Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.330
Filtrar
1.
Front Med (Lausanne) ; 11: 1442107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359914

RESUMO

Introduction: In Japan, inherited retinal dystrophy caused by biallelic variants of the RPE65 gene is exceedingly rare. The purpose of this study was to describe a Japanese male patient with a novel variant in RPE65 associated with Leber congenital amaurosis (LCA). Case report: The patient, diagnosed with LCA, exhibited infantile nystagmus and reported experiencing night blindness since early childhood. At 27 years of age, the patient underwent an ophthalmologically evaluation. Corrected visual acuity was Snellen equivalent 20/133 in the right eye and Snellen equivalent 20/100 in the left eye. Fundus examination revealed alterations in the retinal pigment epithelium characterized by hypopigmentation and narrowing of retinal vessels. Fundus autofluorescence imaging demonstrated a generally diminished autofluorescent signal. Full-field electroretinography identified a generalized dysfunction of both rod and cone systems in each eye. Whole exome sequencing identified a novel missense variant in RPE65 (NM_000329.3): c.1172C > A p.(Ala391Asp), which was classified as pathogenic, as well as a recurrent variant p.(Arg515Trp). Conclusion: This study provides valuable insights into the genotype-phenotype correlation of RPE65-associated LCA in Japanese patients, with critical implications for enhanced diagnostic accuracy and informed therapeutic decisions.

2.
Mol Syndromol ; 15(5): 380-388, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359950

RESUMO

Introduction: Peroxisome biogenesis disorders (PBDs) encompass a group of diseases marked by clinical and genetic heterogeneity. Phenotypes linked to PBDs include Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease (IRD), rhizomelic chondrodysplasia punctata type 1, and Heimler syndrome. PBD phenotypes manifest through hypotonia, developmental delay, facial dysmorphism, seizures, liver dysfunction, sensorineural hearing loss, and retinal dystrophy. Methods: The proband underwent comprehensive clinical evaluation, followed by whole-exome sequencing (WES) coupled with copy number analysis (CNV), aimed at identifying potential disease-causing variants aligning with the observed phenotype. Results: Our findings detail an individual exhibiting developmental delay, hearing loss, visual impairment, hepatomegaly, and splenomegaly, attributed to a biallelic deletion of exon 4 in the PEX26 gene. The WES analysis of the index case did not uncover any pathogenic/likely pathogenic single-nucleotide variations that could account for the observed clinical findings. However, the CNV data derived from WES revealed a homozygous deletion in exon 4 of the PEX26 gene (NM_001127649.3), providing a plausible explanation for the patient's clinical features. The exon 4 region of PEX26 encodes the transmembrane domain of the protein. The transmembrane domain plays a crucial role in anchoring the protein within lipid bilayers, and its absence can disrupt proper localization and functioning. As a result, this structural alteration may impact the protein's ability to facilitate essential cellular processes related to peroxisome biogenesis and function. Conclusion: The index patient, which presented with hearing loss, retinal involvement and hepatic dysfunction in adolescence age, has atypical clinical course that can be considered unusual for Zellweger syndrome (ZS) and IRD phenotypes, and its rare genotypic data (in-frame single exon deletion) expands the PBD disease spectrum. This study revealed for the first time that PEX26 protein transmembrane domain loss exhibits an unusual course with clinical findings of IRD and ZS phenotypes. WES studies, incorporating CNV analyses, empower the identification of novel genetic alterations in genes seldom associated with gross deletion/duplication variations, such as those in the PEX26 gene. This not only enhances diagnostic rates in rare diseases but also contributes to broadening the spectrum of causal mutations.

3.
BMC Pediatr ; 24(1): 631, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363269

RESUMO

BACKGROUND: X-linked intellectual disability-hypotonic facies syndrome-1 (MRXHF1) and Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome are caused by pathogenic variant in the ATRX gene, a member of the switch/sucrose non-fermentable (SWI-SNF) protein family that exhibits chromatin remodeling activity. These syndromes show a wide spectrum of clinical manifestations, such as distinctive dysmorphic features, mild-to-profound intellectual disability, motor development delay, seizures, urogenital abnormalities, and gastrointestinal disorders. CASE PRESENTATION AND LITERATURE REVIEW: A 3-year-old boy from a Chinese non-consanguineous family was diagnosed with MRXHF1 by whole-exome sequencing. Comprehensive family history information was obtained. The Medline database was searched until 1st Aug 2023 for articles related to ATRX pathogenic variant. Data on gene/protein mutations and clinical symptoms were extracted. The proband showed intellectual disability, motor development delay, typical facial abnormalities, urogenital defect, behavior problems, and optical nerve dysplasia. A novel frameshift mutation c.399_400dup, (p.Leu134Cysfs*2) in the ATRX gene was the primary cause, which occurs right before the ATRXDNMT3-DNMT3L (ADD) domain of ATRX protein. Missense mutation is the most common variation type. The ADD and helicase-like domains are the most frequently affected domains. Epilepsy, congenital heart disease, urogenital defect, acoustic defect, and optical defect are more prevalent in patients with frameshift mutations compared to those with missense mutations. There are more urogenital defects with C-terminal frameshift mutations than with N-terminal frameshift mutations. CONCLUSION: We described a novel frameshift mutation in the ATRX gene in a patient with MRXHF1 syndrome and summarized the genotype-phenotype relationship of ATRX pathogenic variant by variation type and affected protein domain. The regulatory mechanism underlying ATRX variant requires comprehensive analysis in future studies.


Assuntos
Mutação da Fase de Leitura , Proteína Nuclear Ligada ao X , Humanos , Masculino , Proteína Nuclear Ligada ao X/genética , Pré-Escolar , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Talassemia alfa/genética , Talassemia alfa/diagnóstico , Estudos de Associação Genética , Fenótipo , Sequenciamento do Exoma
4.
J Diabetes Res ; 2024: 3076895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364395

RESUMO

Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a ß-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Sequenciamento do Exoma , Predisposição Genética para Doença , Humanos , Diabetes Mellitus Tipo 1/genética , Pré-Escolar , Feminino , Masculino , Fator 1-beta Nuclear de Hepatócito/genética , Transativadores/genética , Proteínas de Homeodomínio/genética , Fator 4 Nuclear de Hepatócito/genética , Quinases do Centro Germinativo/genética , Polimorfismo de Nucleotídeo Único , Lactente , Peptídeo C/sangue , Autoanticorpos , Criança , Haplótipos , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Fatores de Transcrição de Fator Regulador X
5.
Sci Rep ; 14(1): 22847, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354002

RESUMO

Anterior cruciate ligament (ACL) injury is a common orthopedic disease with a high incidence, long recovery time, and often requiring surgical treatment. However, the susceptibility factors for ACL injury are currently unclear, and there is a lack of analysis on the differences in the ligament itself. Previous studies have focused on germline mutations, with less research on somatic mutations. To determine the role of somatic mutations in ACL injuries, we recruited seven patients between the ages of 20 and 39 years diagnosed with ACL injuries, collected their peripheral blood, injured ligament ends, and healthy ligament ends tissues, and performed exome sequencing with gene function enrichment analysis. We detected multiple gene mutations and gene deletions, which were only present in some of the samples. Unfortunately, it was not possible to determine whether these somatic mutations are related to ligament structure or function, or are involved in ACL injury. However, this study provides valuable clues for future in-depth research.


Assuntos
Lesões do Ligamento Cruzado Anterior , Mutação , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Adulto , Masculino , Feminino , Adulto Jovem , Sequenciamento do Exoma , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/patologia , Predisposição Genética para Doença
6.
Mol Genet Genomic Med ; 12(10): e70016, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359128

RESUMO

OBJECTIVE: To investigate the clinical value of whole-exome sequencing (WES) in the diagnosis of foetuses with central nervous system (CNS) abnormalities but having a normal karyotyping and chromosomal microarray result. METHOD: During the period of 2016-2022, there were a total of 149 foetuses with CNS abnormalities but having negative karyotyping and chromosomal microarray analysis results; WES was performed on these foetuses and their parents. Variants were classified according to ACMG guidelines, and the association of pathogenic variants with specific types of CNS abnormalities was explored. RESULTS: Among these 149 foetuses, three categories of abnormalities, namely, single CNS abnormality, multiple CNS abnormalities, CNS abnormalities along with other organ system abnormalities were identified, for which the detection rate of P/LP variants is 17.4% (12/69), 28.6% (14/49) and 54.8% (17/31), respectively. CONCLUSION: WES brought about an increase of 28.9% in diagnostic yield in the prenatal evaluation of foetuses with CNS abnormalities but having negative karyotyping and chromosome array results. WES may also be of benefit for the diagnosis of foetuses with isolated CNS abnormalities, as well as for making more informed interpretations of imaging findings and for providing better genetic counselling.


Assuntos
Sequenciamento do Exoma , Diagnóstico Pré-Natal , Humanos , Feminino , Sequenciamento do Exoma/métodos , Gravidez , Diagnóstico Pré-Natal/métodos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/diagnóstico , Adulto , Testes Genéticos/métodos , Feto/anormalidades , Sistema Nervoso Central/anormalidades , Cariotipagem/métodos
7.
Pediatr Hematol Oncol ; : 1-13, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394854

RESUMO

Cancer predisposition syndromes (CPS) are a group of genetic disorders that increase the risk of various cancers. Identifying CPS has a significant impact on the treatment plan, screening and follow-up strategy, and genetic counseling of the family. However, in children, it goes underdiagnosed in most clinical setups, especially in low- and middle-income (LMIC) countries. In the present study, we screened 60 pediatric oncology patients for a possible CPS based on pre-defined selection criteria. Six patients met the criteria, three of whom had hematological malignancy, while the remaining three had sarcoma. Whole exome sequencing was performed in the selected patients to confirm the diagnosis. Germline mutation in CPS-related genes was discovered in five of six cases, including novel mutations discovered in two. An adverse outcome was observed in all five patients with underlying cancer predisposition syndrome, with three having relapsed and two having progressive disease. Our study reflects a prevalence of 10% underlying CPS in a limited cohort of patient based on the phenotype-genotype approach in our cohort. Using pre-defined clinical selection criteria, screening can be directed to a high-risk patient cohort with high-pick up rate for CPS. The selection criteria could be utilized in any LMIC-based clinical setup for pediatric cancer patients who may benefit from modification of treatment as well as genetic counseling.

8.
Br J Haematol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39389908

RESUMO

The role of imatinib in PDGFRA/B-negative hypereosinophilic syndromes (HES) is controversial because of the heterogeneity of HES and the scarcity of prospective studies. We conducted a phase II clinical trial to evaluate the efficacy of imatinib in PDGFRA/B-negative HES. Thirty-two patients were treated with imatinib (100-400 mg daily), and the molecular basis of their response was identified using whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS). The haematological response rate was 46.9%, with a complete haematological response (CHR) rate of 18.8%. The median time to response was 1.5 months. Among the six patients who achieved CHR, five maintained it until the 24th cycle of imatinib and one lost response after 20 months. The median progression-free survival was 4.3 months. WES and WTS were conducted for 11 patients. The number of non-silent mutations did not differ between responders and non-responders. Nine differentially expressed genes, including SNORD15A, were downregulated in responders. STAT5B::RARA, PAK2::PIGX, and FIP1L1::CHIC2 fusions were identified in patients with sustained responses, and RNF130::BRAF and WNK1::KDM5A fusions were identified in non-responders. Imatinib, along with an appropriate biomarker, could be a promising option for PDGFRA/B-negative HES.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39384723

RESUMO

PURPOSE: The incidence of triple-negative breast cancer (TNBC) in India is higher compared to Western populations. The objective of this study is to identify novel and less reported variants in TNBC in Mizoram, a state with a high cancer incidence in India. METHODS: We analysed whole exome sequencing data from triple-negative breast cancer (TNBC) patients in the Mizo population to identify key and novel variants. Moreover, we analysed reported breast cancer-related genes and pathway alterations. RESULTS: Somatic mutation analysis revealed that TP53 was the most frequently mutated gene and TP53, CACNA1E, IGSF3, RYR1, and FAM155A as significantly mutated driver genes. Based on the ACMG guidelines, we identified a rare pathogenic germline variant of BRCA1 (p.C1697R) in 13% and a likely pathogenic frameshift insertion in RBMX (p.P106Ffs) in 73% of the patients. We also found that the ATM, STK11, and CDKN2A genes were significantly mutated in germline TNBC samples compared to healthy samples. Moreover, we identified novel somatic variants in CHEK2 (p.K182M) and NF1 (p.C245X), and novel germline variants RB1 (p.D111G), CDH1 (p.A10Gfs), CDKN2A (p.V96G), CDKN2A (p.S12Afs*22), MAP3K1 (CAAdelins0), MSH6 (p.L1226_L1230del), and PMS2 (TTCdelins0). Pathway analysis revealed that most somatic mutations were highly associated with PI3K-Akt signalling pathway and MAPK signalling pathways in TNBC. CONCLUSIONS: These findings identified novel variants and key genes contributing to disease development and progression. Further analysis of less studied genes, including RBMX, MRC1, ATM, CTNNB1, and CDKN2A, in TNBC may reveal new potential genes for targeted therapeutic strategies and contribute to clinical advancements in the treatment of TNBC.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39378130

RESUMO

Whole-exome sequencing (WES) data are frequently used for cancer diagnosis and genome-wide association studies (GWAS), based on high-coverage read mapping, informative variant calling, and high-quality reference genomes. The center position of the currently used genome assembly, GRCh38, is now challenged by two newly published telomere-to-telomere (T2T) genomes, T2T-CHM13 and T2T-YAO, and it becomes urgent to have a comparative study to test population specificity using the three reference genomes based on real case WES data. Here we report our analysis along this line for 19 tumor samples collected from Chinese patients. The primary comparison of the exon regions among the three references reveals that the sequences in up to ∼ 1% target regions in T2T-YAO are widely diversified from GRCh38 and may lead to off-target in sequence capture. However, T2T-YAO still outperforms GRCh38 genomes by obtaining 7.41% more mapped reads. Due to more reliable read-mapping and closer phylogenetic relationship with the samples than GRCh38, T2T-YAO reduces half of variant calls of clinical significance which are mostly benign, while maintaining sensitivity in identifying pathogenic variants. T2T-YAO also outperforms T2T-CHM13 in reducing calls of Chinese-specific variants. Our findings highlight the critical need for employing population-specific reference genomes in genomic analysis to ensure accurate variant analysis and the significant benefits of tailoring these approaches to the unique genetic backgrounds of each ethnic group.

11.
Scand J Immunol ; : e13411, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380326

RESUMO

The purpose of this study was to identify new and low-frequency gene variants using whole exome sequencing (WES) in patients with childhood-onset systemic lupus erythematosus (cSLE), that may be involved in the pathogenesis of SLE. We performed WES on selected 17 trios (in some cases including other informative family members) in which the proband presented with severe, atypical clinical features, resistance to conventional therapy, a family pattern of occurrence and/or syndromic characteristics. After performing WES and analysis of gene variants, 17 novel and/or low-frequency variants were identified in 7 patients. One variant was classified as pathogenic (KMT2D, NM_003482.3:c.8626delC, predicted to truncate the protein p.(Gln2876Serfs*34)) and two as likely pathogenic according to the American College of Medical Genetics and Genomics classification guidelines (ADAR, NM_001111.3:c.2815A>G, predicted to encode p.(Ile939Val); BLK, NM_001715.2:c.211G>A, predicted to encode p.(Ala71Thr)). The other variants remain of uncertain significance at this point of time. WES is an important diagnostic and research instrument, producing a growing list of likely genes and gene variants that may be of relevance in the pathogenesis of cSLE and potentially point to novel therapeutic targets.

12.
Cell J ; 26(8): 515-522, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39380482

RESUMO

Veno-occlusive disease with immunodeficiency (VODI) syndrome is a rare genetic disorder characterized by immune system irregularities and a significant mortality rate, despite its infrequency. SP110, situated on chromosome 2q37.1, plays a pivotal role in VODI syndrome, and its association with tuberculosis has been extensively studied. The identification of SP110 mutations holds promise for accelerating the diagnosis and treatment of VODI syndrome, by providing a comprehensive panel for diagnosis and potentially leading to targeted therapies. In this case study, we examined a three-year-old girl born to a consanguineous union who was suspected of having an immunodeficiency disorder. Whole-exome sequencing (WES) and clinical assessments were conducted to screen for and confirm potentially pathogenic mutations. The detected mutation was further analyzed using bioinformatics tools to forecast its impact on protein structure. WES analysis revealed a novel deletion-insertion mutation, c.1181-1182delAGinsT, within SP110. Protein analysis indicated substantial structural modifications in the SP110 protein. This study identified a novel deletion-insertion mutation as a potential contributor to VODI syndrome by affecting the functionality of the SP110 protein. By including various mutations associated with the SP110 gene, this study aimed to expedite diagnosis by creating a comprehensive panel for VODI syndrome.

13.
Clin Chim Acta ; 565: 119989, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378964

RESUMO

Defects in erythrocyte membrane proteins can cause the most common type of inherited hemolytic anemia, so called hereditary spherocytosis (HS). It is characterized by the appearance of spherocytes in peripheral blood, hemolytic anemia, splenomegaly, jaundice and gallstones. Due to difficulty of diagnosis solely based on aforementioned parameters, the addition of genetic testing seems to be effective and most acknowledged. Up to date, pathogenic variations in five genes encoding membrane proteins (ANK1, SPTA1, SPTB, SLC4A1, EPB42) are identified to cause HS. Here, we have studied the genetic spectrum in forty-one patients with clinically suspected HS and their families, as well as their genotype-phenotype correlations. Pathogenic mutations in ANK1, SPTB, SLC4A1 and SPTA1 were found in 17 (41.5 %), 12 (29.3 %), 7 (17.1 %) and 5 (12.2 %) patients, respectively. Deleterious variants include 12 missense, 15 nonsense, 12 frameshift, and 4 splicing variants. Among these variations 32 were novel. In our genotype-phenotype analysis, platelet levels in SPTB (p = 0.021) and SLC4A1 (p = 0.02) patients were found to be significantly lower than ANK1 patients. In addition, LDH levels in SPTB patients were remarkably lower than patients with ANK1 mutations (p = 0.025).

14.
J Pathol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360336

RESUMO

Immune checkpoint blockade (ICB) is currently the standard of care for metastatic renal cell carcinoma (RCC), but treatment responses remain unpredictable. Aristolochic acid (AA), a prevalent supplement additive in Taiwan, has been associated with RCC and induces signature mutations, although its effect on the tumor-immune microenvironment (TIME) is unclear. We aimed to investigate the immune profile of AA-positive RCCs and explore its potential role as a susceptible candidate for ICB. Tissue samples from 22 patients with clear cell RCC (ccRCC) were collected for whole-exome sequencing to determine the genetic features and AA mutational signature (the discovery cohort). The corresponding RNA was sent for NanoString PanCancer IO 360 gene expression analysis to explore the immunological features. The formalin-fixed, parafilm-embedded slides of ccRCCs were sent for multiplex immunohistochemistry/immunofluorescence stain using Vectra system to evaluate the TIME. Tissues from two patients with metastatic RCC demonstrating complete response to ICB were sent for studies to validate the findings (the index patients). The results showed that AA mutational signatures with high tumor mutational burden (TMB) were present in 31.81% of the tumors in the discovery cohort. Three distinct clusters were observed through NanoString analysis. Clusters 1 and 3 were composed mainly of AA-positive RCCs. Cluster 3 RCCs exhibited higher tumor inflammation signature scores and higher immune cell type scores. Vectra analysis revealed a higher percentage of CD15+ and BATF3+ cells in cluster 1, whereas the percentage of CD8+ cells was potentially higher in cluster 3. Strong AA mutational signatures were found in the tumors of two index patients, and both were grouped to cluster 3. In conclusion, AA may induce higher TMB and alter the immune microenvironment in RCCs, which makes the tumors more susceptible to ICB. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

15.
Genes Genomics ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361057

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is a genetically heterogeneous disease. RP 79 has been associated with heterozygous variants of hexokinase 1 (HK1). Only two missense HK1 variants have been reported in 11 families. OBJECTIVE: To discover the molecular pathogenic mechanism of RP and validate the biological harm of HK1 through in vitro experiments. METHODS: We conducted a genetic analysis of a 3-year-old female patient with RP and her family. We also evaluated the ocular phenotypes caused by HK1 (the identified variant). Peripheral blood samples were collected from the patient, her parents, and her brother, and trio whole-exome sequencing was performed. A protein structure analysis was performed to assess the functional impact of the variant, and a mutant plasmid was constructed for the quantitative polymerase chain reaction (qPCR) and western blot (WB) analysis of the effects of the variant on transcription and protein translation. RESULTS: The patient harbored the NM_000188.3: c.613del (p.Ala205Leufs*3) variant, which is a heterozygous variant of HK1. Sanger sequencing confirmed the presence of this variant in the patient; however, the patient's parents and brother had the wild-type variant. The protein structure analysis indicated that the variant resulted in a truncated protein caused by premature termination of amino acid coding. The qPCR results indicated that the variant may not have affected the transcription process. However, the WB analysis demonstrated that the mutant HK-1 protein was not expressed and that the wild-type group exhibited normal expression. CONCLUSIONS: Our patient had a loss-of-function (LoF) variant of HK1, which may be the genetic cause of typical features of RP that are observed at an early age. These findings expand the spectrum of HK1 variants and phenotypes and suggest that LoF variants of HK1 may represent a specific pathogenic mechanism of RP.

16.
Turk J Pediatr ; 66(4): 505-510, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39387424

RESUMO

BACKGROUND: ZFYVE19 mutation has been recently identified as one of the non-syndromic causes of cholestasis. It is associated with elevated gamma-glutamyl transferase levels and is likely a cause of neonatal-onset and intrahepatic cholestasis. CASE: Here, we report a rare case of ZFYVE19 defect, confirmed by whole exome sequencing (WES). Our patient, who is currently 4 years old, presented to us at the age of 2 years with elevated levels of serum transaminases and bilirubin. WES revealed a homozygous ZFYVE19 mutation despite preserved synthetic liver function. This gene has recently been identified in the literature as a cause of non-classical progressive familial intrahepatic cholestasis (OMIM # 619849). Treatment with an appropriate dose of ursodeoxycholic acid resulted in the regression of elevated liver enzymes and itching. The patient's body mass index progressively increased throughout the treatment period. No medication side effects were observed at any point. Currently, the patient remains asymptomatic during follow-up. CONCLUSION: We have identified the ZFYVE19 mutation as a variant that is not accompanied by any other symptoms. However, we have limited knowledge about the progression of the disease and are closely monitoring the patient for potential liver-related issues. Using WES in cases of undiagnosed liver enzyme elevations or cholestasis can help identify new genes and improve our understanding of the underlying pathophysiology.


Assuntos
Colestase Intra-Hepática , Mutação , Humanos , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/diagnóstico , Pré-Escolar , Masculino , Feminino , Sequenciamento do Exoma , Ácido Ursodesoxicólico/uso terapêutico
17.
Clin Epigenetics ; 16(1): 138, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369220

RESUMO

BACKGROUND: Multi-locus imprinting disturbance (MLID) with methylation defects in various differentially methylated regions (DMRs) has recently been identified in approximately 150 cases with imprinting disorders (IDs), and deleterious variants have been found in genes related to methylation maintenance of DMRs, such as those encoding proteins constructing the subcortical maternal complex (SCMC), in a small fraction of patients and/or their mothers. However, integrated methylation analysis for DMRs and sequence analysis for MLID-causative genes in MLID cases and their mothers have been performed only in a single study focusing on Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) phenotypes. RESULTS: Of 783 patients with various IDs we have identified to date, we examined a total of 386 patients with confirmed epimutation and 71 patients with epimutation or uniparental disomy. Consequently, we identified MLID in 29 patients with epimutation confirmed by methylation analysis for multiple ID-associated DMRs using pyrosequencing and/or methylation-specific multiple ligation-dependent probe amplification. MLID was detected in approximately 12% of patients with BWS phenotype and approximately 5% of patients with SRS phenotype, but not in patients with Kagami-Ogata syndrome, Prader-Willi syndrome, or Angelman syndrome phenotypes. We next conducted array-based methylation analysis for 78 DMRs and whole-exome sequencing in the 29 patients, revealing hypomethylation-dominant aberrant methylation patterns in various DMRs of all the patients, eight probably deleterious variants in genes for SCMC in the mothers of patients, and one homozygous deleterious variant in ZNF445 in one patient. These variants did not show gene-specific methylation disturbance patterns. Clinically, neurodevelopmental delay and/or intellectual developmental disorder (ND/IDD) was observed in about half of the MLID patients, with no association with the identified methylation disturbance patterns and genetic variants. Notably, seven patients with BWS phenotype were conceived by assisted reproductive technology (ART). CONCLUSIONS: The frequency of MLID was 7.5% (29/386) in IDs caused by confirmed epimutation. Furthermore, we revealed diverse patterns of hypomethylation-dominant methylation defects, nine deleterious variants, ND/IDD complications in about half of the MLID patients, and a high frequency of MLID in ART-conceived patients.


Assuntos
Síndrome de Beckwith-Wiedemann , Metilação de DNA , Impressão Genômica , Síndrome de Silver-Russell , Humanos , Impressão Genômica/genética , Metilação de DNA/genética , Feminino , Masculino , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/genética , Fenótipo , Epigênese Genética/genética , Criança , Pré-Escolar
18.
Radiol Case Rep ; 19(11): 4963-4969, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39247466

RESUMO

We present a case of pulmonary metastasis originating from renal angiomyolipoma (AML), as evidenced by whole-exome sequencing (WES) analysis. Although AML predominantly arises in the kidneys, it can emerge in various body parts, making it important to distinguish between multicentric development and metastasis. However, previous studies have not distinguished between these conditions. Our case features an 82-year-old woman with a history of renal AML who presented with multiple, randomly distributed, bilateral pulmonary nodules of varying size and pure fat densities. The patient's condition followed a benign course over 10 years. Through WES, we discovered shared mutations in pulmonary lesions that were absent in the patient's blood, including a pathological mutation in TSC2, suggesting a metastatic origin from renal AML. Knowledge of the pulmonary manifestations of AML and their distinctive imaging findings can help radiologists and clinicians diagnose and manage patients with similar presentations.

19.
J Allergy Clin Immunol Glob ; 3(4): 100312, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39253104

RESUMO

Background: In recent years, germline gain-of-function (GOF) mutations in signal transducer and activator of transcription 3 (STAT3) have been identified as a cause of early-onset multiorgan autoimmune diseases with the widespread use of next-generation sequencing, and targeted therapies such as tocilizumab have been reported to be effective. Objective: We sought to assess whether a novel STAT3 mutation detected by whole-exome sequencing is pathogenic and examine the efficacy of targeted therapy. Methods: A pediatric patient with idiopathic pulmonary hemosiderosis, autoimmune thyroiditis, inflammatory bowel disease unclassified, leukocytosis, thrombocytosis, and severe growth failure was examined. Results: This 7-year-old boy had idiopathic pulmonary hemosiderosis at the age of 6 months. Despite high-dose steroid therapy, pulmonary fibrosis progressed. Furthermore, he presented with severe growth failure, autoimmune thyroiditis, leukocytosis, thrombocytosis, and inflammation bowel disease unclassified. Given the presence of multiple autoimmune diseases, whole-exome sequencing was performed, which detected germline de novo heterozygous STAT3 mutation (NM_139276.2; c.2144C>A, p.(P715Q)). Dual-luciferase reporter assay revealed this novel STAT3 mutation as GOF. After starting tocilizumab therapy at the age of 6, hospital stays decreased, and the progression of pulmonary fibrosis was decelerated without increasing the steroid dose. New autoimmune diseases did not develop, and no apparent adverse effects on growth have been observed. Conclusions: Tocilizumab may be effective for patients with STAT3 GOF mutation, including those requiring long-term management of idiopathic pulmonary hemosiderosis. Diagnosis of patients with early-onset multiorgan autoimmune diseases in which STAT3 GOF is suspected should be confirmed by genetic testing and functional analysis to consider the introduction of targeted therapies.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39262158

RESUMO

OBJECTIVES: Congenital hypogonadotropic hypogonadism (CHH) is a rare condition caused by a defect in the production, secretion or action of gonadotropin-releasing hormone. The absence of puberty and varying degrees of gonadotropic deficiency are common symptoms of this disorder. Heterogeneity exists in the clinical presentation of the different clinical subtypes and multiple genes have been implicated in CHH. A number of genetic defects have been identified as causes normosmic CHH, including mutations of GnRHR, GNRH1, KISS1R, KISS1, TACR3 and TAC3. Loss-of-function mutations in KISS1R gene are a rare cause of normosmic CHH. CASE PRESENTATION: We described an 11.5 years old Chinese patient who presented at birth with micropenis, microorchidia and bilateral cryptorchidism. Whole-exome sequencing was also performed and identified a homozygous mutation of KISS1R gene, c.1010_1028del (p.V337Afs*82). The variant was predicted as "deleterious" and classified as "likely pathogenic". This variant has never been reported in patients with CHH. Furthermore, we summarized the clinical presentations and analyzed the phenotype-genotype correlation between CHH and KISS1R mutations in previous reports. CONCLUSIONS: This study details the clinical phenotypes and hormone levels of the patient and expands the spectrum of mutations in the KISS1R gene associated with CHH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...