Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Maxillofac Plast Reconstr Surg ; 46(1): 1, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227085

RESUMO

BACKGROUND: Worldwide cleft lip with or without a cleft palate (CL/P) is the most common craniofacial birth defect. Apart from changes in facial appearance, additionally affected individuals often suffer from various associated comorbidities requiring complex multidisciplinary treatment with overall high expenses. Understanding the complete pathogenetic mechanisms of CL/P might aid in developing new preventative strategies and therapeutic approaches, help with genetic counselling, and improve quality of life. Many genes have been associated with the development of orofacial clefts; however, the majority require further research. Based on the role of PAX7, PAX9, SHH, SOX3, WNT3A, and WNT9B in orofacial development, the intention was to use chromogenic in situ hybridization to detect the six genes in postnatal CLP-affected palatine tissue and compare their distribution within the tissue samples. RESULTS: Statistically significant differences in the distribution of PAX7, PAX9, WNT3A, and WNT9B were observed. In total, 19 pairs of moderate to very strong positive correlations were noted. CONCLUSIONS: Changes in the cleft-affected palatine epithelium primarily seem to be associated with the PAX7 gene; however, PAX9, WNT3A, WNT9B, and SOX3 role seems to be more limited. Whilst connective tissue changes seem to depend on PAX7 only, SHH seems to participate individually and indistinctly. Numerous positive correlations reflect the complicating interactions of the pathways and their components in the orofacial cleft morphopathogenesis.

2.
Virchows Arch ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37718335

RESUMO

Wnt family member 9b (Wnt9b) has been demonstrated as a valuable marker for breast cancer diagnosis in surgical pathology. In this study, we examined the utility of Wnt9b in diagnosing metastatic breast carcinoma in cytology samples. Cell blocks from fine needle aspirations (FNA) and fluid specimens of 96 metastatic breast carcinomas and 123 primary and metastatic non-breast neoplasms from various organ systems were evaluated by Wnt9b and GATA3 immunohistochemistry (IHC). Wnt9b and GATA3 were positive in 81.3% and 92.7% of metastatic breast carcinomas, respectively. Conversely, 93.5% and 90.0% of non-breast, non-urothelial carcinomas were negative for Wnt9b and GATA3, respectively. Wnt9b expression was positive in rare gastrointestinal, gynecological, lung, pancreas, and salivary gland tumors. All twenty-eight urothelial carcinomas were negative for Wnt9b, while twenty-six (92.9%) were positive for GATA3. Wnt9b was slightly less sensitive but more specific than GATA3 in diagnosing metastatic breast cancer in cytology samples. Particularly, Wnt9b shows higher specificity in differentiating breast and urothelial primaries. The combined use of Wnt9b and GATA3 may increase diagnostic accuracy.

3.
Dent J (Basel) ; 11(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366674

RESUMO

Orofacial clefts have been associated with specific cleft candidate genes which encode regulatory proteins required for orofacial region development. Cleft candidate genes encode proteins involved with the cleft morphopathogenesis process, but their exact interactions and roles are relatively unclear in human cleft tissue. This study evaluates the presence and correlations of Sonic Hedgehog (SHH), SRY-Box Transcription Factor 3 (SOX3), Wingless-type Family Member 3A (WNT3A) and 9B (WNT9B) protein containing cells in different cleft tissue. Non-syndromic cleft-affected tissue was subdivided into three groups-unilateral cleft lip (UCL) (n = 36), bilateral cleft lip (BCL) (n = 13), cleft palate (CP) (n = 26). Control tissue was obtained from five individuals. Immunohistochemistry was implemented. The semi-quantitative method was used. Non-parametric statistical methods were applied. A significant decrease in SHH was found in BCL and CP tissue. SOX3, WNT3A and WNT9B had a significant decrease in all clefts. Statistically significant correlations were found. The significant decrease in SHH could be associated with BCL and CP pathogenesis. SOX3, WNT3A and WNT9B could have morphopathogenetic involvement in UCL, BCL, and CP. Similar correlations imply the presence of similar pathogenetic mechanisms in different cleft variations.

4.
Elife ; 112022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35588359

RESUMO

Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.


Assuntos
Ovário , Peixe-Zebra , Animais , Feminino , Gônadas , Ovário/metabolismo , Diferenciação Sexual/genética , Transcriptoma , Peixe-Zebra/genética
5.
Am J Med Genet A ; 185(10): 3005-3011, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34145744

RESUMO

WNT9B plays a key role in the development of the mammalian urogenital system. It is essential for the induction of mesonephric and metanephric tubules, the regulation of renal tubule morphogenesis, and the regulation of renal progenitor cell expansion and differentiation. To our knowledge, WNT9B has not been associated with renal defects in humans; however, WNT9B-/- mice have renal agenesis/hypoplasia and reproductive tract abnormalities. We report four individuals from two unrelated consanguineous families with bilateral renal agenesis/hypoplasia/dysplasia and homozygous variants in WNT9B. The proband from Family 1 has bilateral renal cystic dysplasia and chronic kidney disease. He has two deceased siblings who presented with bilateral renal hypoplasia/agenesis. The three affected family members were homozygous for a missense variant in WNT9B (NM_003396.2: c.949G>A/p.(Gly317Arg)). The proband from Family 2 has renal hypoplasia/dysplasia, chronic kidney disease, and is homozygous for a nonsense variant in WNT9B (NM_003396.2: c.11dupC/p.(Pro5Alafs*52)). Two of her siblings died in the neonatal period, one confirmed to be in the context of oligohydramnios. The proband's unaffected brother is also homozygous for the nonsense variant in WNT9B, suggesting nonpenetrance. We propose a novel association of WNT9B and renal anomalies in humans. Further study is needed to delineate the contribution of WNT9B to genitourinary anomalies in humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Anormalidades Urogenitais/genética , Proteínas Wnt/genética , Animais , Criança , Anormalidades Congênitas/patologia , Feminino , Homozigoto , Humanos , Lactente , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/patologia , Masculino , Camundongos , Gravidez , Sistema Urinário/crescimento & desenvolvimento , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/patologia
6.
J Maxillofac Oral Surg ; 20(1): 149-153, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33584057

RESUMO

AIM: This study sought to evaluate the relationship between height of an individual and the presence of impaction of maxillary and mandibular third molars, and to determine the role of genetics in third molar impaction. MATERIALS AND METHODS: This was a case-control study, with cases consisted of 200 subjects with third molar impactions; and 200 controls without third molar impactions. Height of subjects was measured, and saliva samples were collected from all the subjects. DNA was extracted from saliva samples. To investigate the role of selected genes in the etiology of third molar impactions, Taqman Genotyping using SNPs identified for jaw growth, height and tooth agenesis was employed. Five candidate genes were investigated using 11 markers (SNPs). RESULTS: The mean height of cases was significantly lower than that of the control subjects (p = 0.04). No difference was found in allele frequency between cases and controls for 10 of the 11 SNPs. However, for rs6504591 the p value was near significance (p = 0.07) with odd ratio of 2.131. Subjects with lower third molar impactions were significantly shorter than those who have fully erupted third molars. CONCLUSIONS: Subjects with lower third molar impactions were significantly shorter than those who have fully erupted third molars. We observed that individuals with third molar impaction tend to have T allele at the locus, suggesting that the T allele at the locus may increase the risk for having an impacted third molar. The rs6504591 G/T variation on human chromosome 17 (WNT9B gene) appears to increase risk by twofolds for impaction albeit with inability to detect significance due to small sample size.

7.
Contemp Clin Dent ; 11(1): 60-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110311

RESUMO

CONTEXT: Nonsyndromic cleft lip with or without cleft palate (CL/CP) is a common congenital facial malformation without any other structural or developmental abnormalities. AIMS AND OBJECTIVES: To test the association of Wnt9B rs1530364 and Wnt5A rs566926 gene variants with the nonsyndromic CL/CP patients in South Indian population. METHODS: Deoxyribonucleic acid (DNA) samples of 25 subjects with nonsyndromic cleft lip and palate (NSCLP) and 25 unrelated controls collected from the department were used for the study. Group A: DNA samples of 25 subjects NSCLP (P1-P25). Group B: DNA samples of 25 unrelated controls (C1-C25). The extracted DNA samples were subjected to polymerase chain reaction, and later, these amplified products were subjected to DNA sequencing. Results were documented in the form of electropherograms. RESULTS: The results indicated that there is a strong association between the presence of Wnt9B rs1530364 gene with the incidence of NSCLP. This study also suggests that the likelihood of NSCLP is higher in subjects having CC (P = 0.02) genotype for Wnt9B gene variant rs1530364. CONCLUSION: We can conclude that Wnt9B gene variant rs1530364 can be considered as genetic marker for NSCLP for our population.

8.
Front Cell Dev Biol ; 8: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457899

RESUMO

The R-spondin (RSPO) family of proteins potentiate canonical WNT/ß-catenin signaling and may provide a mechanism to fine-tune the strength of canonical WNT signaling. Although several in vitro studies have clearly demonstrated the potentiation of canonical WNT signaling by RSPOs, whether this potentiation actually occurs in normal development and tissue function in vivo still remains poorly understood. Here, we provide clear evidence of the potentiation of canonical WNT signaling by RSPO during mouse facial development by analyzing compound Wnt9b and Rspo2 gene knockout mice and utilizing ex vivo facial explants. Wnt9b;Rspo2 double mutant mice display facial defects and dysregulated gene expression pattern that are significantly more severe than and different from those of Wnt9b or Rspo2 null mutant mice. Furthermore, we found suggestive evidence that the LGR4/5/6 family of the RSPO receptors may play less critical roles in WNT9b:RSPO2 cooperation. Our results suggest that RSPO-induced cooperation is a key mechanism for fine-tuning canonical WNT/ß-catenin signaling in mouse facial development.

9.
Dev Dyn ; 249(10): 1274-1284, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32390226

RESUMO

BACKGROUND: Despite the strides made in understanding the complex network of key regulatory genes and cellular processes that drive palate morphogenesis, patients suffering from these conditions face treatment options that are limited to complex surgeries and multidisciplinary care throughout life. Hence, a better understanding of how molecular interactions drive palatal growth and fusion is critical for the development of treatment and preventive strategies for cleft palates in humans. Our previous work demonstrated that Pax9-dependent Wnt signaling is critical for the growth and fusion of palatal shelves. We showed that controlled intravenous delivery of small molecule Wnt agonists specifically blocks the action of Dkks (inhibitors of Wnt signaling) and corrects secondary palatal clefts in Pax9-/- mice. While these data underscore the importance of the functional upstream relationship of Pax9 to the Wnt pathway, not much is known about how the genetic nature of Pax9's interactions in vivo and how it modulates the actions of these downstream effectors during palate formation. RESULTS: Here, we show that the genetic reduction of Dkk1 during palatogenesis corrected secondary palatal clefts in Pax9-/- mice with restoration of Wnt signaling activities. In contrast, genetically induced overexpression of Dkk1 mice phenocopied the defects in tooth and palate development visible in Pax9-/- strains. Results of ChIP-qPCR assays showed that Pax9 can bind to regions near the transcription start sites of Dkk1 and Dkk2 as well as the intergenic region of Wnt9b and Wnt3 ligands that are downregulated in Pax9-/- palates. CONCLUSIONS: Taken together, these data suggest that the molecular mechanisms underlying Pax9's role in modulating Wnt signaling activity likely involve the inhibition of Dkk expression and the control of Wnt ligands during palatogenesis.


Assuntos
Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/fisiologia , Palato/embriologia , Proteínas Wnt/genética , Animais , Fissura Palatina/genética , Modelos Animais de Doenças , Feminino , Genótipo , Ligantes , Masculino , Mesoderma , Camundongos , Mutação , Palato/fisiologia , Fenótipo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt3/genética
10.
Dev Dyn ; 248(12): 1232-1242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469941

RESUMO

BACKGROUND: Cleft lip and palate is one of the most common human birth defects, but the underlying etiology is poorly understood. The A/WySn mouse is a spontaneously occurring model of multigenic clefting in which 20% to 30% of individuals develop an orofacial cleft. Recent work has shown altered methylation at a specific retrotransposon insertion downstream of the Wnt9b locus in clefting animals, which results in decreased Wnt9b expression. RESULTS: Using a newly developed protocol that allows us to measure morphology, gene expression, and DNA methylation in the same embryo, we relate gene expression in an individual embryo directly to its three-dimensional morphology for the first time. We find that methylation at the retrotransposon relates to Wnt9b expression and morphology. IAP methylation relates to shape of the nasal process in a manner consistent with clefting. Embryos with low IAP methylation exhibit increased among-individual variance in facial shape. CONCLUSIONS: Methylation and gene expression relate nonlinearly to nasal process morphology. Individuals at one end of a continuum of phenotypic states display a clinical phenotype and increased phenotypic variation. Variable penetrance and expressivity in this model is likely determined both by among-individual variation in methylation and changes in phenotypic robustness along the underlying liability distribution for orofacial clefting.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Variação Biológica Individual , Fenda Labial/complicações , Fenda Labial/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Metilação de DNA , Embrião de Mamíferos , Face/embriologia , Face/patologia , Estudos de Associação Genética , Heterogeneidade Genética , Humanos , Camundongos , Camundongos Transgênicos , Palato/embriologia , Palato/patologia , Fenótipo , Retroelementos/genética , Proteínas Wnt/genética
11.
Med Genet ; 30(1): 3-11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527097

RESUMO

The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome [MIM 277000] is characterised by the absence of a uterus and vagina in otherwise phenotypically normal women with karyotype 46,XX. Clinically, the MRKH can be subdivided into two subtypes: an isolated or type I form can be delineated from a type II form, which is characterised by extragenital malformations. The so-called Müllerian hypoplasia, renal agenesis, cervicothoracic somite dysplasia (MURCS) association can be seen as the most severe phenotypic outcome. The MRKH syndrome affects at least 1 in 4000 to 5000 female new-borns. Although most of the cases are sporadic, familial clustering has also been described, indicating a genetic cause of the disease. However, the mode of inheritance is autosomal-dominant inheritance with reduced penetrance. High-resolution array-CGH and MLPA analysis revealed recurrent aberrations in different chromosomal regions such as TAR susceptibility locus in 1q21.1, chromosomal regions 16p11.2, and 17q12 and 22q11.21 microduplication and -deletion regions in patients with MRKH. Sequential analysis of the genes LHX1, TBX6 and RBM8A, which are located in chromosomal regions 17q12, 16p11.2 and 1q21.1, yielded in the detection of MRKH-associated mutations. In a subgroup of patients with signs of hyperandrogenaemia mutations of WNT4 have been found to be causative. Analysis of another member of the WNT family, WNT9B, resulted in the detection of some causative mutations in MRKH patients.

12.
Wiley Interdiscip Rev Dev Biol ; 7(3): e310, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350886

RESUMO

The Müllerian ducts are part of the embryonic urogenital system. They give rise to mature structures that serve a critical function in the transport and development of the oocyte and/or embryo. In most vertebrates, both sexes initially develop Müllerian ducts during embryogenesis, but they regress in males under the influence of testis-derived Anti-Müllerian Hormone (AMH). A number of regulatory factors have been shown to be essential for proper duct development, including Bmp and Wnt signaling molecules, together with homeodomain transcription factors such as PAX2 and LIM1. Later in development, the fate of the ducts diverges between males and females and is regulated by AMH and Wnt signaling molecules (duct regression in males) and Hox genes (duct patterning in females). Most of the genes and molecular pathways known to be involved in Müllerian duct development have been elucidated through animal models, namely, the mouse and chicken. In addition, genetic analysis of humans with reproductive tract disorders has further defined molecular mechanisms of duct formation and differentiation. However, despite our current understanding of Müllerian duct development, some questions remain to be answered at the molecular genetic level. This article is categorized under: Early Embryonic Development > Development to the Basic Body Plan.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Ductos Paramesonéfricos/embriologia , Diferenciação Sexual , Animais , Linhagem da Célula , Feminino , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Ductos Paramesonéfricos/citologia , Ductos Paramesonéfricos/metabolismo , Via de Sinalização Wnt
13.
Dev Cell ; 43(3): 274-289.e5, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29056552

RESUMO

Hemodynamic forces play an essential epigenetic role in heart valve development, but how they do so is not known. Here, we show that the shear-responsive transcription factor KLF2 is required in endocardial cells to regulate the mesenchymal cell responses that remodel cardiac cushions to mature valves. Endocardial Klf2 deficiency results in defective valve formation associated with loss of Wnt9b expression and reduced canonical WNT signaling in neighboring mesenchymal cells, a phenotype reproduced by endocardial-specific loss of Wnt9b. Studies in zebrafish embryos reveal that wnt9b expression is similarly restricted to the endocardial cells overlying the developing heart valves and is dependent upon both hemodynamic shear forces and klf2a expression. These studies identify KLF2-WNT9B signaling as a conserved molecular mechanism by which fluid forces sensed by endothelial cells direct the complex cellular process of heart valve development and suggest that congenital valve defects may arise due to subtle defects in this mechanotransduction pathway.


Assuntos
Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Valvas Cardíacas/crescimento & desenvolvimento , Hemodinâmica/fisiologia , Transdução de Sinais/genética , Animais , Proliferação de Células/fisiologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Transgênicos , Organogênese/fisiologia , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
14.
Clin Genet ; 89(5): 590-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26610373

RESUMO

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is a well-known malformation pattern of the Müllerian ducts (MDs) characterized by congenital absence of the uterus and vagina. To date, most cases remain unexplained at molecular level. As female Wnt9b-/- mice show a MRKHS-like phenotype, WNT9B has emerged as a promising candidate gene for this disease. We performed retrospective sequence analyses of WNT9B in 226 female patients with disorders of the MDs, including 109 patients with MRKHS, as well as in 135 controls. One nonsense mutation and five likely pathogenic missense mutations were detected in WNT9B. Five of these mutations were found in cases with MRKHS accounting for 4.6% of the patients with this phenotype. No pathogenic mutations were detected in the control group (p = 0.017). Interestingly, all of the MRKHS patients with a WNT9B mutation were classified as MRKHS type 1, representing 8.5% of the cases from this subgroup. In previous studies, two of the patients with a WNT9B mutation were found to carry either an additional deletion of LHX1 or a missense mutation in TBX6. We conclude that mutations in WNT9B were frequently associated with MRKHS in our cohort and some cases may be explained by a digenic disease model.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Predisposição Genética para Doença/genética , Ductos Paramesonéfricos/anormalidades , Mutação , Proteínas Wnt/genética , Sequência de Bases , Códon sem Sentido , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genótipo , Humanos , Mutação de Sentido Incorreto , Estudos Retrospectivos , Síndrome
15.
Birth Defects Res A Clin Mol Teratol ; 100(10): 772-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25257647

RESUMO

BACKGROUND: The heritable multifactorial etiology of human nonsyndromic cleft lip with or without cleft palate (CL ± P) is not understood. CL ± P occurs in 15% of neonates in the homozygous A/WySn mouse strain, with a multifactorial genetic etiology, the clf1 and clf2 variant genes. Clf1 acts as a mutant allele of Wnt9b but its coding sequence is normal. An IAP (intracisternal A particle) retrotransposon inserted near the Wnt9b gene is associated with clf1. METHODS: Transcription of noncoding sequence between the IAP and the Wnt9b gene was examined in A/WySn embryos. The levels of Wnt9b transcript and of an "IAP antisense" transcript initiated in the IAP and extending into the noncoding interval were assayed in A/WySn and C57BL/6J whole embryos or heads across embryonic days 8 to 12. Methylation of the 5' LTR of the IAP was examined in E12 A/WySn embryo heads. RESULTS: Mean Wnt9b transcript levels were lower in A/WySn than in C57BL/6J at all ages examined and lower in CL ± P embryos than in their normal littermates. The "IAP antisense" transcript was found in all A/WySn embryos and was highest in CL ± P embryos. The IAP at Wnt9b was generally unmethylated in CL ± P embryos and approximately 50% methylated in normal littermates. CONCLUSION: The clf1 mutation in A/WySn is a "metastable epiallele", in which stochastic deficiency in some individuals of DNA methylation of a retrotransposon uniquely inserted near the Wnt9b gene allows transcriptional activity of the retrotransposon and interference with transcription from Wnt9b. Methylation of metastable epialleles should be investigated in human nonsyndromic CL ± P.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Metilação de DNA/fisiologia , Embrião de Mamíferos/embriologia , Proteínas Wnt/deficiência , Análise de Variância , Animais , Sequência de Bases , Benzotiazóis , Metilação de DNA/genética , Diaminas , Embrião de Mamíferos/ultraestrutura , Genes de Partícula A Intracisternal/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Compostos Orgânicos , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
16.
Reprod Biomed Online ; 28(4): 503-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24581601

RESUMO

The WNT9B gene is a common organizing signal regulating different segments of the mammalian urogenital system and plays a primary role in the development of the female reproductive tract. The aim of the present work was to examine the presence of WNT mutations in a population of women with Müllerian duct abnormalities (MDA) in order to elucidate whether mutations in WNT9B are causative for MDA in Chinese women. Initially, 191 Chinese MDA patients and 192 healthy individuals (controls) were recruited. All coding regions were amplified by PCR and sequenced to search for variants. To verify the initial results, the numbers of patients and ethnic-matched controls were expanded to 542 and 563, respectively. One known single-nucleotide polymorphism and four novel variants were identified in the first stage: two were synonymous; the other two were rare nonsynonymous novel variants (c.566G>A (p.Arg189Gln) and c.773G>A (p.Arg258His)). None of the four novel variants was found in controls. In the second stage, both novel nonsynonymous variants were detected in MDA cases and controls. The results indicate that mutations in the coding sequence of WNT9B are not responsible for MDA in the Chinese population.


Assuntos
Povo Asiático/genética , Ductos Paramesonéfricos/anormalidades , Proteínas Wnt/genética , China , Feminino , Humanos , Polimorfismo de Nucleotídeo Único
17.
Reprod Biomed Online ; 28(1): 80-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24268733

RESUMO

Mayer­Rokitansky­Küster­Hauser (MRKH) syndrome is a rare congenital female genital anomaly, which is caused by aplasia of the caudalportion of the Müllerian duct. The WNT9B gene encodes a secretory glycoprotein essential for the caudal extension of the Müllerian duct during embryonic development in mice. Coding regions and exon/intron boundaries of the WNT9B gene were amplified and sequenced in 42 Chinese women with MRKH syndrome and 42 controls. Two novel heterozygous mutationswere identified,which were absent in controls. Onewas amissensemutation in exon 1, and the other was located in the 30-untranslated region. Both variants were detected in one out of 42 patients. The two novel mutations may be pathogenic variants in MRKH patients and warrant further functional study.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Povo Asiático/genética , Anormalidades Congênitas/genética , Ductos Paramesonéfricos/anormalidades , Mutação de Sentido Incorreto/genética , Proteínas Wnt/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Primers do DNA/genética , Feminino , Humanos , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...