0.59% (5/844). In autopsy brain tissue of two unrelated LBD patients, the recessive compound heterozygous missense mutations reduced VPS13C expression. Overexpressing of wild type or mutant VPS13C in HeLa or SH-SY5Y cells, demonstrated that the mutations p.Trp395Cys or p.Ala444Pro, abolish the endosomal/lysosomal localization of VPS13C. Overall, our data indicate that rare missense mutations in VPS13C are associated with LBD and recessive compound heterozygous missense mutations might have variable effects on the expression and functioning of VPS13C. We conclude that comparable to the recessive inherited PTC mutations in VPS13C, combinations of rare recessive compound heterozygous missense mutations reduce VPS13C expression and contribute to increased risk of LBD.
Assuntos
Heterozigoto , Homozigoto , Doença por Corpos de Lewy/genética , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Proteínas/genética , Proteínas/metabolismo , Idoso , Autopsia , Encéfalo/patologia , Feminino , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Fenótipo , Sequenciamento Completo do GenomaRESUMO
Homozygous and compound heterozygous mutations in the vacuolar protein sorting 13C (VPS13C) gene can cause autosomal recessive parkinsonism via mitochondrial pathway. The present study aimed to screen the mutations of VPS13C in a cohort of Chinese patients with early-onset Parkinson's disease (EOPD) and further explore its pathogenicity via burden analysis. A total of 669 patients with EOPD were sequenced with whole-exome sequencing and analyzed homozygous or compound heterozygous mutations in VPS13C. Moreover, rare variants with minor allele frequency <0.1% were included in the burden analysis. In total, 7 (1.05%) patients with EOPD carried compound heterozygous mutations in VPS13C, including 3 patients with novel compound heterozygous missense mutations and 4 patients with at least 1 nonsense or splicing-site mutations. Furthermore, burden analysis indicated that patients with EOPD had an enrichment of rare variants in VPS13C. In conclusion, our findings of compound missense mutations expanded the mutation spectrum of VPS13C in EOPD. Burden analysis further elucidated the importance of VPS13C in the pathogenesis of PD.
Assuntos
Testes Genéticos/métodos , Mutação , Transtornos Parkinsonianos/genética , Proteínas/genética , Idade de Início , Povo Asiático/genética , China/epidemiologia , Estudos de Coortes , Feminino , Frequência do Gene , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Transtornos Parkinsonianos/epidemiologiaRESUMO
OBJECTIVE: Impaired lysosomal degradation of α-synuclein and other cellular constituents may play an important role in Parkinson's disease (PD). Rare genetic variants in the glucocerebrosidase (GBA) gene were consistently associated with PD. Here we examine the association between rare variants in lysosomal candidate genes and PD. METHODS: We investigated the association between PD and rare genetic variants in 23 lysosomal candidate genes in 4096 patients with PD and an equal number of controls using pooled targeted next-generation DNA sequencing. Genewise association of rare variants in cases or controls was analyzed using the optimized sequence kernel association test with Bonferroni correction for the 23 tested genes. RESULTS: We confirm the association of rare variants in GBA with PD and report novel associations for rare variants in ATP13A2, LAMP1, TMEM175, and VPS13C. CONCLUSION: Rare variants in selected lysosomal genes, first and foremost GBA, are associated with PD. Rare variants in ATP13A2 and VPC13C previously linked to monogenic PD and more common variants in TMEM175 and VPS13C previously linked to sporadic PD in genome-wide association studies are associated with PD. © 2020 International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Estudo de Associação Genômica Ampla , Glucosilceramidase/genética , Humanos , Lisossomos , Mutação , Doença de Parkinson/genéticaRESUMO
A recent large-scale European-originated genome-wide association data meta-analysis followed by a replication study identified 6 new risk loci for Parkinson's disease (PD), which include rs10797576/SIPA1L2, rs117896735/INPP5F, rs329648/MIR4697, rs11158026/GCH1, rs2414739/VPS13C, and rs8118008/DDRGK1. However, whether these new loci are associated with PD in Asian populations remain elusive. The INPP5F is nonpolymorphic in Asians. The present study aimed to understand the effects of the other 5 new loci in a Han Chinese population comprising 579 sporadic PD patients and 642 controls. Significant associations with PD were observed in the variants of SIPA1L2 (p = 0.001) and VPS13C (p = 0.007), where the T (odd ratio [OR] = 1.484, 95% confidence interval [CI] 1.186-1.858) and A (OR = 1.362, 95% CI 1.087-1.707) alleles serve as the risk alleles, respectively. The genotype distributions in the SIPA1L2 and VPS13C variants were also different between the patients and controls (p = 0.002 and p = 0.023, respectively). In contrast, no significant association with PD was found in the variants of MIR4697, GCH1, and DDRGK1 either in allele or genotype frequencies. Noteworthy, a followed meta-analysis of East Asian studies suggested an association of the GCH1 variant with PD (p = 0.04, OR 1.08, 95% CI 1.00-1.16), while the other results are in line with those of our cohort. In conclusion, our study together with meta-analyses demonstrates that the variants of SIPA1L2 and VPS13C, potentially GCH1, but not of MIR4697 and DDRGK1, are associated with PD susceptibility in East Asians.
Assuntos
Proteínas de Transporte/genética , GTP Cicloidrolase/genética , Proteínas Ativadoras de GTPase/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Proteínas Nucleares/genética , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Povo Asiático/genética , Ásia Oriental , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Parkinson's disease (PD) is a genetically heterogeneous disorder and new putative disease genes are discovered constantly. Therefore, whole-exome sequencing could be an efficient approach to genetic testing in PD. To evaluate its performance in early-onset sporadic PD, we performed diagnostic exome sequencing in 80 individuals with manifestation of PD symptoms at age 40 or earlier and a negative family history of PD. Variants in validated and candidate disease genes and risk factors for PD and atypical Parkinson syndromes were annotated, followed by further analysis for selected variants. We detected pathogenic variants in Mendelian genes in 6.25% of cases and high-impact risk factor variants in GBA in 5% of cases, resulting in overall maximum diagnostic yield of 11.25%. One individual was compound heterozygous for variants affecting canonical splice sites in VPS13C, confirming the causal role of protein-truncating variants in this gene linked to autosomal-recessive early-onset PD. Despite the low diagnostic yield of exome sequencing in sporadic early-onset PD, the confirmation of the recently discovered VPS13C gene highlights its advantage over using predefined gene panels.
Assuntos
Sequenciamento do Exoma , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Proteínas/genética , Adulto , Idade de Início , Alelos , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fatores de Risco , Análise de Sequência de DNA , Sequenciamento do Exoma/métodos , Adulto JovemRESUMO
A large meta-analysis recently identified six new loci associated with risk of PD, but subsequent studies have given discrepant results. Here we conducted a case-control study in a Han Chinese population in an attempt to clarify risk associations in Chinese. Among the four single-nucleotide polymorphisms (SNPs) that we examined - VPS13C-rs2414739, MIR4697-rs329648, GCH1-rs11158026, and SIPA1L2- rs10797576 we detected a significant association between rs329648 and risk of developing PD in a recessive model. This association remained significant after adjusting for gender and age (OR 1.87, 95%CI 1.295-2.694, p=8.21×10-4) or Bonferroni correction. The T allele of rs329648 occurred significantly more frequently among patients with PD than among healthy controls (OR 1.22, 95%CI 1.033-1.443, p=0.02), while there was no statistic significant after Bonferroni correction. Subgroup analysis showed a significant association specifically among males in a recessive model (OR 1.943, 95%CI 1.200-3.147, p=0.007). In contrast, genotye and allele frequencies at rs329648 did not differ significantly between female patients with PD and healthy female controls, or between patients with early-onset or late-onset PD. Our results suggest that rs329648 is associated with risk of developing PD in the Han Chinese population. Our findings should be verified in further studies, and they highlight the need for functional studies of MIR4697.
Assuntos
Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , MicroRNAs/genética , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , China/etnologia , Feminino , Estudos de Associação Genética , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Prevalência , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e EspecificidadeRESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Prevalence of PD increases steadily with age. A recent meta-analysis of genome-wide association studies has identified six new loci to be linked with PD. Here we investigated the association of four of these new loci, SIPA1L2, MIR4697, GCH1 and VPS13C with PD in an Iranian population. Through a case-control study a total of 1800 subjects comprising 600 PD patients and 1200 unrelated healthy controls were recruited. Rs10797576, rs329648, rs11158026 and rs2414739 related to SIPA1L2, MIR4697, GCH1 and VPS13C loci respectively, were genotyped in all subjects. The difference of genotype and allele frequencies between case and control groups were investigated using chi-square test and logistic regression models with R software. Genotype and allele frequencies were significantly different in PD patients and control group for rs329648, rs11158026 and rs2414739 (p-value=0.018, 0.025, and 0.009 respectively for allele frequency differences). There was no difference in genotype nor allele frequencies between the two groups for rs10797576. We replicated the association of three new loci which are proposed for PD. More studies in other populations and also functional analysis are required to clear the role of these variants in PD.
Assuntos
GTP Cicloidrolase/genética , Proteínas Ativadoras de GTPase/genética , Predisposição Genética para Doença/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-IdadeRESUMO
Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n = 40, P < 0.041) but not from male subjects. Explored using promoter-reporter assays in ß-cells and other cell lines, the risk variant at rs7163757 lowered enhancer activity. Mice deleted for Vps13c selectively in the ß-cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whereas Vps13c(fl/fl):Ins1Cre (ßVps13cKO) mice displayed normal weight gain compared with control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in ß-cell mass in KO mice vs. controls, and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and ßVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and ß-cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca(2+) were significantly increased in islets from female KO mice, suggesting impaired Ca(2+) sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Intolerância à Glucose/genética , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Animais , Western Blotting , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Feminino , Células Secretoras de Glucagon/patologia , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout , Pâncreas/patologia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Proteínas de Transporte VesicularRESUMO
Recently, a large-scale meta-analysis of genome-wide association study (GWAS) data identified several new risk loci that can modulate the risk of Parkinson's disease (PD). These associations have yet to be examined in PD patients in Chinese or Asian population. Because ethnic-specific effect is an important concern for GWAS analysis, we genotyped single-nucleotide polymorphisms in the new genetic loci, GCH1 (rs11158026), SIPA1L2 (rs10797576), VPS13C (rs2414739), and MIR4697 (rs329648), to investigate their associations with risk of PD in Taiwan. Another single-nucleotide polymorphism GCH1 rs7155501, previously identified by GWAS listed at the top 20 genes in PDGene database was also included. A total of 1151 study subjects comprising 598 patients with PD and 553 unrelated healthy controls were recruited. The frequency of minor allele (C allele) of GCH1 rs11158026 was found to be significantly higher in PD cases than in controls (p = 0.003). The CC genotype of rs11158026 increased PD risk compared to TT genotype (odds ratio [OR] = 1.29, 95% confidence interval [CI] = 1.09, 1.53, p = 0.004). Under additive model, the GCH1 rs11158026 increased the risk of developing PD (OR = 1.30, 95% CI = 1.10, 1.54, p = 0.002). In recessive model, the genotype TT of MIR4697 rs329648 marginally decreased the PD risk (OR = 0.62, 95% CI = 0.43, 0.90, p = 0.01). The PD patients demonstrated similar genotypic and allelic frequencies in GCH1 rs7155501, SIPA1L2 rs10797576, and VPS13C rs2414739 with the controls. These findings suggest that the GCH1 and MIR4697 but not SIPA1L2 and VPS13C are genetic loci influencing risk of PD in Taiwan.
Assuntos
GTP Cicloidrolase/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Ubiquitina-Proteína Ligases/genética , Estudos de Casos e Controles , Feminino , Proteínas Ativadoras de GTPase/genética , Frequência do Gene , Genótipo , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas/genética , Risco , TaiwanRESUMO
Large-scale meta-analysis of genome-wide association data has identified six new risk loci (SIPA1L2, INPP5F, MIR4697, GCH1, VPS13C, and DDRGK1) for Parkinson's disease (PD). However, the characteristics of those loci in a Han Chinese population from mainland China are unknown. We examined genetic associations of VPS13C rs2414739, MIR4697 rs329648, GCH1 rs11158026, and SIPA1L2 rs10797576 with PD susceptibility in a Han Chinese population of 1028 sporadic PD patients and 1109 healthy controls. All subjects were genotyped for these loci using the Sequenom iPLEX Assay. We also conducted further stratified analysis according to age at onset and compared the clinical characteristics between minor allele carriers and non-carriers for each locus. However, we did not observe any significant difference in genotype distribution between PD patients and controls for the four loci, even after being stratified by age at onset. Besides, minor allele carriers cannot be distinguished from non-carriers based on their clinical features. Our findings first demonstrated that VPS13C rs2414739, MIR4697 rs329648, GCH1 rs11158026, and SIPA1L2 rs10797576 do not confer a significant risk for PD in Chinese population. Additional replication studies in other populations and functional studies are warranted to better validate the role of the four new loci in PD risk.