Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Pathogens ; 13(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668256

RESUMO

Cutaneous leishmaniasis (CL), caused by Leishmania braziliensis, in recent decades has shown decreasing cure rates after treatment with meglumine antimoniate (MA). Granulocyte colony-stimulating factor (G-CSF) is a cytokine associated with epithelialization and healing processes. METHODS: This study compares the effectiveness of G-CSF associated with MA in the treatment of CL. A total of 32 patients aged between 18 and 50 years with CL confirmed for L. braziliensis were included in this study. G-CSF or placebo (0.9% saline) was applied by intralesional infiltration at four equidistant points on the edges of the largest ulcer on days 0 and 15 of treatment associated with intravenous MA. RESULTS: Males predominated in the G-CSF group (59%), while females predominated in the control group (53%). Injuries to the lower limbs predominated in both study groups. The cure rate in the G-CSF group was 65% and in the control group it was 47%, 90 days after initiation of therapy. CONCLUSIONS: Our data indicate that the association of G-CSF with MA is not superior to MA monotherapy. Although not significant, the potential benefit of this combination deserves further investigation. The use of higher doses or other routes of application of G-CSF in a greater number of patients should contribute to a definitive response.

2.
Carbohydr Res ; 536: 109015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198982

RESUMO

The protozoan parasite Leishmania (Viannia) braziliensis is among Latin America's most widespread Leishmania species and is responsible for tegumentary leishmaniasis (TL). This disease has multiple clinical presentations, with cutaneous leishmaniasis (CL) being the most frequent. It manifests as one or a few localized skin ulcers, which can spread to other body areas. Hence, early diagnosis and treatment, typically with pentavalent antimonials, is critical. Traditional diagnostic methods, like parasite culture, microscopy, or the polymerase chain reaction (PCR) for detection of the parasite DNA, have limitations due to the uneven distribution of parasites in biopsy samples. Nonetheless, studies have revealed high levels of parasite-specific anti-α-Gal antibodies in L. (V.) braziliensis-infected patients. Previously, we demonstrated that the neoglycoprotein NGP28b, consisting of the L. (Leishmania) major type-2 glycoinositolphospholipid (GIPL)-3-derived trisaccharide Galpα1,6Galpα1,3Galfß conjugated to bovine serum albumin (BSA) via a linker, acts as a reliable serological biomarker (BMK) for L. (V.) braziliensis infection in Brazil. This indicates the presence of GIPL-3 or a similar structure in this parasite, and its terminal trisaccharide either functions as or is part of an immunodominant glycotope. Here, we explored whether extending the trisaccharide with a mannose unit would enhance its efficacy as a biomarker for the serological detection of L. (V.) braziliensis. We synthesized the tetrasaccharide Galpα1,6Galpα1,3Galfß1,3Manpα(CH2)3SH (G31SH) and conjugated it to maleimide-functionalized BSA to afford NGP31b. When we assessed the efficacy of NGP28b and NGP31b by chemiluminescent enzyme-linked immunosorbent assay on a cohort of CL patients with L. (V.) braziliensis infection from Bolivia and Argentina against a healthy control group, both NGPs exhibited similar or identical sensitivity, specificity, and accuracy. This finding implies that the mannose moiety at the reducing end is not part of the glycotope recognized by the parasite-specific anti-α-Gal antibodies in patients' sera, nor does it exert a relevant influence on the terminal trisaccharide's conformation. Moreover, the mannose does not seem to inhibit glycan-antibody interactions. Therefore, NGP31b is a viable and dependable BMK for the serodiagnosis of CL caused by L. (V.) braziliensis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Humanos , Leishmania braziliensis/genética , Manose , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Glicoproteínas , Trissacarídeos
3.
Parasitology ; 151(2): 151-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031433

RESUMO

American tegumentary leishmaniasis comprises a discrete set of clinical presentations endemic to Latin America. Leishmania RNA virus-1 (LRV-1) is a double-stranded RNA virus identified in 20­25% of the Leishmania Viannia braziliensis and L. V. guyanensis, however not in L. V. panamensis. This is the first report of LRV-1 in L. V. panamensis and its associations with clinical phenotypes of ATL. Unique surplus discard clinical isolates of L. V. panamensis were identified from the Public Health Ontario Laboratory (PHOL) and the Leishmania Clinic of the Instituto de Medicina Tropical 'Alexander von Humboldt' between 2012 and 2019 and screened for LRV-1 by real-time polymerase chain reaction. Patient isolates were stratified according to clinical phenotype. Of 30 patients with L. V. panamensis, 14 (47%) and 16 (53%) patients had severe and non-severe ATL, respectively. Five (36%) of 14 severe cases and 2 (12%) of 16 non-severe cases were positive for LRV-1, respectively. No differences in sex were observed for clinical phenotype and LRV-1 status. Although an association between LRV-1 status and clinical phenotype was not demonstrated, this is the first description of the novel detection of LRV-1 in L. V. panamensis, a species that has been documented predominantly in Central America.


Assuntos
Leishmania braziliensis , Leishmania guyanensis , Leishmania , Leishmaniose Cutânea , Leishmaniavirus , Humanos , Leishmania guyanensis/genética , Leishmaniavirus/genética , Leishmania/genética , Leishmania braziliensis/genética
4.
Pathogens ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133280

RESUMO

BACKGROUND: Human and wild rodent infection rates with Leishmania (Viannia) braziliensis are needed to differentiate transmission pathways in anthropogenically altered habitats. METHODS: Human participants in northeast Brazil were tested by the leishmanin skin test (LST) and inspected for lesions/scars characteristic of American clinical leishmaniasis (ACL). Molecular (PCR/qPCR) test records of free-ranging rodents were available from a concurrent capture-mark-recapture study. Force of Infection (λ) and recovery (ρ) rates were estimated from cross-sectional and longitudinal datasets. RESULTS: Cumulative prevalences of human LST+ves and ACL scar+ves were 0.343-0.563 (n = 503 participants) and 0.122-0.475 (n = 503), respectively. Active ACL lesions were not detected. Annual rates of LST conversions were λ = 0.03-0.15 and ρ = 0.02-0.07. The probability of infection was independent of sex and associated with increasing age in addition to the period of exposure. Rodents (n = 596 individuals of 6 species) showed high rates of exclusively asymptomatic infection (λ = 0.222/month) and potential infectiousness to the sand fly vector. Spatially concurrent rodent and household human infection prevalences were correlated. CONCLUSIONS: Human exposure to L. (V.) braziliensis continues to be high despite the substantial drop in reported ACL cases in recent years. Spill-over transmission risk to humans from rodents in peridomestic habitats is likely supported by a rodent infection/transmission corridor linking houses, plantations, and the Atlantic Forest.

5.
Microorganisms ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764139

RESUMO

A relevant aspect in the epidemiology of Tegumentary Leishmaniasis (TL) are the Leishmania parasites carrying a viral endosymbiont, Leishmania RNA Virus 1 (LRV1), a dsRNA virus. Leishmania parasites carrying LRV1 are prone to causing more severe TL symptoms, increasing the likelihood of unfavorable clinical outcomes. LRV1 has been observed in the cultured strains of five L. (Viannia) species, and host specificity was suggested when studying the LRV1 from L. braziliensis and L. guyanensis strains. The coevolution hypothesis of LRV1 and Leishmania was based on phylogenetic analyses, implying an association between LRV1 genotypes, Leishmania species, and their geographic origins. This study aimed to investigate LRV1 specificity relative to Leishmania (Viannia) species hosts by analyzing LRV1 from L. (Viannia) species. To this end, LRV1 was screened in L. (Viannia) species other than L. braziliensis or L. guyanensis, and it was detected in 11 out of 15 L. naiffi and two out of four L. shawi. Phylogenetic analyses based on partial LRV1 genomic sequencing supported the hypothesis of host specificity, as LRV1 clustered according to their respective Leishmania species' hosts. These findings underscore the importance of investigating Leishmania and LRV1 coevolution and its impact on Leishmania (Viannia) species dispersion and pathogenesis in the American Continent.

6.
Pathogens ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37623941

RESUMO

Dogs play an important role in transmission of Leishmania infantum, but epidemiologic and clinical studies of canine tegumentary leishmaniasis (CTL) are scarce. In an endemic area of human American tegumentary leishmaniasis (ATL) caused by Leishmania braziliensis, we determine the prevalence and incidence of both CTL and subclinical (SC) L. braziliensis infection in dogs and evaluated if the presence of dogs with CTL or SC L. braziliensis infection is associated with the occurrence of human ATL. SC infection in healthy animals and CTL in animals with ulcers were determined by PCR on biopsied healthy skin or on ulcers or by detecting antibodies against soluble leishmania antigen. We compared the occurrence of human ATL in homes with dogs with CTL or SC infection with control homes without dogs or with dogs without CTL or SC infection. The prevalence of SC infection was 35% and of CTL 31%. The incidence of SC infection in dogs was 4.6% and of CTL 9.3%. The frequency of ATL in humans was 50% in homes with infected dogs and 13% in homes without L. braziliensis infection in dogs. CTL and SC infection is highly prevalent, and dogs may participate in the transmission chain of L. braziliensis.

7.
Vaccines (Basel) ; 11(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514945

RESUMO

Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. A well-modulated immune response that is established after the long-lasting clinical cure of leishmaniasis can represent a standard requirement for a vaccine. Previous studies demonstrated that Leishmania (Viannia) naiffi causes benign disease and its antigens induce well-modulated immune responses in vitro. In this work we aimed to identify the immunodominant proteins present in the soluble extract of L. naiffi (sLnAg) as candidates for composing a pan-specific anti-leishmaniasis vaccine. After immunoblotting using cured patients of cutaneous leishmaniasis sera and proteomics approaches, we identified a group of antigenic proteins from the sLnAg. In silico analyses allowed us to select mildly similar proteins to the host; in addition, we evaluated the binding potential and degree of promiscuity of the protein epitopes to HLA molecules and to B-cell receptors. We selected 24 immunodominant proteins from a sub-proteome with 328 proteins. Homology analysis allowed the identification of 13 proteins with the most orthologues among seven Leishmania species. This work demonstrated the potential of these proteins as promising vaccine targets capable of inducing humoral and cellular pan-specific immune responses in humans, which may in the future contribute to the control of leishmaniasis.

8.
Parasit Vectors ; 16(1): 194, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291682

RESUMO

Just over 30 years ago, a new species of Leishmania of the subgenus Leishmania (Viannia) was described infecting the armadillo Dasypus novemcinctus; then, a report of human infection followed. From the Brazilian Amazon and apparently restricted to this region and its close borders, Leishmania (Viannia) naiffi has been characterized as a species that grows easily in axenic culture medium and causes few to no lesions after inoculation in experimental animal models. Results in the last decade indicate the occurrence of L. naiffi in vectors and human infections, including a report of therapeutic failure possibly associated with Leishmania RNA virus 1. Overall, such accounts suggest that the parasite is more dispersed and the disease less self-healing than previously expected.


Assuntos
Leishmania , Animais , Humanos , Leishmania/genética , Tatus/parasitologia , Brasil
9.
Emerg Infect Dis ; 29(6): 1250-1253, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209675

RESUMO

We detected Leishmania RNA virus 1 (LRV1) in 11 isolates of Leishmania (Viannia) panamensis collected during 2014-2019 from patients from different geographic areas in Panama. The distribution suggested a spread of LRV1 in L. (V.) panamensis parasites. We found no association between LRV1 and an increase in clinical pathology.


Assuntos
Leishmania guyanensis , Leishmaniose Cutânea , Leishmaniose Mucocutânea , Leishmaniavirus , Humanos , Leishmania guyanensis/genética , Leishmaniose Mucocutânea/epidemiologia , Leishmaniavirus/genética , Panamá/epidemiologia
10.
Front Cell Infect Microbiol ; 13: 1025359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743305

RESUMO

Current therapeutic ways adopted for the treatment of leishmaniasis are toxic and expensive including parasite resistance is a growing problem. Given this scenario, it is urgent to explore treatment alternatives for leishmaniasis. The aim of this study was to evaluate the effect of 3-phenyl-lawsone (3-PL) naphthoquinone on Leishmania (Viannia) braziliensis infection, both in vitro and in vivo, using two local routes of administration: subcutaneous (higher dose) and tattoo (lower dose). In vitro 3-PL showed low toxicity for macrophages (CC50 >3200 µM/48h) and activity against intracellular amastigotes (IC50 = 193 ± 19 µM/48h) and promastigotes (IC50 = 116 ± 26 µM/72h), in which induced increased ROS generation. Additionally, 3-PL up-regulated the production of cytokines such as tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6) and IL-10 in infected macrophages. However, the anti-amastigote action was independent of nitric oxide production. Treatment of hamsters infected with L. (V.) braziliensis from one week after infection with 3-PL by subcutaneous (25 µg/Kg) or tattooing (2.5 µg/Kg) route, during 3 weeks (3 times/week) or 2 weeks (2 times/week) significantly decreased the parasite load (p<0.001) in the lesion. The reduction of parasite load by 3-PL treatment was comparable to reference drug meglumine antimoniate administered by the same routes (subcutaneous 1mg/Kg and tattoo 0.1mg/Kg). In addition, treatment started from five weeks after infection with 3-PL per tattoo also decreased the parasite load. These results show the anti-leishmanial effect of 3-PL against L. (V.) braziliensis and its efficacy by subcutaneous (higher dose) and tattoo (lower dose) routes. In addition, this study shows that drug delivery by tattooing the lesion allows the use of lower doses than the conventional subcutaneous route, which may support the development of a new therapeutic strategy that can be adopted for leishmaniasis.


Assuntos
Antiprotozoários , Leishmania braziliensis , Leishmaniose Cutânea , Naftoquinonas , Tatuagem , Cricetinae , Animais , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Carga Parasitária
11.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680003

RESUMO

Cutaneous Leishmaniasis (CL) is a Neglected Tropical Disease characterized by skin ulcers caused by Leishmania spp. protozoans and there is no safe and effective vaccine to reduce its negative consequences. In a previous work by our group, we identified T cell epitopes of Leishmania (Viannia) braziliensis which stimulated patients' T cells in vitro. In the present work, the peptides were tested as two pools for their ability to rescue memory T cells during natural infection by Leishmania. We analyzed the frequency of central memory (TCM, CD45RA-CD62L+) and effector memory (TEM, CD45RA + CD62L-) cells during active CL and post-treatment. In parallel, we investigated cell proliferation levels and the cytokines produced after stimulation. Interestingly, we observed higher frequencies (%) in CD4+ TEM during CL, and CD8+ TEM and CD8+ TCM during CL and post-treatment. Cell proliferation was increased, and a significant difference in expression was observed on T-bet and RORγT. Besides that, IFN-γ, IL-2, and IL-10 were detected in patient samples. Collectively, this dataset suggests that during CL there is an increase in the frequency of TCM and TEM, especially in the CD8 compartment. These results indicate a potentially immunogenic profile of the peptide pools, which can support the development of anti-Leishmania formulations.

12.
Biochimie ; 208: 86-92, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36586564

RESUMO

Leishmania parasites have an oxidative and chemical defense mechanism called trypanothione system (T[SH]2), the most abundant thiol system in trypanosomatids. This system has a central role in processing pentavalent antimony and resistance has been related to a better capacity to metabolize it through the activation of T[SH]2 enzymatic cascade. A biochemical approach was applied to assess the effect of trivalent (SbIII) and pentavalent antimony (SbV) on Trypanothione Reductase (TR) activity of two Leishmania (Viannia) braziliensis clinical isolates, which were labeled as responder (R) and non-responder (NR) after patient treatment with Glucantime®. Both isolates were characterized based on in vitro susceptibility to SbIII and SbV and trypanothione reductase (TR) activity. SbIII and SbV discriminated susceptibility profiles in all parasite forms, since isolate NR had significantly higher EC50 values than isolate R. Differences were observed in TR activity between promastigotes, axenic amastigotes and intracellular amastigotes: R (0.439 ± 0.009, 0.103 ± 0.01 and 0.185 ± 0.01AU.min-1.µg of protein-1) and NR (1.083 ± 0.04, 0.914 ± 0.04 and 0.343 ± 0.04 AU. min-1.µg of protein-1), respectively. Incubation with SbIII and SbV using each form EC50 value caused a time-dependent differential effect on TR activity suggesting that oxidative defense is related to the antimony susceptibility phenotype. Data gathered here shows a biochemical approach able to discriminate two L. (V.) braziliensis clinical isolates measurements TR activity of promastigotes, axenic amastigotes and intracellular amastigotes.


Assuntos
Leishmania braziliensis , Leishmania , Antimônio/farmacologia , Antimoniato de Meglumina
13.
Biomolecules ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38254626

RESUMO

Leishmaniasis is a complex group of infectious and parasitic diseases that afflict many thousands of individuals across five continents. Leishmaniasis treatment remains a challenge because it relies on drugsknown for their high toxicity and limited efficacy, making itimperative to identify new molecules that offer greater effectiveness and safety. This study sought to explore the impact of seven synthetic guanidine derivatives (LQOF-G1, LQOF-G2, LQOF-G6, LQOF-G7, LQOF-G32, LQOF-G35 and LQOF-G36) onthe parasite Leishmania (Viannia) braziliensis and in vitro macrophage infection by this parasite, as well as cytotoxic approaches in vitro models of mammalian host cells and tissues. The synthesized compounds showed purity ≥ 99.65% and effectively inhibited parasite growth. LQOF-G1 proved the most potent, yielding the best half-maximal inhibitory concentration (IC50) values against promastigotes (4.62 µmol/L), axenic amastigotes (4.27 µmol/L), and intracellular amastigotes (3.65 µmol/L). Notably, the antileishmanial activity of LQOF-G1, LQOF-G2, and LQOF-G6 was related to immunomodulatory effects, evidenced by alterations in TNF-α, IL-12, IL-10, nitric oxide (NO), and reactive oxygen species (ROS) levels in the supernatant of culture macrophages infected with L. (V.) braziliensis and coincubated with these compounds. LQOF-G2 and LQOF-G36 compounds exhibited vasodilator and spasmolytic effects at higher concentrations (≥100 µmol/L). Generally, LQOF-G1, LQOF-G2, and LQOF-G32 compounds were found to be nontoxic to assessed organs and cells. No toxic effects were observed in human cell lines, such as HEK-293, CaCo-2 and A549, at concentrations ≥ 500 µmol/L. Collectively, data have shown unequivocal evidence of the effectiveness of these compounds against L. (V.) braziliensis parasite, one of the causative agents of Tegumentary Leishmaniasis and Mucocutaneous Leishmaniasis in America.


Assuntos
Leishmania braziliensis , Leishmaniose , Animais , Humanos , Guanidinas , Células CACO-2 , Células HEK293 , Guanidina , Imunidade Inata , Mamíferos
14.
Mem. Inst. Oswaldo Cruz ; 118: e220044, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430841

RESUMO

BACKGROUND Dendritic cells (DCs) specific intercellular adhesion molecule (ICAM)-3-grabbing non integrin receptor (DC-SIGN) binds to subgenera Leishmania promastigotes mediating its interaction with DC and neutrophils, potentially influencing the infection outcome. OBJECTIVES In this work, we investigated whether DC-SIGN receptor is expressed in cells from cutaneous leishmaniasis (CL) lesions as well as the in vitro binding pattern of Leishmania (Viannia) braziliensis (Lb) and L. (L.) amazonensis (La) promastigotes. METHODS DC-SIGN receptor was labeled by immunohistochemistry in cryopreserved CL tissue fragments. In vitro binding assay with CFSE-labeled Lb or La promastigotes and RAJI-transfecting cells expressing DC-SIGN (DC-SIGNPOS) or mock-transfected (DC-SIGNNEG) were monitored by flow cytometry at 2 h, 24 h and 48 h in co-culture. RESULTS In CL lesion infiltrate, DC-SIGNPOS cells were present in the dermis and near the epidermis. Both Lb and La bind to DC-SIGNPOS cells, while binding to DC-SIGNNEG was low. La showed precocious and higher affinity to DC-SIGNhi population than to DC-SIGNlow, while Lb binding was similar in these populations. CONCLUSION Our results demonstrate that DC-SIGN receptor is present in L. braziliensis CL lesions and interact with Lb promastigotes. Moreover, the differences in the binding pattern to Lb and La suggest DC-SIGN can influence in a difference way the intake of the parasites at the first hours after Leishmania infection. These results raise the hypothesis that DC-SIGN receptor could participate in the immunopathogenesis of American tegumentary leishmaniasis accounting for the differences in the outcome of the Leishmania spp. infection.

15.
Parasit Vectors ; 15(1): 406, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329517

RESUMO

BACKGROUND: Colombia is ranked very high among countries with the highest numbers of endemic Leishmania species (n = 9) causing human disease. Although much effort has been devoted to generating simple and specific tools for Leishmania species identification, challenges remain in the discrimination of species belonging to the Leishmania (Viannia) guyanensis complex: L. (V.) guyanensis and L. (V.) panamensis. METHODS: A set of seven reference strains of species belonging to the L. (Leishmania) and L. (Viannia) subgenera, clinical strains from human cases of cutaneous leishmaniasis (CL; n = 26) and samples collected from sylvatic mammals and sand flies (n = 7) from endemic areas in Colombia were analyzed in this study. The heat-shock protein 70 gene (hsp70) was amplified by PCR from DNA extracted from logarithmic-phase promastigotes or tissue samples, and the PCR products were sequenced. Sequence alignment was performed against a set of previously published and curated sequences, and phylogenetic analysis based on the maximum-likelihood and Bayesian inference approaches was conducted. Haplotype diversity among strains and species of the L. (V.) guyanensis complex was explored using a median-joining network. RESULTS: Sequencing of the hsp70 gene for L. (Viannia) spp. typing was comparable to species identification using isoenzyme electrophoresis or monoclonal antibodies. Complete species matching was found, except for one sylvatic sample with an identity yet unsolved. Among the L. (V.) panamensis clinical strains, two distinctive phylogenetic clusters were found to correlate with two different zymodemes: L. (V.) panamensis Z2.2 and Z2.3. Analysis of samples from sylvatic environments identified novel records of naturally infected wild mammal and sand fly species. CONCLUSIONS: Our results support the adequacy of hsp70 gene sequencing as a single-locus approach for discrimination of L. (Viannia) spp., as well as for exploring the genetic diversity within the L. (V.) guyanensis complex.


Assuntos
Leishmania guyanensis , Leishmania , Psychodidae , Animais , Humanos , Leishmania guyanensis/genética , Proteínas de Choque Térmico HSP70/genética , Filogenia , Colômbia/epidemiologia , Teorema de Bayes , Leishmania/genética , Mamíferos
16.
Virology ; 577: 149-154, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371873

RESUMO

The presence of Leishmania RNA virus 1 (LRV1) enables Leishmania protozoan parasites to cause more severe disease than the virus-free strains. The structure of LRV1 virus-like particles has been determined previously, however, the structure of the LRV1 virion has not been characterized. Here we used cryo-electron microscopy and single-particle reconstruction to determine the structures of the LRV1 virion and empty particle isolated from Leishmania guyanensis to resolutions of 4.0 Å and 3.6 Å, respectively. The capsid of LRV1 is built from sixty dimers of capsid proteins organized with icosahedral symmetry. RNA genomes of totiviruses are replicated inside the virions by RNA polymerases expressed as C-terminal extensions of a sub-population of capsid proteins. Most of the virions probably contain one or two copies of the RNA polymerase, however, the location of the polymerase domains in LRV1 capsid could not be identified, indicating that it varies among particles. Importance. Every year over 200 000 people contract leishmaniasis and more than five hundred people die of the disease. The mucocutaneous form of leishmaniasis produces lesions that can destroy the mucous membranes of the nose, mouth, and throat. Leishmania parasites carrying Leishmania RNA virus 1 (LRV1) are predisposed to cause aggravated symptoms in the mucocutaneous form of leishmaniasis. Here, we present the structure of the LRV1 virion determined using cryo-electron microscopy.

17.
Trop Med Infect Dis ; 7(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36288023

RESUMO

A total of 123 DNA samples from Panamanian patients with cutaneous leishmaniasis (CL) lesions were evaluated. These samples were previously confirmed with CL by a specific KDNA-Viannia PCR but had a negative parasitological diagnosis (Group A). Epidemiological variables, such as age, sex, geographic origin, evolution time, and the number and location of the lesions, were analyzed. No significant differences (p < 0.05) were found when these variables were evaluated against a control panel of 123 CL lesion samples from CL patients with positive parasitological diagnoses (Group B). Of the 123 samples (Group A), 67% (82/123) gave positive results when re-analyzed by PCR-hsp70. An analysis of 69 of these samples via PCR-hsp70-RFLP showed that 59.4% (41/69) of the found restriction patterns corresponded to Leishmania (Viannia) panamensis and 40.6% (28/69) to Leishmania (Viannia) guyanensis. Finally, the sequence and phylogenetic analysis of 32 of the samples confirmed the species in 21 (65.6%, 21/32) samples, originally characterized as L. (V.) panamensis. However, 11 samples (34.4%, 11/32), initially identified via RFLP-Hsp70 as L. (V.) guyanensis, matched the sequence of a genetic variant known as Leishmania sp.1. These results point out the species/genetic variants of Leishmania in the case of CL lesions with an apparently low parasite load.

18.
Parasitology ; 149(12): 1526-1535, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35822537

RESUMO

This study focuses on the role of the population structure of Leishmania spp. on the adaptive capacity of the parasite. Herein, we investigate the contribution of subpopulations of the L. (V.) braziliensis Thor strain (Thor03, Thor10 and Thor22) in the profile of murine macrophages infection. Infection assays were performed with binary combinations of these subpopulations at stationary phases. The initial interaction time showed major effects on the combination assays, as demonstrated by the significant increase in the infection rate at 5 h. Based on the endocytic index (EI), Thor10 (EI = 563.6) and Thor03 (EI = 497) showed a higher infection load compared to Thor22 (EI = 227.3). However, the EI decreased in Thor03 after 48 h (EI = 447) and 72 h (EI = 388.3) of infection, and showed changes in the infection level in all Thor10/Thor22 combinations. Assays with CellTrace CFSE-labelled Thor22 promastigotes indicated an increase (~1.5 fold) in infection by this subpopulation in the presence of Thor10 when compared to the infection profile of Thor03/Thor22 combinations in the same proportions. In addition, the potential of these subpopulations, alone or in binary combinations, to modulate the expression of cytokines and nitric oxide (NO) in vitro was investigated. Lower NO and tumour necrosis factor-α production levels were observed for all Thor10/Thor22 combinations at 24 h compared to these subpopulations alone. In contrast, Thor03/Thor22 combination assays increased IL-10 production at this time. Collectively, these results provide in vitro evidence on the potential of L. (V.) braziliensis population structure to play a relevant role in a host infection by this parasite.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Camundongos , Animais , Leishmania/metabolismo , Macrófagos/parasitologia , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Leishmaniose Cutânea/parasitologia
19.
Front Microbiol ; 13: 907631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770175

RESUMO

A mouse model of cutaneous leishmaniasis (CL) by Leishmania (Viannia) panamensis (L(V)p) that reproduces the characteristics of the human disease remains elusive. Here we report the development of a CL model that uses a mouse-adapted L(V)p isolate to reproducibly induce a dermal disease with a remarkable similarity to human CL. BALB/c mice infected intradermally in the ear with 105 stationary UA-946 L(V)p promastigotes develop a progressive cutaneous disease that exhibits the typical ulcerated lesions with indurated borders observed in CL patients. Although most of parasites in the inoculum die within the first week of infection, the survivors vigorously multiply at the infection site during the following weeks, paralleling disease appearance and aggravation. Regional lymphadenopathy as well as lymphatic dissemination of parasites to draining lymph nodes (dLN) was evidenced early after infection. Viable parasites were also isolated from spleen at later timepoints indicating systemic parasitic dissemination, but, strikingly, no signs of systemic disease were observed. Increasing numbers of myeloid cells and T lymphocytes producing IFNγ and IL-4 were observed in the dLN as disease progressed. A mixed adaptive L(V)p-specific T cell-mediated response was induced, since ex vivo recall experiments using dLN cells and splenocytes revealed the production of type 1 (IFNγ, IL-2), type 2 (IL-4, IL-13), regulatory (IL-10), and inflammatory (GM-CSF, IL-3) cytokines. Humoral adaptive response was characterized by early production of IgG1- followed by IgG2a-type of L(V)p-specific antibodies. IFNγ/IL-4 and IgG2a/IgG1 ratios indicated that the initial non-protective Th2 response was redirected toward a protective Th1 response. In situ studies revealed a profuse recruitment of myeloid cells and of IFNγ- and IL-4-producing T lymphocytes to the site of infection, and the typical histopathological changes induced by dermotropic Leishmania species. Evidence that this model is suitable to investigate pharmacological and immunomodulatory interventions, as well as for antigen discovery and vaccine development, is also presented. Altogether, these results support the validity and utility of this novel mouse model to study the pathogenesis, immunity, and therapeutics of L(V)p infections.

20.
Front Cell Infect Microbiol ; 12: 805106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531337

RESUMO

Proteases are virulence factors with a recognized impact on the Leishmania spp. life cycle. This study considers a set of analyses measuring phenotypic factors of L. (V.) braziliensis clinical isolates as promastigotes growth curves, murine peritoneal macrophages infection, inflammatory mediators production, and serine proteases gene expression (subtilisin 13: S13, subtilisin 28: S28, oligopeptidase B: OPB) assessing these isolates' fitness on in vitro conditions. Parasites had different behavior during the early growth phase from day zero to day three, and all isolates reached the stationary growth phase between days four and seven. Macrophages infection showed two tendencies, one of decreased infection rate and number of parasites per macrophage (Infection Index <1000) and another with a constant infection index (≥1400). TNF-α (≥10 pg/mL) detected in infections by 75% of isolates, IL-6 (≥80 pg/mL) by 30% of isolates and low levels of NO (≥0.01µM) in almost all infections. Gene expression showed higher values of S13 (≥2RQ) in the intracellular amastigotes of all the isolates evaluated. On the contrary, S28 expression was low (≤1RQ) in all isolates. OPB expression was different between promastigotes and intracellular amastigotes, being significantly higher (≥2RQ) in the latter form of 58% of the isolates. Predictive structural assays of S13 and OPB were performed to explore temperature influence on gene expression and the encoded proteases. Gene expression data is discussed based on in silico predictions of regulatory regions that show plasticity in the linearity index of secondary structures of S13 and OPB 3'-untranslated regions of mRNA, dependent on temperature changes. While hairpin structures suggest an active region of mRNA for both genes above 26°C, pseudoknot structure found in S13 is an indication of a particular profile of this gene at mammalian host temperatures (37°C). Furthermore, the predicted 3D structures are in accordance with the influence of these temperatures on the catalytic site stability of both enzymes, favoring their action over peptide substrates. Data gathered here suggest that L. (V.) braziliensis serine proteases can be influenced by the temperature conditions affecting parasite fitness throughout its life cycle.


Assuntos
Leishmania braziliensis , Serina Endopeptidases , Subtilisina , Temperatura , Animais , Leishmania braziliensis/enzimologia , Estágios do Ciclo de Vida , Camundongos , RNA Mensageiro , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...