RESUMO
Several recent studies conclude that an increase in the pathogenicity of SARS-CoV-2 cannot be ruled out. However, it should be noted that SARS-CoV-2 is a 'direct' respiratory virus - meaning it is usually spread by the respiratory route but does not routinely pass through the lymphatics like measles and smallpox. Providing its tropism does not change, it will be unique if its pathogenicity does not decrease until it becomes similar to common cold viruses. Ewald noted in the 1980s that respiratory viruses may evolve mildness because their spread benefits from the mobility of their hosts. This review examines factors that usually lower respiratory viruses' severity, including heat sensitivity (which limits replication in the warmer lungs) and changes to the virus's surface proteins. Other factors may, however, increase pathogenicity, such as replication in the lymphatic system and spreading via solid surfaces or faecal matter. Furthermore, human activities and political events could increase the harmfulness of SARS-CoV-2, including the following: large-scale testing, especially when the results are delayed; transmission in settings where people are close together and not free to move around; poor hygiene facilities; and social, political, or cultural influences that encourage sick individuals to remain active, including crises such as wars. If we can avoid these eventualities, SARS-CoV-2 is likely to evolve to be milder, although the timescale is uncertain. Observations of influenza-like pandemics suggest it may take around two decades for COVID-19 to become as mild as seasonal colds.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , SARS-CoV-2/patogenicidadeRESUMO
This case report highlights the prolonged SARS-CoV-2 reverse transcriptase polymerase chain reaction positivity in a 32-year-old immunocompromised male with a history of kidney transplants and chronic kidney disease. The whole genome sequencing of nasopharyngeal samples for SARS-CoV-2 collected 12 days apart showed the presence of the BA.1.1 Omicron variant. It revealed evidence of intra-host viral evolution, showing the development and loss of specific mutations over time. This report emphasizes the need for continuous monitoring strategies for immunocompromised patients, as they may serve as reservoirs for viral evolution and potentially give rise to immune escape variants.
RESUMO
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
RESUMO
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
RESUMO
OBJECTIVES: Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study aimed to monitor the SARS-CoV-2 variant community dynamics and evolution using receptor-binding domain (RBD) amplicon sequencing of wastewater samples. METHODS: We sequenced wastewater from El Paso, Texas, over 17 months, compared the sequencing data with clinical genome data, and performed biodiversity analysis to reveal SARS-CoV-2 variant dynamics and evolution. RESULTS: We identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Comparison with clinical genome sequencing data revealed earlier detection of variants and identification of unreported outbreaks. Our results also showed strong consistency with clinical data for dominant variants at the local, state, and national levels. Alpha diversity analyses revealed significant seasonal variations, with the highest diversity observed in winter. By segmenting the outbreak into lag, growth, stationary, and decline phases, we found higher variant diversity during the lag phase, likely due to lower inter-variant competition preceding outbreak growth. CONCLUSIONS: Our findings underscore the importance of low transmission periods in facilitating rapid mutation and variant evolution. Our approach, integrating RBD amplicon sequencing with wastewater surveillance, demonstrates effectiveness in tracking viral evolution and understanding variant emergence, thus enhancing public health preparedness.
Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Texas/epidemiologia , Genoma Viral , Evolução Molecular , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A 'nonstructural' (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic "backbone" of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century. The 2009 influenza A/H1N1 pandemic represents a clear departure from this enduring genetic backbone. Utilizing nucleotide distance maps and phylogenetic analyses, we illustrate remaining uncertainties regarding the origin of the 2009 pandemic, highlighting the complexity of influenza evolution. The NS segment is interesting precisely because it experiences less pervasive positive selection, and departs less strongly from neutral evolution than e.g. the HA antigen. Consequently, sudden deviations from neutral diversification can indicate changes in other genes via the hitchhiking effect. Our approach employs two measures based on nucleotide mismatch counts to analyze the evolutionary dynamics of the NS gene segment. The rooted Hamming map of distances between a reference sequence and all other sequences over time, and the unrooted temporal Hamming distribution which captures the distribution of genotypic distances between simultaneously circulating viruses, thereby revealing patterns of nucleotide diversity and epi-evolutionary dynamics.
Assuntos
Evolução Molecular , Influenza Humana , Filogenia , Humanos , Influenza Humana/virologia , Influenza Humana/história , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genéticaRESUMO
Background: The Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) has been undergoing evolutionary changes to improve its ability to thrive within human hosts, leading to the emergence of specific variants associated with subsequent waves of the coronavirus diseases 2019 (COVID-19) pandemic. Indonesia has grappled with the effects of this pandemic and subsequent waves affecting various regions, including West Sumatra. Although located outside Java island epicenter, West Sumatra experienced significant COVID-19 transmission, especially during the third wave in early 2022. Objective: This study aimed to investigate the genetic evolution and epidemiological dynamics of SARS-CoV-2 variants in West Sumatra throughout the three pandemic waves. Methods: We conducted a genotyping study retrospectively using 278 COVID-19 patient samples from 2020 to 2022. The Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) was used for screening, and whole-genome sequence analysis was conducted through the Illumina MiSeq instrument. Result: The analysis revealed distinct patterns in the prevalence of viral lineages across the waves. The initial wave was predominated by clade 20A (77,4 %) especially lineage B.1.466.2 (50 %). The second wave was marked by a significant emergence of the Delta variant (72,5 %), particularly lineage AY.23 (81,1 %), originating from India, with subsequent local evolution leading to the formation of distinct clusters. We found that about 96,7 % of the third wave variant was dominated by Omicron variants, especially the generation of lineages BA.1 and BA.2, demonstrating widespread global dissemination and local variant development. Phylogenetic analysis indicated a close relatedness of West Sumatra variants to those from Malaysia and other parts of Indonesia, highlighting regional transmission dynamics and potential sources of variant introductions. Conclusion: This study has identified unique variant clusters within each wave, suggesting distinct evolutionary pathways and local adaptations. These findings provide valuable insights into the genomic landscape of SARS-CoV-2 in West Sumatra and emphasize the crucial role of ongoing genomic surveillance in tracking viral changes and guiding public health measures.
RESUMO
Severe fever with thrombocytopenia syndrome virus (SFTSV) poses a significant public health challenge in East Asia, necessitating a deeper understanding of its evolutionary dynamics to effectively manage its spread and pathogenicity. This study provides a comprehensive analysis of the genetic diversity, recombination patterns, and selection pressures across the SFTSV genome, utilizing an extensive dataset of 2041 sequences from various hosts and regions up to November 2023. Employing maximum likelihood and Bayesian evolutionary analysis by sampling trees (BEAST), we elucidated the phylogenetic relationships among nine distinct SFTSV genotypes (A, B1, B2, B3, B4, C, D, E, and F), revealing intricate patterns of viral evolution and genotype distribution across China, South Korea, and Japan. Furthermore, our analysis identified 34 potential reassortments, underscoring a dynamic genetic interplay among SFTSV strains. Genetic recombination was observed most frequently in the large segment and least in the small segment, with notable recombination hotspots characterized by stem-loop hairpin structures, indicative of a structural propensity for genetic recombination. Additionally, selection pressure analysis on critical viral genes indicated a predominant trend of negative selection, with specific sites within the RNA-dependent RNA polymerase and glycoprotein genes showing positive selection. These sites suggest evolutionary adaptations to host immune responses and environmental pressures. This study sheds light on the intricate evolutionary mechanisms shaping SFTSV, offering insights into its adaptive strategies and potential implications for vaccine development and therapeutic interventions.
RESUMO
The detection of evolutionary transitions in influenza A (H3N2) viruses' antigenicity is a major obstacle to effective vaccine design and development. In this study, we describe Novel Influenza Virus A Detector (NIAViD), an unsupervised machine learning tool, adept at identifying these transitions, using the HA1 sequence and associated physico-chemical properties. NIAViD performed with 88.9% (95% CI, 56.5-98.0%) and 72.7% (95% CI, 43.4-90.3%) sensitivity in training and validation, respectively, outperforming the uncalibrated null model-33.3% (95% CI, 12.1-64.6%) and does not require potentially biased, time-consuming and costly laboratory assays. The pivotal role of the Boman's index, indicative of the virus's cell surface binding potential, is underscored, enhancing the precision of detecting antigenic transitions. NIAViD's efficacy is not only in identifying influenza isolates that belong to novel antigenic clusters, but also in pinpointing potential sites driving significant antigenic changes, without the reliance on explicit modelling of haemagglutinin inhibition titres. We believe this approach holds promise to augment existing surveillance networks, offering timely insights for the development of updated, effective influenza vaccines. Consequently, NIAViD, in conjunction with other resources, could be used to support surveillance efforts and inform the development of updated influenza vaccines.
Assuntos
Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/virologia , Humanos , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologiaRESUMO
BACKGROUND: SARS-CoV-2 remains rapidly evolving, and many biologically important genomic substitutions/indels have characterised novel SARS-CoV-2 lineages, which have emerged during successive global waves of the pandemic. Worldwide genomic sequencing has been able to monitor these waves, track transmission clusters, and examine viral evolution in real time to help inform healthcare policy. One school of thought is that an apparent greater than average divergence in an emerging lineage from contemporary variants may require persistent infection, for example in an immunocompromised host. Due to the nature of the COVID-19 pandemic and sampling, there were few studies that examined the evolutionary trajectory of SARS-CoV-2 in healthy individuals. METHODS: We investigated viral evolutionary trends and participant symptomatology within a cluster of 16 SARS-CoV-2 infected, immunocompetent individuals with no co-morbidities in a closed transmission chain. Longitudinal nasopharyngeal swab sampling allowed characterisation of SARS-CoV-2 intra-host variation over time at both the dominant and minor genomic variant levels through Nimagen-Illumina sequencing. RESULTS: A change in viral lineage assignment was observed in individual infections; however, there was only one indel and no evidence of recombination over the period of an acute infection. Minor and dominant genomic modifications varied between participants, with some minor genomic modifications increasing in abundance to become the dominant viral sequence during infection. CONCLUSIONS: Data from this cohort of SARS-CoV-2-infected participants demonstrated that long-term persistent infection in an immunocompromised host was not necessarily a prerequisite for generating a greater than average frequency of amino acid substitutions. Amino acid substitutions at both the dominant and minor genomic sequence level were observed in immunocompetent individuals during infection showing that viral lineage changes can occur generating viral diversity.
Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/transmissão , COVID-19/virologia , COVID-19/genética , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Variação Genética , Imunocompetência , Evolução Molecular , Filogenia , IdosoRESUMO
BACKGROUND: Human rhinoviruses (RV) primarily cause the common cold, but infection outcomes vary from subclinical to severe cases, including asthma exacerbations and fatal pneumonia in immunocompromised individuals. To date, therapeutic strategies have been hindered by the high diversity of serotypes. Global surveillance efforts have traditionally focused on sequencing VP1 or VP2/VP4 genetic regions, leaving gaps in our understanding of RV genomic diversity. METHODS: We sequenced 1,078 RV genomes from nasal swabs of symptomatic and asymptomatic individuals to explore viral evolution during two epidemiologically distinct periods in Washington State: when the COVID-19 pandemic affected the circulation of other seasonal respiratory viruses except for RV (February - July 2021), and when the seasonal viruses reemerged with the severe RSV and influenza outbreak (November-December 2022). We constructed maximum likelihood and BEAST-phylodynamic trees to characterize intra-genotype evolution. RESULTS: We detected 99 of 168 known genotypes and observed inter-genotypic recombination and genotype cluster swapping from 2021 to 2022. We found a significant association between the presence of symptoms and viral load, but not with RV species or genotype. Phylodynamic trees, polyprotein selection pressure, and Shannon entropy revealed co-circulation of divergent clades within genotypes with high amino acid constraints throughout polyprotein. DISCUSSION: Our study underscores the dynamic nature of RV genomic epidemiology within a localized geographic region, as more than 20% of existing genotypes within each RV species co-circulated each studied month. Our findings also emphasize the importance of investigating correlations between rhinovirus genotypes and serotypes to understand long-term immunity and cross-protection.
RESUMO
HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.
Just as we study fossils to understand how animals and plants have evolved, we can study ancient viruses to understand how diseases have emerged and changed over long periods. Unlike fossils, viruses do not leave visible traces in the ground but, instead, they leave viral genes known as endogenous viral elements (or EVEs) that become permanently incorporated in their host's DNA. HML-2s are the youngest known EVEs in the human genome. They have evolved gradually by accumulating lots of small genetic changes and no longer actively infect humans. But these virus remnants have long been suspected to play a role in prostate cancer, lupus and other human diseases. Rhesus macaques and other monkeys also have HML-2s but these are less well studied than human HML-2s. Monkeys are often used as models of human biology in research studies, therefore, understanding how HML-2s have evolved in rhesus macaques may enable researchers to establish this monkey as a model for investigating the role of HML-2s in humans. To investigate this possibility, Williams et al. searched for HML-like EVEs in rhesus macaque genomes published in previous studies. The experiments found that, unlike human HML-2s, the macaque HML-2s underwent a sudden genetic transformation millions of years ago. They acquired a new gene from another virus that completely changed how the macaque HML-2s leave a compartment within the cells of their host that contains most of the host's genome a key step in the life cycle of viruses. The data also suggest that HML-2s may still be actively infecting macaques today and that these EVEs jumped from monkeys into gibbons. This is the first known example of HML-2s moving between different types of primates and it indicates there may be a risk that macaque HML-2s could infect humans. In the future, the findings of Williams et al. may help researchers develop new approaches to treat prostate cancer and other diseases linked with HML-2s in humans.
Assuntos
Retrovirus Endógenos , Macaca mulatta , Provírus , Recombinação Genética , Animais , Retrovirus Endógenos/genética , Macaca mulatta/virologia , Provírus/genética , Humanos , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Infecções por Retroviridae/veterinária , RNA Viral/genética , FilogeniaRESUMO
Rapid evolution of SARS-CoV-2 has resulted in the emergence of numerous variants, posing significant challenges to public health surveillance. Clinical genome sequencing, while valuable, has limitations in capturing the full epidemiological dynamics of circulating variants in the general population. This study utilized receptor-binding domain (RBD) amplicon sequencing of wastewater samples to monitor the SARS-CoV-2 community dynamics and evolution in El Paso, TX. Over 17 months, we identified 91 variants and observed waves of dominant variants transitioning from BA.2 to BA.2.12.1, BA.4&5, BQ.1, and XBB.1.5. Our findings demonstrated early detection of variants and identification of unreported outbreaks, while showing strong consistency with clinical genome sequencing data at the local, state, and national levels. Alpha diversity analyses revealed significant periodical variations, with the highest diversity observed in winter and the outbreak lag phases, likely due to lower competition among variants before the outbreak growth phase. The data underscores the importance of low transmission periods for rapid mutation and variant evolution. This study highlights the effectiveness of integrating RBD amplicon sequencing with wastewater surveillance in tracking viral evolution, understanding variant emergence, and enhancing public health preparedness.
RESUMO
At the end of the 2019 coronavirus pandemic (COVID-19), highly contagious variants of coronaviruses had emerged. Together with influenza viruses, different variants of the coronavirus currently cause most colds and require appropriate drug treatment. We have investigated the expression of important factors for the replication of these viruses, namely transmembrane protease serine subtype 2 (TMPRSS2), neuropilin1 (NRP1), and angiotensin converting enzyme 2 (ACE2) or tumor necrosis factor-α (TNF-α) after toll like receptor-3 (TLR-3) stimulation using RT-qPCR and flow cytometry (FC) analysis. As model served primary fibroblasts derived from the lung and nasal cavity, as well as epidermal stem cells and fully matured respiratory epithelium. The stimulated cell cultures were treated with pharmaceuticals (Dexamethasone and Enzalutamide) and the outcome was compared with the phytomedicine 1,8-Cineol. The stimulation of TLR3 is sufficient to induce the expression of exactly those targets that were highly expressed in the corresponding culture type, specifically ACE2 and TMPRSS2 in respiratory epithelial stem cells and NRP1 in fibroblast cells. It seems this self-perpetuating cycle of infection-driven upregulation of key viral replication factors by the innate immune system represents an evolutionary advantage for viruses using these transcripts as viral replication factors. Likewise, to the standard pharmaceuticals with proven clinical efficiency, 1,8-Cineol was able to disrupt this self-perpetuating cycle. Considering the minor side effects and negligible pharmacological interactions with other drugs, it is conceivable that an adjuvant or combinatorial therapy with 1,8-Cineol for respiratory diseases caused by corona- or influenza viruses would be beneficial.
Assuntos
Enzima de Conversão de Angiotensina 2 , Serina Endopeptidases , Receptor 3 Toll-Like , Internalização do Vírus , Humanos , Receptor 3 Toll-Like/metabolismo , Internalização do Vírus/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Regulação para Cima/efeitos dos fármacos , Neuropilina-1/metabolismo , Neuropilina-1/genética , Transdução de Sinais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Fibroblastos/metabolismo , SARS-CoV-2/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Tratamento Farmacológico da COVID-19 , Orthomyxoviridae/efeitos dos fármacos , Sistema Respiratório/virologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/citologia , COVID-19/virologiaRESUMO
Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 'N354 pocket' to ease restrictions of conformational transition resulting in a 'RBD-up' state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.
RESUMO
Plus, minus, and double-strand RNA viruses are all found in nature. We use computational models to study the relative success of these strategies. We consider translation, replication, and virion assembly inside one cell, and transmission of virions between cells. For viruses which do not incorporate a polymerase in the capsid, transmission of only plus strands is the default strategy because virions containing minus strands are not infectious. Packaging only plus strands has a significant advantage if the number of RNA strands produced per cell is larger than the number of capsids. In this case, by not packaging minus strands, the virus produces more plus-strand virions. Therefore, plus-strand viruses are selected at low multiplicity of infection. However, at high multiplicity of infection, it is preferable to package both strands because the additional minus virions produced are helpful when there are multiple infections per cell. The fact that plus-strand viruses are widespread while viruses that package both strands are not seen in nature suggests that RNA strands are indeed produced in excess over capsids, and that the multiplicity of infection is not sufficiently high to favor the production of both kinds of virions. For double-strand viruses, we show that it is advantageous to produce only plus strands from the double strand within the cell, as is observed in real viruses. The reason for the success of minus-strand viruses is more puzzling initially. For viruses that incorporate a polymerase in the virion, minus virions are infectious. However, this is not sufficient to explain the success of minus-strand viruses, because in this case, viruses that package both strands outcompete those that package only minus or only plus. Real minus-strand viruses make use of replicable strands that are coated by a nucleoprotein, and separate translatable plus strands that are uncoated. Here we show that when there are distinct replicable and translatable strands, minus-strand viruses are selected.
Assuntos
Vírus de RNA , RNA Viral , Montagem de Vírus , Replicação Viral , Vírus de RNA/genética , Vírus de RNA/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Vírion/genética , Evolução Molecular , Capsídeo/metabolismoRESUMO
BACKGROUND: The immunological determinants of delayed viral clearance and intrahost viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in relation to viral clearance and evolution in immunocompromised individuals. METHODS: Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike immunoglobulin G (IgG) and IgG3 titers, neutralization titers, and monoclonal antibody (mAb) resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (reverse-transcription polymerase chain reaction [RT-PCR] negative ≤28 days) or late (RT-PCR positive >28 days) viral clearance. RESULTS: Of 30 patients included (median age, 61.9 [interquartile range, 47.4-72.3] years; 50% females), 20 (66.7%) received mAb therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral clearance. Patients with early viral clearance and patients without resistance-associated mutations had significantly higher baseline interferon-γ release, and patients with early viral clearance had a higher frequency of SARS-CoV-2-specific B cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral clearance. CONCLUSIONS: An early robust adaptive immune response is vital for efficient viral clearance and associated with less emergence of mAb resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B , COVID-19 , Hospedeiro Imunocomprometido , Imunoglobulina G , SARS-CoV-2 , Linfócitos T , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Pessoa de Meia-Idade , Feminino , Masculino , Linfócitos B/imunologia , Idoso , Linfócitos T/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Estudos Longitudinais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologiaRESUMO
Modern phylogeography aims at reconstructing the geographic movement of organisms based on their genomic sequences and spatial information. Phylogeographic approaches are often applied to pathogen sequences and therefore tend to neglect the possibility of recombination, which decouples the evolutionary and geographic histories of different parts of the genome. Genomic regions of recombining or reassorting pathogens often originate and evolve at different times and locations, which characterize their unique spatial histories. Measuring the extent of these differences requires new methods to compare geographic information on phylogenetic trees reconstructed from different parts of the genome. Here we develop for the first time a set of measures of phylogeographic incompatibility, aimed at detecting differences between geographical histories in terms of distances between phylogeographies. We study the effect of varying demography and recombination on phylogeographic incompatibilities using coalescent simulations. We further apply these measures to the evolutionary history of human and livestock pathogens, either reassorting or recombining, such as the Victoria and Yamagata lineages of influenza B and the O/Ind-2001 foot-and-mouth disease virus strain. Our results reveal diverse geographical paths of migration that characterize the origins and evolutionary histories of different viral genes and genomic segments. These incompatibility measures can be applied to any phylogeography, and more generally to any phylogeny where each tip has been assigned either a continuous or discrete "trait" independent of the sequence. We illustrate this flexibility with an analysis of the interplay between the phylogeography and phylolinguistics of Uralic-speaking human populations, hinting at patrilinear language transmission.