Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
J Anim Sci ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383123

RESUMO

Previous research has demonstrated that decreasing starch availability of steam-flaked corn by increasing flake density or increasing the degree of starch retrogradation influences in vitro gas production kinetics. However, it is unclear if increasing flake density or the degree of starch retrogradation influences end-products of in vitro ruminal fermentation (methane, volatile fatty acids, ammonia). The objective of this experiment was to evaluate the effects of increasing flake density and the degree of starch retrogradation on in vitro gas production kinetics, digestibility, and ruminal fermentation characteristics of steam-flaked corn. Three ruminally-cannulated steers were fed a high-concentrate diet and sampled for ruminal digesta for an in vitro fermentation experiment with a 5×2 factorial arrangement of treatments. Steam-flaked corn was produced to flake densities of 257, 296, 335, 373, and 412 g/L by adjusting the rolls of a steam-flaker. Samples were stored for 3 d at either 23°C to produce fresh steam-flaked corn or at 55°C in heat-sealed foil bags to produce retrograded steam-flaked corn. In vitro fermentation vessels were incubated for 24 h and then assessed for fermentation parameters including dry matter digestibility, volatile fatty acid concentrations, and total gas and methane production. Increasing the degree of starch retrogradation decreased (P < 0.01) the rate of gas production across all flake densities of steam-flaked corn but did not decrease the extent of gas production. In vitro methane production, dry matter digestibility, and microbial biomass concentration were not influenced by increasing flake density or starch retrogradation. Increasing the degree of starch retrogradation decreased (P = 0.03) the molar propionate proportion and increased (P < 0.06) the molar proportions of butyrate, isobutyrate, and isovalerate and the acetate:propionate ratio. Enzymatic starch availability of steam-flaked corn was positively correlated with mean propionate proportion (r2 = 0.93) and negatively correlated with the mean butyrate proportion (r2 = 0.89). Results from the current study demonstrate that increasing the degree of starch retrogradation of steam-flaked corn decreased the rate of in vitro gas production and altered volatile fatty acid profiles in the ruminal fermentation media.

2.
N Biotechnol ; 84: 77-84, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357797

RESUMO

The extensive production of olive mill solid waste (OMSW) from olive oil industry in the Mediterranean basin claims effective treatments and valorization strategies. This study aims to elucidate the potential of anaerobic digestion (AD) and anaerobic fermentation (AF) to convert pre-treated OMSW into biogas (CH4) and volatile fatty acids (VFA), respectively. The two thermal treatment conditions (65 °C and 180 °C) that are being implemented in the industry that manages the OMSW were tested. Comparing the two treatments aims to demonstrate the influence on the AD process of the degree of solubilization and degradation of the metabolites produced from the same substrate. AD of OMSW treated at low-temperature (65 °C) exhibited similar methane yields (195 ± 8 mL CH4/g volatile solid (VS)) to raw OMSW. AD of the solid phase (SP) after high-temperature treatment with acid addition at 180 °C resulted in methane yields comparable to raw OMSW while the liquid phase (LP) exhibited low methane yields (85 ± 10 mL CH4/g VS). Nevertheless, LP/180 °C exhibited the highest VFA bioconversion at 27.6 %, compared to less than 10 % for SP/180 ºC, SP/65 °C, and raw OMSW. The VFA profile showed notable variations with thermal treatment temperatures. Propionic acid dominated at SP/65 °C, while acetic acid became the primary VFA at 180 °C. Furthermore, significant degradation rates of phenolic compounds and furans were observed during the final day of both anaerobic processes. Overall, these findings suggest that AD is more suitable for raw OMSW, treated at low temperature and SP at high temperature, while AF offers a promising alternative for high-temperature-treated LP.

3.
Trop Anim Health Prod ; 56(8): 304, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347997

RESUMO

The present experiment was conducted to evaluate the nutritional value of red Alternanthera sessilis for fattening lambs when they were replaced with alfalfa forage. Forty growing lambs with an average weight of 21.12 kg and an age of 5 months were randomly assigned to four experimental treatments. Growth performance, nutrient digestibility, rumen fermentation parameters, protozoa population, blood parameters, and composition of carcass components were evaluated. The results of this experiment showed that the use of Alternanthera sessilis in the diet significantly reduced feed intake, increased the average daily weight gain, and improved the feed conversion ratio compared to the control treatment (P < 0.05). The digestibility of dry matter and protein was significantly increased (P < 0.05), while the digestibility of neutral detergent fiber, acid detergent fiber, and organic matter showed a numerical increase. Diets containing different levels of the Alternanthera sessilis plant did not affect pH, but the increase in the amount of this plant in the diet led to an increase ammonia nitrogen concentration and rumen protozoa population (P < 0.05). The addition of Alternanthera sessilis to the diet significantly reduced the concentration of blood glucose and cholesterol and increased the concentration of blood urea nitrogen (P < 0.05). Except for the weight of the thigh and neck, the effect of experimental treatments on other carcass components was not significant. Overall, the results of this experiment showed that using the Alternanthera sessilis plant in the rations of fattened lambs as a substitute for alfalfa forage not only had no negative effect on the studied parameters but also improved them in some cases. Therefore, Alternanthera sessilis can be used in rations of fattened lambs as a substitute for part of alfalfa forage.


Assuntos
Amaranthaceae , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Digestão , Fermentação , Rúmen , Carneiro Doméstico , Animais , Amaranthaceae/química , Ração Animal/análise , Digestão/efeitos dos fármacos , Rúmen/metabolismo , Dieta/veterinária , Carneiro Doméstico/crescimento & desenvolvimento , Carneiro Doméstico/fisiologia , Distribuição Aleatória , Masculino , Valor Nutritivo , Medicago sativa/química , Ovinos/crescimento & desenvolvimento , Ovinos/fisiologia
4.
Poult Sci ; 103(11): 104165, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214059

RESUMO

Poultry is a ubiquitous and highly sought-after protein source valued for its accessibility, notable protein content, and lack of religious constraints. However, the demand for poultry has resulted in a surge in intensive production practices. The transition from subsistence agricultural practices to intensive food production resulted in the widespread adoption of antibiotics for both therapeutic and economic purposes. These interventions were intended to enhance meat yield, promote bird health, and enhance cost-effectiveness of production. However, this inadvertently contributed to the rise of antimicrobial resistance (AMR). Therefore, the need to explore alternative approaches to mitigate the problems associated with AMR has become increasingly pressing. In response, metal-based compounds have emerged as a promising substitute to conventional antibiotics. In this study, the effects of a water soluble metallo-antimicrobial supplement, ferric sillen core-linked polymer (FSCLP), on body weight gain, feed conversion, water intake, volatile fatty acid (VFA) production, cecal microbiome and intestinal morphology in broilers was examined. The findings of this study suggested that the addition of the FSCLP resulted in better bird performance, even during a period of heat stress. Volatile fatty acids analysis of cecal contents indicated that there were significantly higher levels (p < 0.05) of butyric and valeric acids. Cecal microbiome analysis confirmed significantly lower abundance (p < 0.05) of Proteobacteria (e.g., E. coli) and a significantly greater abundance of VFA-producing bacteria such as Intestinimonas butyriciproducens, Blautia and Lachnospiraceae. The intestinal morphology data showed supplementation with the FSCLP at 80 ppm resulted in a significantly higher (p < 0.05) villus height of the jejunum. This study emphasises the potential of FSCLP as a feasible solution to the issues faced by AMR in chicken production, providing insights into its beneficial impacts on performance, microbial composition, and intestinal health.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta/veterinária , Polímeros/administração & dosagem , Polímeros/química , Masculino , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacologia , Ceco/microbiologia , Ceco/efeitos dos fármacos , Distribuição Aleatória
5.
Microorganisms ; 12(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39203543

RESUMO

The environment is one of the most important factors influencing the variation and diversity of the host gut microbiome in plateau areas. It is well-established that dietary variations substantially alter the rumen microbiota. However, there is limited research on the response of the rumen microbiota of grazing yaks to changes in seasonal diet composition under high-altitude environments. This study investigates the seasonal variations in rumen fermentation parameters, bacterial, and fungal communities in yaks, with a focus on the cold and warm seasons. Quantitative data revealed that in the cold season, yaks had an increased acetic acid proportion (p < 0.05) and acetic acid/propionic acid ratio (p < 0.05) compared to the warm season. The relative abundance of Bacteroidetes and Firmicutes were 64.67% and 25.82% in the cold season, respectively, and 66.77% and 26.87% in the warm season. The fungal community showed a higher abundance of Ascomycetes (58.72% to 76.91%) and Neocallimastigomycota in the cold season. These findings highlight the adaptation mechanisms of yaks to seasonal dietary changes and their implications for optimizing yak husbandry practices.

6.
Water Res ; 265: 122286, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39190952

RESUMO

Employing chemical pretreatment for waste activated sludge (WAS) fermentation is crucial to achieving sustainable sludge management. This study investigated the feasibility of metabisulfite (MS) pretreatment for enhancing volatile fatty acids (VFAs) production from WAS. The results show that after 24-h MS pretreatment, the content of soluble organic matter and loosely bound extracellular polymeric substances (LB-EPS), especially proteins, increased significantly. During the fermentation, MS pretreatment under alkaline conditions was more efficient, with VFA peaking on the fifth day, showing a 140 % increase compared to the alkaline control group. Correlation analysis suggests that the dosage of MS, rather than pH, is closely related to the levels of soluble protein, polysaccharides, LB-EPS, and subsequential VFAs production, while alkaline conditions facilitate the dissolution of total organic carbon. Furthermore, sulfite radicals (SO3•-) are attributed to cell inactivation and lysis, while alkaline conditions initially reduce the size of the flocs, further promoting MS for attacking flocs, thereby improving the performance of fermentation. The study also found that MS pretreatment reduced microbial community diversity, enriched hydrolytic and fermentation bacteria (Actinobacteriota and Firmicutes), and suppressed methanogens (Methanobacteriaceae and Methanosaetaceae), making it a safe, viable, and cost-effective chemical agent for sustainable sludge management.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Sulfitos
7.
J Anim Sci Technol ; 66(3): 493-503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38975576

RESUMO

The aim of this experiment was to evaluate the effects of low crude protein (CP) level with essential amino acids (AA) addition on growth performance, nutrient digestibility, microbiota, and volatile fatty acid composition in growing pigs. A total of 160 growing pigs (Landrace × Yorkshire × Duroc [LYD]; average initial body weight 16.68 ± 0.12 kg) were randomly allotted to one of the four treatments on the basis of initial body weight. A randomized complete block design was used to conduct this experiment in the Research Center of Animal Life Sciences at Kangwon National University. There were ten pigs/replicate with four replicates in each treatment. The treatments include; CON (Control, 17.2% dietary CP level), low protein (LP)-1.10 (15.7% dietary CP level + 1.10% lysine level), LP-1.15 (15.7% dietary CP level + 1.15% lysine level), LP1.2 (15.7% dietary CP level + 1.20% lysine level). The pigs fed CON and LP-1.2 diet showed greater final body weight than that of LP-1.1 diet (p < 0.05). Although average daily gain, average daily feed intake, and feed efficiency did not show any difference in phase 2 and 3, average daily gain and feed efficiency was significantly greater in CON and LP-1.20 in phase 1. However, the average daily feed intake did not show any difference during the experimental period. Isobutyric acid and isovaleric acid composition of LP treatments were lower than CON treatment in phase 2. Total branched chain fatty acid composition was significantly lower in LP treatment in phases 1 and 2. However, there was no significant difference among treatments in phase 3. The results of this study underscore the importance of AA supplementation when implementing a low-protein diet during the early growth phase (16-50 kg) in pigs.

8.
Water Res ; 261: 122000, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38944003

RESUMO

Anaerobic digestion (AD) is a key technology for converting organic matters to methane-rich biogas. However, nutrient imbalance can destabilize the whole digestion. To realize stable operation of AD and improve its efficiency, this work considers a new strategy to control the intermediate concentrations of poor AD under nutrient stress. For this purpose, long-term digestion under different nutrient conditions was investigated. Results showed that the feedstock with a low C/N ratio (= 6) caused VFA accumulation (2072 ± 632 mg/L), leading to the inhibition of methane production. Employing a substrate with a higher C/N ratio (= 11) and/or adding NH4HCO3 (200 mg NH4+-N/Ladd) could alleviate the VFA inhibition, but excessive dosage of NH4HCO3 would induce ammonia inhibition. Through the established digestion balance between free ammonia nitrogen (FAN) between 0 and 25 mg/L, volatile fatty acid (VFA) 510-2100 mg/L, and alkalinity (ALK) 3300-7800 mg/L, an efficient methane yield of 150-250 mL/g VS was achieved and stable operation of AD under nutrient stress (low C/N ratio) was realized. Metabolic reconstruction between Euryarchaeota sp. MAG162, Methanosarcina mazei MAG53 and Mesotoga infera MAG119 highlighted that microbial niche balance was developed as a result of digestion balance, which is beneficial for stable operation of AD. These findings improved our understanding of the interaction mechanism between intermediates and microbial niches for stability control in AD.


Assuntos
Ácidos Graxos Voláteis , Metano , Anaerobiose , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Reatores Biológicos , Amônia/metabolismo , Biocombustíveis , Nitrogênio/metabolismo
9.
Anim Microbiome ; 6(1): 31, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812012

RESUMO

BACKGROUND: This study aimed to evaluate the effects of Hermetia illucens (Black soldier fly-BSF) and Tenebrio molitor (Yellow mealworm-YMW) live larvae as a new nutritional model on duck's gut health, considering gut histomorphometry, mucin composition, cytokines transcription levels, and microbiota. A total of 126, 3-days-old, females Muscovy ducks were randomly allotted to three dietary treatments (6 replicates/treatment, 7 birds/pen): (i) C: basal diet; (ii) BSF: C + BSF live larvae; (iii) YMW: C + YMW live larvae. BSF and YMW live larvae were administered on top of the basal diet, based on the 5% of the expected daily feed intake. The live weight, average daily gain, average daily feed intake and feed conversion ratio were evaluated for the whole experimental period. On day 52, 12 ducks/treatment (2 birds/replicate) were slaughtered and samples of duodenum, jejunum, ileum, spleen, liver, thymus and bursa of Fabricius were collected for histomorphometry. Mucin composition was evaluated in the small intestine through histochemical staining while jejunal MUC-2 and cytokines transcription levels were evaluated by rt-qPCR. Cecal microbiota was also analyzed by means of 16 S rRNA gene sequencing. RESULTS: Birds' growth performance and histomorphometry were not influenced by diet, with a proximo-distal decreasing gradient from duodenum to ileum (p < 0.001), respecting the physiological gut development. Mucin staining intensity and MUC-2 gene expression did not vary among dietary treatments, even though mucin intensity increased from duodenum to ileum, according to normal gut mucus physiology (p < 0.001). Regarding local immune response, IL-6 was higher in YMW group when compared to the other groups (p = 0.009). Insect live larvae did not affect cecal microbiota diversity, but BSF and YMW groups showed a higher presence of Helicobacter, Elusimicrobium, and Succinatimonas and a lower abundance of Coriobacteriaceae and Phascolarctobacterium compared to C birds (p < 0.05). CONCLUSIONS: The use of BSF and YMW live larvae as new nutritional model did not impair gut development and mucin composition of Muscovy ducks, but slightly improved the intestinal immune status and the microbiota composition by enhancing regulatory cytokine IL-6 and by increasing minor Operational Taxonomic Units (OTUs) involved in short-chain fatty acids production.

10.
Water Res ; 258: 121736, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754300

RESUMO

Capturing the carbon in volatile fatty acids (VFA) produced from the anaerobic digestion (AD) of sewage sludge has the potential to not only provide economic benefits but also reduce greenhouse gas production. This study demonstrates a chemical-free method to collect VFA from an AD instead of methane that involves electrochemical pretreatment (EPT) of sludge. Experimental results show that applying 15 V EPT for 45 min enhances acidogenesis and selectively inhibits methanogenesis, leading to a substantial VFA accumulation (2563.1 ± 307.9 mg COD/L) and achieving 2.5 times more carbon fixation than via methane production. Interfacial thermodynamic analysis shows that EPT induces a decrease in both the repulsive electrostatic energy (from 152.9 kT to 12.2 kT) and the energy barrier (from 57.0 kT to 2.6 kT) in the sludge, leading to increased sludge aggregation and entrapment of microorganisms. Molecular docking sheds lights on how the methanogens interacts with the organic matter released from EPT (e.g., alanine-tRNA ligase), showing that these interactions potentially interfere with the proteins that are associated with the activities of the methanogens and the electron transfer pathways, thereby impeding methanogenesis. Integrating EPT into AD therefore facilitates the recovery of valuable VFA and the capture of carbon from freshwater sludge, providing notable economic and environmental benefits in sewage sludge treatment.


Assuntos
Ácidos Graxos Voláteis , Metano , Esgotos , Esgotos/química , Anaerobiose , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Carbono , Reatores Biológicos , Técnicas Eletroquímicas , Simulação de Acoplamento Molecular
11.
Bioresour Technol ; 402: 130787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703955

RESUMO

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.


Assuntos
Reatores Biológicos , Filtração , Membranas Artificiais , Esgotos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Anaerobiose , Filtração/métodos , Metano/metabolismo , Hidrólise , Amido/metabolismo
12.
Biology (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666881

RESUMO

The rumen plays an essential role in the physiology and production of agriculturally important ruminants such as cattle. Functions of the rumen include fermentation, absorption, metabolism, and protection. Cattle are, however, not born with a functional rumen, and the rumen undergoes considerable changes in size, histology, physiology, and transcriptome from birth to adulthood. In this review, we discuss these changes in detail, the factors that affect these changes, and the potential molecular and cellular mechanisms that mediate these changes. The introduction of solid feed to the rumen is essential for rumen growth and functional development in post-weaning calves. Increasing evidence suggests that solid feed stimulates rumen growth and functional development through butyric acid and other volatile fatty acids (VFAs) produced by microbial fermentation of feed in the rumen and that VFAs stimulate rumen growth and functional development through hormones such as insulin and insulin-like growth factor I (IGF-I) or through direct actions on energy production, chromatin modification, and gene expression. Given the role of the rumen in ruminant physiology and performance, it is important to further study the cellular, molecular, genomic, and epigenomic mechanisms that control rumen growth and development in postnatal ruminants. A better understanding of these mechanisms could lead to the development of novel strategies to enhance the growth and development of the rumen and thereby the productivity and health of cattle and other agriculturally important ruminants.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38649611

RESUMO

This study evaluates models for predicting volatile fatty acid (VFA) concentrations in sludge processing, ranging from classical statistical methods (Gaussian and Surge) to diverse machine learning algorithms (MLAs) such as Decision Tree, XGBoost, CatBoost, LightGBM, Multiple linear regression (MLR), Support vector regression (SVR), AdaBoost, and GradientBoosting. Anaerobic bio-methane potential tests were carried out using domestic wastewater treatment primary and secondary sludge. The tests were monitored over 40 days for variations in pH and VFA concentrations under different experimental conditions. The data observed was compared to predictions from the Gaussian and Surge models, and the MLAs. Based on correlation analysis using basic statistics and regression, the Gaussian model appears to be a consistent performer, with high R2 values and low RMSE, favoring precision in forecasting VFA concentrations. The Surge model, on the other hand, albeit having a high R2, has high prediction errors, especially in dynamic VFA concentration settings. Among the MLAs, Decision Tree and XGBoost excel at predicting complicated patterns, albeit with overfitting issues. This study provides insights underlining the need for context-specific considerations when selecting models for accurate VFA forecasts. Real-time data monitoring and collaborative data sharing are required to improve the reliability of VFA prediction models in AD processes, opening the way for breakthroughs in environmental sustainability and bioprocessing applications.

14.
Front Microbiol ; 15: 1325505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318339

RESUMO

The rumen serves as a complex ecosystem, harboring diverse microbial communities that play crucial ecological roles. Because previous studies have predominantly focused on anaerobic microorganisms, limited attention has been given to aerobic microorganisms in the goat rumen. This study aims to explore the diversity of aerobic microorganisms in the rumen and understand their niche and ecological roles. Rumen fluid samples were collected from 6 goats at different time points post-morning feeding. pH, NH3-N, and volatile fatty acid (TVFA) concentrations were measured, while In vitro cultivation of aerobic microorganisms was performed using PDA medium. Internal Transcribed Spacer (ITS) and 16S sequencing unveiled microbial diversity within the rumen fluid samples. Evidence of obligate aerobic microorganisms in the goat rumen suggests their potential contribution to ecological functionalities. Significantly, certain aerobic microorganisms exhibited correlations with TVFA levels, implying their involvement in TVFA metabolism. This study provides evidence of the existence and potential ecological roles of obligate aerobic microorganisms in the goat rumen. The findings underscore the significance of comprehensively deciphering goat rumen microbial communities and their interactions, with aerobes regarded as permanent residents rather than transients. These insights form a solid foundation for advancing our understanding of the intricate interplay between goat and their aerobic microorganisms in the rumen.

15.
Sci Total Environ ; 912: 168764, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000740

RESUMO

This study aims to investigate the influence of seasonal variations on Volatile fatty acids (VFAs) production from food waste (FW) and to quantify their impact. Results of batch experiments with external pH control indicated that the properties of FW exhibited significant seasonal variations and were markedly different from kitchen waste (KW). The spring group demonstrated the highest VFA concentration and VFA/SCOD, at 31.24 g COD/L and 92.20 % respectively, which were 1.22 and 1.27 times higher than those observed in the summer season. The combined proportion of acetic acid and butyric acid accounted for 81.10 % of the total VFAs in spring, suggesting the highest applicability to the carbon source. The VFA content of all seasonal groups in descending order was butyric acid, propionic acid and acetic acid. Carbohydrates, along with spicy and citrusy substances, promoted the conversion of total VFA and butyric acid, while proteins and lipids favored the production of acetic acid and propionic acid.


Assuntos
Propionatos , Eliminação de Resíduos , Fermentação , Estações do Ano , Perda e Desperdício de Alimentos , Anaerobiose , Alimentos , Reatores Biológicos , Ácidos Graxos Voláteis , Ácido Butírico , Ácido Acético , Concentração de Íons de Hidrogênio
16.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38066694

RESUMO

The concentration of volatile fatty acid (VFA) provides an imprecise view of VFA dynamics due to the confounding effects of fluid pool size and dynamics. Determination of VFA flux using isotope is expensive and a complex methodology. Therefore, a rapid and affordable approach to explore VFA dynamics may allow comprehensive characterization of VFA availability. The objective of this study was to explore the use of VFA dynamics generated by meal feeding to derive time-series rates of VFA apparent appearance and disappearance driven by different protein and fiber sources. Six ruminally cannulated wethers were fed diets containing timothy hay or beet pulp (TH and BP) and soybean meal (SBM) or heated soybean meal (HSBM). Diets were, TH + HSBM; TH + SBM; BP + HSBM; and BP + SBM and the experimental design was a partially replicated 4 × 4 Latin Square. Concentrations of VFA and polyethylene glycol (PEG) in rumen fluid samples were estimated. Concentrations of PEG were used to estimate fluid passage and volume to calculate VFA mass, and fluid-mediated exit. Maximum apparent appearance rate (mmol/h), the rate of apparent appearance decline (mmol/mmol/h), mean apparent appearance flux (mmol/h), mean apparent disappearance (mmol/h), and apparent disappearance rate (mmol/mmol/h) were estimated by deriving a 1 pool model for each VFA on a mass basis where appearance was assumed to follow an exponential decay pattern and disappearance followed mass-action kinetics. Statistical analyses were conducted using a linear mixed effect regression with fixed effects for fiber source, protein source, and their interaction, as well as random effects for animal and period. Rumen fluid volume (L) was greater in HSBM diets (P = 0.033) and fluid passage (%/h) was greater in SBM diets (P = 0.048). Concentrations (higher acetate and butyrate, P = 0.002 and 0.004, respectively) and molar proportions (higher valerate, P = 0.035) of VFA were affected only by fiber source; however, protein source and fiber source interacted to significantly influence apparent appearance rates and absorption rates of many major VFA. On a flux basis, HSBM supported significantly elevated mean disappearance of propionate (P = 0.033). This data demonstrates that time-series evaluation of fermentation dynamics, including fluid dynamics and VFA concentrations can be used to estimate apparent appearance and disappearance of VFA. Although further work is needed to confirm the alignment of these estimates with measurements of VFA supplies to the animal, this modeling approach may provide a simpler way to better understand the kinetics of rumen.


We estimated apparent appearance, apparent disappearance, appearance, and disappearance rates of rumen volatile fatty acid (VFA) of sheep in response to the different degradability of nutrients using time-series fermentation indicators with regular meal feeding. Two fiber sources (timothy hay [TH], and beet pulp [BP]) and two protein sources (soybean meal [SBM], and heat-treated soybean meal [HSBM]) were used in combination to prepare four dietary treatments. Polyethylene glycol (PEG) was used as the fluid marker to estimate rumen fluid volume and passage rate. The dynamics of VFA were estimated by deriving one pool model for individual VFA and concentrations of VFA, rumen fluid volume, and fluid passage rate were used in calculations. The interaction effect of protein and fiber source significantly influenced apparent appearance rates and disappearance rates of many major VFA. Significantly altered VFA dynamics, especially apparent disappearance was associated with HSBM-based diets. In conclusion, use of time-series evaluation of fermentation dynamics provides a minimal approach to integrate fluid dynamics and VFA concentrations to estimate apparent appearance and disappearance of VFA. With further development of this approach, we assume that estimated VFA dynamics will provide a better depiction of rumen VFA beyond concentrations and molar proportions in making inferences on rumen fermentation.


Assuntos
Fibras na Dieta , Digestão , Animais , Masculino , Ovinos , Fibras na Dieta/metabolismo , Digestão/fisiologia , Rúmen/metabolismo , Fermentação , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Glycine max , Ração Animal/análise
17.
Bioresour Technol ; 394: 130239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142907

RESUMO

This study investigated the potential of micro-nano bubble (MNB) ozonation pretreatment to eliminate oxytetracycline (OTC) from wastewater and improve subsequent anaerobic digestion (AD) performance. The findings revealed that MNB ozonation achieved efficient OTC oxidation (>99 % in 60 min), and significantly enhanced methane production by 51 % compared to conventional ozonation (under 30 min of pretreatment). Additionally, MNB ozonation resulted in a decrease in the soluble chemical oxygen demand and reduced volatile fatty acid accumulation compared to conventional ozonation. Furthermore, the study sheds light on the profound impact of OTC and its oxidation by-products on the sludge microbiome. Exposure to OTC and its oxidation by-products resulted in alterations in extracellular polymeric substances composition and led to significant shifts in microbial community structure. This study highlights the promise of MNB ozonation as an effective approach for pharmaceutical pollutant removal and the optimization of AD performance in wastewater treatment, with implications for improved environmental sustainability.


Assuntos
Oxitetraciclina , Ozônio , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Ozônio/química , Metano , Reatores Biológicos
18.
Environ Toxicol Pharmacol ; 105: 104354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151218

RESUMO

Fescue toxicosis (FT) is produced by an ergot alkaloid (i.e., ergovaline [EV])-producing fungus residing in toxic fescue plants. Associations between EV, decreased weight gain and ruminal volatile fatty acids are unclear. Feces, rumen fluid, and blood were collected from 12 steers that grazed non-toxic (NT) or toxic (E +) fescue for 28 days. The E + group exhibited decreased propionate (P), increased acetate (A), and increased ruminal A:P ratio, with similar trends in feces. Plasma GASP-1 (G-Protein-Coupled-Receptor-Associated-Sorting-Protein), a myostatin inhibitor, decreased (day 14) only in E + steers. Ergovaline was present only in E + ruminal fluid and peaked on day 14. The lower ruminal propionate and higher A:P ratio might contribute to FT while reduced GASP-1 might be a new mechanism linked to E + -related weight gain reduction. Day 14 ergovaline zenith likely reflects ruminal adaptations favoring EV breakdown and its presence only in rumen points to local, rather than systemic effects.


Assuntos
Festuca , Propionatos , Animais , Propionatos/toxicidade , Ergotaminas , Festuca/microbiologia , Ácidos Graxos Voláteis , Aumento de Peso , Ração Animal/análise
19.
Animals (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067052

RESUMO

This study investigated the relationship between rumen fermentation, stress-related hormones, and behavior in sheep with the aim of providing insights for improving animal welfare and feed management practices. Eight lambs were assigned to either a high concentration or control group. Blood samples were collected for hormone analysis, and an open field test was conducted to observe behavioral stress responses. The results showed that diet composition may affect the behavior of ruminants in response to stressors and novel situations, as evidenced by the higher number of escape attempts in the high-concentration group. In addition, analyses of individual volatile fatty acids (VFAs) showed a significant positive correlation between the acetic acid/propionic acid ratio and sniffing behavior of the novel object (p < 0.05, ρ = -0.414). These findings have important implications for animal welfare and feed management practices. Overall, this study provides insights into the potential impact of diet composition on the behavior of ruminants in response to stressors and novel situations, highlighting the importance of improving animal welfare through feed management practices. Further research is needed to fully elucidate the mechanisms underlying the complex relationship between rumen fermentation, stress-related hormones, and behavior in ruminant animals.

20.
Bioresour Technol ; 388: 129738, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714496

RESUMO

As a carbon substrate, propionate can be used to synthesize poly(3-hydroxybutyrateco-3-hydroxyvalerate) [PHBV] biopolymer, but high concentrations can inhibit PHBV production. Therefore, novel PHBV producers that can utilize high propionate concentrations are needed. Here, a novel halophile, Halomonas sp. YJ01 was applied to PHBV production via a propionate-dependent pathway, and optimal culture growth conditions were determined. The maximum poly(3-hydroxybutyrate) [PHB] content and yield in the presence of glucose were 89.5 wt% and 5.7 g/L, respectively. This strain utilizes propionate and volatile fatty acids (VFAs) for PHBV accumulation. Multiple genes related to polyhydroxyalkanoate (PHA) synthesis were identified using whole-genome annotation. The PHBV yield and 3HV fraction obtained by strain YJ01 utilizing 15 g/L propionate were 0.86 g/L and 29 mol%, respectively, but in cultures with glucose-propionate, it decreased its copolymer dry weight. This indicates that propionyl-CoA was converted to pyruvate through the 2-methylcitrate cycle (2MCC), which reduced propionate detoxification for the strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...