Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.138
Filtrar
1.
BMC Genomics ; 25(1): 673, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969975

RESUMO

BACKGROUND: Culex tritaeniorhynchus is widely distributed in China, from Hainan Island in the south to Heilongjiang in the north, covering tropical, subtropical, and temperate climate zones. Culex tritaeniorhynchus carries 19 types of arboviruses. It is the main vector of the Japanese encephalitis virus (JEV), posing a serious threat to human health. Understanding the effects of environmental factors on Culex tritaeniorhynchus can provide important insights into its population structure or isolation patterns, which is currently unclear. RESULTS: In total, 138 COI haplotypes were detected in the 552 amplified sequences, and the haplotype diversity (Hd) value increased from temperate (0.534) to tropical (0.979) regions. The haplotype phylogeny analysis revealed that the haplotypes were divided into two high-support evolutionary branches. Temperate populations were predominantly distributed in evolutionary branch II, showing some genetic isolation from tropical/subtropical populations and less gene flow between groups. The neutral test results of HNQH (Qionghai) and HNHK(Haikou) populations were negative (P < 0.05), indicating many low-frequency mutations in the populations and that the populations might be in the process of expansion. Moreover, Wolbachia infection was detected only in SDJN (Jining) (2.24%), and all Wolbachia genotypes belonged to supergroup B. To understand the influence of environmental factors on mosquito-borne viruses, we examined the prevalence of Culex tritaeniorhynchus infection in three ecological environments in Shandong Province. We discovered that the incidence of JEV infection was notably greater in Culex tritaeniorhynchus from lotus ponds compared to those from irrigation canal regions. In this study, the overall JEV infection rate was 15.27 per 1000, suggesting the current risk of Japanese encephalitis outbreaks in Shandong Province. CONCLUSIONS: Tropical and subtropical populations of Culex tritaeniorhynchus showed higher genetic diversity and those climatic conditions provide great advantages for the establishment and expansion of Culex tritaeniorhynchus. There are differences in JEV infection rates in wild populations of Culex tritaeniorhynchus under different ecological conditions. Our results suggest a complex interplay of genetic differentiation, population structure, and environmental factors in shaping the dynamics of Culex tritaeniorhynchus. The low prevalence of Wolbachia in wild populations may reflect the recent presence of Wolbachia invasion in Culex tritaeniorhynchus.


Assuntos
Culex , Haplótipos , Filogenia , Culex/genética , Culex/virologia , Culex/microbiologia , Animais , China , Clima , Variação Genética , Genética Populacional , Wolbachia/genética , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Mosquitos Vetores/microbiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética
2.
Ecol Evol ; 14(7): e11670, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957696

RESUMO

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

3.
Res Sq ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38946980

RESUMO

Wolbachia is an obligate intracellular α-proteobacterium which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in many hosts and modulate host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The wWil strain from the neotropical fruit fly, Drosophila willistoni, exhibits a remarkably high affinity for host germline-derived cells relative to the soma. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the wWil strain isolated from host cell culture cells. Here, we present the first high quality nanopore assembly of wWil, the Wolbachia endosymbiont of D. willistoni. Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel strain from Drosophila melanogaster.

4.
Pest Manag Sci ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031863

RESUMO

BACKGROUND: Releasing large numbers of Aedes albopictus males, carrying the artificially introduced Wolbachia 'wPip' strain, results in a decrease in the reproductive capacity of wild females due to a phenomenon known as cytoplasmic incompatibility (CI). This vector control strategy is referred to as the incompatible insect technique (IIT). However, its widespread implementation faces various challenges, including the complexity of removing fertile females from the males intended for release. Here, we present the results of semi-field experiments comparing the impact of minimal female co-release on two IIT modes: unidirectional CI-based (UnCI IIT) and bidirectional CI-based (BiCI IIT), specifically targeting Ae. albopictus. RESULTS: The contamination of 'wPip' infected females (2%) during male releases significantly weakened the overall effectiveness of IIT, emphasizing the need for thorough sex separation. Specifically, with UnCI IIT, despite the low rate of co-released females, there was a gradual rise in 'wPip' infection frequency, resulting in more compatible mating and subsequently higher rates of egg hatching. Conversely, this pattern was effectively mitigated in BiCI IIT owing to the reciprocal sterility between the wild-type and the 'wPip' infected populations. CONCLUSION: Through an experimental approach, conducted in a semi-field setting, we have contributed to advancing scientific understanding regarding the potential outcomes of implementing the IIT strategy in the absence of a complete sexing system. The results suggest that safety measures for mitigating the potential impacts of co-released females can be tailored according to the specific type of IIT being utilized. © 2024 Society of Chemical Industry.

5.
Infect Genet Evol ; 123: 105641, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004260

RESUMO

Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.

6.
Exp Parasitol ; : 108806, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009178

RESUMO

Dirofilaria immitis is a filarial parasitic nematode of veterinary significance. With the emergence of drug-resistant isolates in the USA, it is imperative to determine the likelihood of resistance occurring in other regions of the world. One approach is to conduct population genetic studies across an extensive geographical range, and to sequence the genomes of individual worms to understand genome-wide genetic variation associated with resistance. The immature life stages of D. immitis found in the host blood are more accessible and less invasive to sample compared to extracting adult stages from the host heart. To assess the use of immature life stages for population genetic analyses, we have performed whole genome amplification and whole-genome sequencing on nine (n = 9) individual D. immitis microfilaria samples isolated from dog blood. On average, less than 1% of mapped reads aligned to each D. immitis genome (nuclear, mitochondrial, and Wolbachia endosymbiont). For the dog genome, an average of over 99% of mapped reads aligned to the nuclear genome and less than 1% aligned to the mitochondrial genome. The average coverage for all D. immitis genomes and the dog nuclear genome was less than 1, while the dog mitochondrial genome had an average coverage of 2.87. The overwhelming proportion of sequencing reads mapping to the dog host genome can be attributed to residual dog blood cells in the microfilariae samples. These results demonstrate the challenges of conducting genome-wide studies on individual immature parasite life stages, particularly in the presence of extraneous host DNA.

7.
J Insect Physiol ; 157: 104674, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997103

RESUMO

Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.

8.
Int J Parasitol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992783

RESUMO

Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.

9.
Evolution ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934580

RESUMO

The impact of selection on host immune function genes has been widely documented. However, it remains essentially unknown how mutation influences the quantitative immune traits that selection acts on. Applying a classical mutation accumulation (MA) experimental design in Drosophila serrata, we found the mutational variation in susceptibility (median time of death, LT50) to Drosophila C virus (DCV) was of similar magnitude to that reported for intrinsic survival traits. Mean LT50 did not change as mutations accumulated, suggesting no directional bias in mutational effects. Maintenance of genetic variance in immune function is hypothesised to be influenced by pleiotropic effects on immunity and other traits that contribute to fitness. To investigate this, we assayed female reproductive output for a subset of MA lines with relatively long or short survival times under DCV infection. Longer survival time tended to be associated with lower reproductive output, suggesting that mutations affecting susceptibility to DCV had pleiotropic effects on investment in reproductive fitness. Further studies are needed to uncover the general patterns of mutational effect on immune responses and other fitness traits, and to determine how selection might typically act on new mutations via their direct and pleiotropic effects.

10.
Pest Manag Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934782

RESUMO

BACKGROUND: Wolbachia are widespread intracellular bacteria in insects that often have high rates of spread due to their impact on insect reproduction. These bacteria may also affect the mating behavior of their host with impacts on the fitness of host progeny. In this study, we investigated the impact of Wolbachia on a preference for mating with young or old males in the parasitoid wasp Habrobracon hebetor. RESULTS: Our results showed that uninfected females from a tetracycline-treated line preferred to mate with young males, whereas Wolbachia-infected females had no preference. Time to mating was relatively shorter in the infected lines. Regardless of Wolbachia infection status, progeny resulting from matings with young males showed higher fitness than those from crosses with old males, and infected females crossed with infected young males showed the highest performance. CONCLUSION: These results suggest an impact of Wolbachia on female mate preference and offspring fitness although it is unclear how this phenomenon increases Wolbachia transmission of infected wasps. © 2024 Society of Chemical Industry.

11.
Lancet Reg Health Am ; 35: 100783, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38911346

RESUMO

Background: Dengue virus (DENV) is an arbovirus transmitted by Aedes aegypti mosquitoes, which can cause severe conditions such as hemorrhagic fever and dengue shock syndrome. These conditions are associated with adverse social, clinical, and economic consequences in Brazil. Herein, the Wolbachia mosquito replacement method is a promising dengue control strategy. Methods: We estimated the economic impact of implementing the Wolbachia mosquito replacement method in seven Brazilian cities. A mathematical microsimulation model tracked nearly 23 million inhabitants over a 20-year period, considering the transitions between five different health states (susceptible, inapparent, outpatient, hospitalised and death). Direct costs included local dengue control programs, Wolbachia implementation and dengue care. Indirect costs related to death and productivity loss, as well as disability-adjusted life-years (DALY) averted were also considered. Findings: Without Wolbachia, the model projected 1,762,688 reported dengue cases over 20 years. Implementing the Wolbachia method would avert at least 1,295,566 dengue cases, resulting in lower costs and greater effectiveness in all simulated cities. On average, for every 1000 inhabitants followed for 20 years, the Wolbachia method yielded a cost difference of USD 538,233.68 (BRL 2,691,168.40) and averted 5.56 DALYs. Net monetary benefits (NMB) were positive in all seven cities, ranging from USD 110.72 (BRL 553.59) to USD 1399.19 (BRL 6995.95) per inhabitant. Alternative scenarios have also shown a favourable return on investment with a positive benefit-cost ratio (BCR). Interpretation: Wolbachia is likely a cost-effective strategy in the Brazilian context, consistent with international studies. Sensitivity analysis and alternative scenarios confirmed the robustness of the results. Funding: This study was funded by the Wellcome Trust under a grant (224459/Z/21/Z).

12.
Front Microbiol ; 15: 1380647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903791

RESUMO

Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.

13.
Trials ; 25(1): 400, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902790

RESUMO

BACKGROUND: This trial is a parallel, two-arm, non-blinded cluster randomised controlled trial that is under way in Singapore, with the aim of measuring the efficacy of male Wolbachia-infected Aedes aegypti deployments in reducing dengue incidence in an endemic setting with all four dengue serotypes in circulation. The trial commenced in July 2022 and is expected to conclude in September 2024. The original study protocol was published in December 2022. Here, we describe amendments that have been made to the study protocol since commencement of the trial. METHODS: The key protocol amendments are (1) addition of an explicit definition of Wolbachia exposure for residents residing in intervention sites based on the duration of Wolbachia exposure at point of testing, (2) incorporation of a high-dimensional set of anthropogenic and environmental characteristics in the analysis plan to adjust for baseline risk factors of dengue transmission, and (3) addition of alternative statistical analyses for endpoints to control for post hoc imbalance in cluster-based environmental and anthropogenic characteristics. DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of releasing male-Wolbachia infected mosquitoes to reduce dengue incidence in a cluster-randomised controlled trial. The trial will conclude in 2024 and results will be reported shortly thereafter. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682. Registered on 16 August 2022. Retrospectively registered. Last updated 11 November 2023.


Assuntos
Aedes , Dengue , Mosquitos Vetores , Ensaios Clínicos Controlados Aleatórios como Assunto , Wolbachia , Dengue/prevenção & controle , Dengue/epidemiologia , Dengue/transmissão , Animais , Singapura/epidemiologia , Masculino , Aedes/microbiologia , Aedes/virologia , Humanos , Incidência , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Controle de Mosquitos/métodos , Feminino , Controle Biológico de Vetores/métodos
14.
J Evol Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869236

RESUMO

Oak gall wasps typically exhibit a life cycle with one sexual and one asexual generation each year. These wasps can carry various endosymbionts, one of which is the maternally inherited bacterium Wolbachia that can induce several reproductive manipulations on its host. Cytoplasmic incompatibility (CI) has been described as the most prominent of these manipulations. CI leads to embryonic mortality in the hosts' offspring when infected males mate with either uninfected females or with females that harbour different Wolbachia strains. It has been hypothesized that Wolbachia can induce CI in oak gall wasps. To address this hypothesis, we derived a mathematical model to investigate the spread of a bacterial infection in naive populations and to determine the plausibility of CI occurrence. To validate our model, we used published data from Wolbachia-infected Belonocnema treatae populations in two approaches. Our first approach uses measurements of infection frequencies and maternal transmission in the sexual generation. For the second approach, we extended the model to compare predictions to estimates of mtDNA-haplotypes, which, like Wolbachia, are maternally inherited, and can therefore be associated with the infection. Both approaches indicate that CI is present in these populations. Our model can be generalized to investigate the occurrence of CI not only for oak gall wasps but also for other species.

15.
ISME Commun ; 4(1): ycae078, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38915450

RESUMO

Wolbachia is a maternally inherited intracellular bacterium that infects a wide range of arthropods including mosquitoes. The endosymbiont is widely used in biocontrol strategies due to its capacity to modulate arthropod reproduction and limit pathogen transmission. Wolbachia infections in Culex spp. are generally assumed to be monoclonal but the potential presence of genetically distinct Wolbachia subpopulations within and between individual organs has not been investigated using whole genome sequencing. Here we reconstructed Wolbachia genomes from ovary and midgut metagenomes of single naturally infected Culex pipiens mosquitoes from Southern France to investigate patterns of intra- and inter-individual differences across mosquito organs. Our analyses revealed a remarkable degree of intra-individual conservancy among Wolbachia genomes from distinct organs of the same mosquito both at the level of gene presence-absence signal and single-nucleotide polymorphisms (SNPs). Yet, we identified several synonymous and non-synonymous substitutions between individuals, demonstrating the presence of some level of genomic heterogeneity among Wolbachia that infect the same C. pipiens field population. Overall, the absence of genetic heterogeneity within Wolbachia populations in a single individual confirms the presence of a dominant Wolbachia that is maintained under strong purifying forces of evolution.

16.
Acta Trop ; 257: 107284, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857820

RESUMO

Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38923204

RESUMO

Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.

18.
Front Microbiol ; 15: 1418032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832111

RESUMO

Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.

19.
J Econ Entomol ; 117(3): 733-749, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38701242

RESUMO

Wolbachia pipientis is a maternally inherited intracellular bacterium that infects a wide range of arthropods. Wolbachia can have a significant impact on host biology and development, often due to its effects on reproduction. We investigated Wolbachia-mediated effects in the Asian citrus psyllid, Diaphorina citri Kuwayama, which transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease. Diaphorina citri are naturally infected with Wolbachia; therefore, investigating Wolbachia-mediated effects on D. citri fitness and CLas transmission required artificial reduction of this endosymbiont with the application of doxycycline. Doxycycline treatment of psyllids reduced Wolbachia infection by approximately 60% in both male and female D. citri. Psyllids treated with doxycycline exhibited higher CLas acquisition in both adults and nymphs as compared with negative controls. In addition, doxycycline-treated psyllids exhibited decreased fitness as measured by reduced egg and nymph production as well as adult emergence as compared with control lines without the doxycycline treatment. Our results indicate that Wolbachia benefits D. citri by improving fitness and potentially competes with CLas by interfering with phytopathogen acquisition. Targeted manipulation of endosymbionts in this phytopathogen vector may yield disease management tools.


Assuntos
Doxiciclina , Aptidão Genética , Hemípteros , Wolbachia , Animais , Wolbachia/fisiologia , Hemípteros/microbiologia , Feminino , Doxiciclina/farmacologia , Masculino , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Liberibacter , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Simbiose , Antibacterianos/farmacologia , Citrus/microbiologia
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230122, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705185

RESUMO

To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Insetos , Microbiota , Simbiose , Animais , Insetos/microbiologia , Insetos/fisiologia , Microbiota/fisiologia , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...