Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.089
Filtrar
1.
Glia ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39359232

RESUMO

Microglial cells are the phagocytic cells of the brain that under physiological conditions participate in brain homeostasis and surveillance. Under pathogenic states, microglia undergoes strong morphological and transcriptional changes potentially leading to sustained neuroinflammation, brain damage, and cognitive disorders. Postnatal and adult Zika virus (ZIKV) brain infection is characterized by the induction of reactive microglia associated with brain inflammation, synapse loss and neuropathogenesis. Contrary to neurons, microglial cells are not infected by ZIKV thus raising the question of the mechanism governing ZIKV-induced microglia's reactivity. In this work, we have questioned the role of exogenous, neuronal type I interferons (IFNs-I) in regulating ZIKV-induced microglia's reactivity. Primary cultured microglial cells were either treated with conditioned media from ZIKV-infected mature neurons or co-cultured with ZIKV-infected neurons. Using either an antibody directed against the IFNAR receptor that neutralizes the IFNs-I response or Ifnar-/-microglial cells, we demonstrate that IFNs-I produced by ZIKV-infected neurons are the main regulators of the phagocytic capacity and the pro-inflammatory gene expression profile of reactive, non-infected microglial cells. We identify protein kinase R (PKR), whose expression is activated by IFNs-I, as a major regulator of the phagocytic capacity, pro-inflammatory response, and morphological changes of microglia induced by IFNs-I while up-regulating STAT1 phosphorylation and IRF1 expression. Results obtained herein in vitro with primary cultured cells and in vivo in ZIKV-infected adult immunocompetent mice, unravel a role for IFNs-I and PKR in directly regulating microglia's reactivity that could be at work in other infectious and non-infectious brain pathologies.

2.
J Infect Public Health ; 17(11): 102557, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39353399

RESUMO

BACKGROUND: Zika virus (ZIKV) infection during pregnancy presents a significant health risk in women of reproductive age and their offspring due to severe neurological complications. It is meaningful to assess its global burden and temporal trends. METHODS: This study extracted annual incidence cases and rates of ZIKV among women of reproductive age (15-49 years) between 2011 and 2021 from Global Burden of Diseases (GBD) 2021, including global level, 21 GBD regions, 5 socio-demographic index (SDI) regions, 7 age groups, and 204 countries and territories. Relative percent change in cases and estimated annual percentage change (EAPC) of incidence rates were used to quantify the temporal trends. RESULTS: The incidence rate of ZIKV infection exhibited a pronounced peak in 2016 at 174.27 per 100,000 population, with an EAPC of 158.30 % from 2011 to 2016 and -51.86 % from 2016 to 2021 at 3.06 per 100,000 population. And only 5 out of the 21 GBD regions reported ZIKV infection in 2021, predominantly concentrated in Latin America and Caribbean. The outbreaks were primarily concentrated in low-middle and middle SDI regions. In 2021, at the global level, the incidence rates of ZIKV infection among women of reproductive age were similar across different age groups, ranging from 2.41 to 3.39 per 100,000 population. The proportion of ZIKV infection cases was slightly higher in women aged 25-29 and 30-34 years compared to other age groups in 2021, whereas a higher proportion of cases were observed in younger age groups in 2011 and 2016. CONCLUSIONS: Women of reproductive age in Latin America and Caribbean continue to face the threat of ZIKV. Regions with lower SDI had a disproportionately severe burden. Future public health strategies should focus on high-risk areas and populations of reproductive age, enhancing surveillance, prevention, and education efforts to further mitigate the public health threat posed by ZIKV.

3.
Sci Rep ; 14(1): 22809, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354036

RESUMO

The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain. We hypothesized that the impact of STX might vary among different neural cell types. While ZIKV infection caused severe damages on astrocytes and neural stem cells (NSCs), the addition of STX did not exacerbate these effects. We observed that neurons subjected to STX exposure were more prone to apoptosis and displayed higher ZIKV infection rate. These findings suggest that STX exacerbates the harmful effects of ZIKV on neurons, thereby providing a plausible explanation for the heightened severity of ZIKV-induced congenital malformations observed in Brazil's NE. This study highlights the importance of understanding the interactive effects of environmental toxins and infectious pathogens on neural development, with potential implications for public health policies.


Assuntos
Astrócitos , Células-Tronco Neurais , Neurônios , Saxitoxina , Infecção por Zika virus , Zika virus , Células-Tronco Neurais/virologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Humanos , Zika virus/fisiologia , Astrócitos/virologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neurônios/virologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Infecção por Zika virus/virologia , Infecção por Zika virus/patologia , Saxitoxina/toxicidade , Apoptose/efeitos dos fármacos , Microcefalia/virologia , Morte Celular/efeitos dos fármacos , Brasil , Células Cultivadas
4.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274895

RESUMO

Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.


Assuntos
Antivirais , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Ensaios Clínicos como Assunto , Serina Endopeptidases/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos
5.
Viruses ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39339882

RESUMO

Congenital Zika syndrome (CZS) has been identified a constellation of congenital anomalies caused by Zika Virus (ZKV) infection during pregnancy. The infection with ZKV could lead to microcephaly of the fetus due to a severe decrease in brain volume and reduced brain growth. The preliminary screening of CZS is based on measuring head circumference; the diagnosis is made if this measurement is below two standard deviations below the mean. The analyses of the 3D head features of infected infants are limited. This study analyzed 3D head images of 35 ZKV-positive cases with an average age of 16.8 ± 2 months and 35 controls with an average age of 14.4 ± 5 months. This study focused on identifying potential diagnostic characteristics of CZS. The 3D head images were captured using a 3D imaging system. The averaged images of the two groups were aligned to illustrate the size and shape differences. There were significant differences in centroid size, head circumference (HC), head height (HH), and chin height (CH) between the two groups. We also identified significant differences in the indices of chin height/total facial height (CH/TFH) and head height/head circumference ratio (HH/HC) between the CZS and control cases. An HH/HC of 0.49 showed a sensitivity of 0.86 and a specificity of 0.74 in diagnosing CZS, which is more sensitive than the routinely used HC measurement. The index of HH/HC has potential to be used as the gold standard for the early screening for the detection of CZS cases.


Assuntos
Cabeça , Imageamento Tridimensional , Microcefalia , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/diagnóstico por imagem , Infecção por Zika virus/virologia , Feminino , Lactente , Imageamento Tridimensional/métodos , Cabeça/diagnóstico por imagem , Masculino , Microcefalia/virologia , Microcefalia/diagnóstico por imagem , Gravidez , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/diagnóstico por imagem
6.
Oncotarget ; 15: 662-673, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347716

RESUMO

INTRODUCTION: Many studies have highlighted the use of oncolytic viruses as a new class of therapeutic agents for central nervous system (CNS) tumors, especially glioblastomas (GMB). Zika Virus (ZIKV) proteins targeted to specific stem cells have been studied in vitro and animal models with promising results. MATERIALS AND METHODS: A systematic review was evaluated the efficacy and safety of the ZIKV use for CNS tumors treatment. Data were extracted and the in vivo studies were evaluated using the Robins-I tool. We assessed bias in each study using criteria such as selection bias, performance bias, detection bias, attrition bias, reporting bias, and others. According to Cochrane guidelines, bias was classified as high, low, or uncertain. High bias occurred when studies did not meet the criteria. Low bias was assigned when criteria were clearly met. Uncertain bias reflected insufficient information for a clear classification. RESULTS: The 14 included studies shown that ZIKV reduced cell viability or inhibited the growth, proliferation of glioma stem cells (GSCs), and Bcl2 expression - which could potentially enhance the effect of chemotherapy/radiotherapy; caused cytopathic effects, induced tumor cell damage, manifested oncolytic properties, and even selectively safely killed GSCs; ultimately, it led to significant tumor remission and enhanced long-term survival through enhanced T-cell response. CONCLUSIONS: Although current evidence suggests ZIKV as a promising treatment for CNS tumors and may improve survival when combined with surgery and radiotherapy. Despite limited human evidence, it shows potential benefits. Further research is needed to confirm safety, efficacy, and optimize treatment in humans.


Assuntos
Neoplasias Encefálicas , Terapia Viral Oncolítica , Infecção por Zika virus , Zika virus , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/virologia , Animais , Terapia Viral Oncolítica/métodos , Infecção por Zika virus/terapia , Infecção por Zika virus/virologia , Células-Tronco Neoplásicas/virologia , Vírus Oncolíticos , Glioblastoma/terapia , Glioblastoma/virologia , Proliferação de Células
7.
Mar Drugs ; 22(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39330278

RESUMO

Recent advancements in the large-scale cultivation of Tetraselmis sp. in Korea have enabled year-round production of this marine microalgae. This study explores the potential industrial applications of Tetraselmis sp. biomass by investigating the antiviral properties of its extracts and primary components. The antiviral effects of Tetraselmis sp. extracts were evaluated in Zika virus (ZIKV)-infected cells. Following extensive isolation and purification, the main compounds were characterized using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) analyses. Their antiviral activities were confirmed using in vitro and in silico tests. Tetraselmis sp. extracts reduced infectious viral particles and non-structural protein 1 messenger RNA levels in ZIKV-infected cells without inducing cytotoxicity. Additionally, they modulated the interferon-mediated immune system responses. Tetraselmis sp. extracts are composed of four main chlorophylls: chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, hydroxychlorophyll a, and hydroxypheophytin a. Among them, chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, and hydroxypheophytin showed the antiviral activities in ZIKV-infected cells and molecular docking simulations predicted interactions between these chlorophylls and ZIKV. Our findings suggest that Tetraselmis sp. chlorophyll extracts exert antiviral effects against ZIKV and could serve as potential therapeutic candidates against ZIKV infection.


Assuntos
Antivirais , Clorofila , Microalgas , Simulação de Acoplamento Molecular , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Zika virus/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Microalgas/química , Clorofila/farmacologia , Clorofila/análogos & derivados , Humanos , Animais , Chlorocebus aethiops , Clorófitas/química , Células Vero , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Microorganisms ; 12(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39338514

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus, is a significant global health concern due to its association with neurodevelopmental disorders such as congenital Zika syndrome (CZS). This study aimed to compare the replication kinetics, viral persistence, cytopathogenic effects, and immune gene expression in human microglia cells (CHME-3) infected with an Asian lineage ZIKV (PRVABC59, referred to as ZIKV-PRV) and an African lineage ZIKV (IBH30656, referred to as ZIKV-IBH). We found that ZIKV-PRV replicated more efficiently and persisted longer while inducing lower levels of cell death and inflammatory gene activation compared with ZIKV-IBH. These findings suggest that the enhanced replication and persistence of ZIKV-PRV, along with its ability to evade innate immune responses, may underlie its increased neuropathogenic potential, especially in the context of CZS. In contrast, ZIKV-IBH, with its stronger immune gene activation and higher cytopathogenicity, may lead to more acute infections with faster viral clearance, thereby reducing the likelihood of chronic central nervous system (CNS) infection. This study provides crucial insights into the molecular and cellular mechanisms driving the differential pathogenicity of ZIKV lineages and highlights the need for further research to pinpoint the viral factors responsible for these distinct clinical outcomes.

9.
Pathogens ; 13(9)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39339005

RESUMO

Temperature is a determining factor for the viral cycle. In this study, we investigate the effect of different temperatures on the cycles of two important arboviruses-Zika (ZIKV) and Chikungunya (CHIKV)-in Vero (mammalian) and C6/36 (mosquito) cells. We compare genome quantification to infectivity at 28 °C and 37 °C in both cell types. Virus-cell interaction was also examined by transmission electron microscopy, allowing the observation of phenomena such as virus-surfing and giant forms for CHIKV, as well as the the scarcity of ZIKV in C6/36 cells compared to its cycle in mammalian cells.

10.
Int J Biol Macromol ; : 136074, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341314

RESUMO

Zika virus (ZIKV) is an emergent flavivirus that represents a global public health concern due to its association with severe neurological disorders. NS2B is a multifunctional viral membrane protein primarily used to regulate viral protease activity and is crucial for virus replication, making it an appealing target for antiviral drugs. This study presents the structural elucidation of full-length ZIKV NS2B in sodium dodecyl sulfate (SDS) micelles using solution nuclear magnetic resonance experimental data and RosettaMP. The protein structure has four transmembrane α-helices, two amphipathic α-helices, and a ß-hairpin in the hydrophilic region. NS2B presented secondary and tertiary stability in different concentrations of SDS. Furthermore, we studied the dynamics of NS2B in SDS micelles through relaxation parameters and paramagnetic relaxation enhancement experiments. The findings were consistent with the structural calculations. Our work will be essential in understanding the role of NS2B in viral replication and screening for inhibitors against ZIKV.

11.
Vaccines (Basel) ; 12(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39340083

RESUMO

Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions with the potential of territorial expansion due to environmental and ecological changes. The ZIKV envelope protein's domain III, crucial for vaccine development due to its role in receptor binding and neutralizing antibody targeting, was integrated into sterically optimized AP205 VLPs to create an EDIII-based VLP vaccine. To increase the potential size of domains that can be accommodated by AP205, two AP205 monomers were fused into a dimer, resulting in 90 rather than 180 N-/C- termini amenable for fusion. EDIII displayed on AP205 VLPs has several immunological advantages, like a repetitive surface, a size of 20-200 nm (another PASP), and packaged bacterial RNA as adjuvants (a natural toll-like receptor 7/8 ligand). In this study, we evaluated a novel vaccine candidate for safety and immunogenicity in mice, demonstrating its ability to induce high-affinity, ZIKV-neutralizing antibodies without significant disease-enhancing properties. Due to the close genetical and structural characteristics, the same mosquito vectors, and the same ecological niche of the dengue virus and Zika virus, a vaccine covering all four Dengue viruses (DENV) serotypes as well as ZIKV would be of significant interest. We co-formulated the ZIKV vaccine with recently developed DENV vaccines based on the same AP205 VLP platform and tested the vaccine mix in a murine model. This combinatory vaccine effectively induced a strong humoral immune response and neutralized all five targeted viruses after two doses, with no significant antibody-dependent enhancement (ADE) observed. Overall, these findings highlight the potential of the AP205 VLP-based combinatory vaccine as a promising approach for providing broad protection against DENV and ZIKV infections. Further investigations and preclinical studies are required to advance this vaccine candidate toward potential use in human populations.

12.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273370

RESUMO

Zika virus (ZIKV; family, Flaviviridae), which causes congenital Zika syndrome, Guillain-Barré Syndrome, and other severe diseases, is transmitted mainly by mosquitoes; however, the virus can be transmitted through other routes. Among the three structural and seven nonstructural proteins, the surface envelope (E) protein of ZIKV plays a critical role in viral entry and pathogenesis, making it a key target for the development of effective entry inhibitors. This review article describes the life cycle, genome, and encoded proteins of ZIKV, illustrates the structure and function of the ZIKV E protein, summarizes E protein-targeting entry inhibitors (with a focus on those based on natural products and small molecules), and highlights challenges that may potentially hinder the development of effective inhibitors of ZIKV infection. Overall, the article will provide useful guidance for further development of safe and potent ZIKV entry inhibitors targeting the viral E protein.


Assuntos
Antivirais , Proteínas do Envelope Viral , Internalização do Vírus , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Humanos , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Infecção por Zika virus/virologia , Infecção por Zika virus/tratamento farmacológico , Antivirais/farmacologia , Animais
13.
Environ Toxicol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329436

RESUMO

Zika virus (ZIKV) infection during pregnancy can lead to a set of congenital malformations known as Congenital ZIKV syndrome (CZS), whose main feature is microcephaly. The geographic distribution of CZS in Brazil during the 2015-2017 outbreak was asymmetrical, with a higher prevalence in the Northeast and Central-West regions of the country, despite the ubiquitous distribution of the vector Aedes aegypti, indicating that environmental factors could influence ZIKV vertical transmission and/or severity. Here we investigate the involvement of the most used agrochemicals in Brazil with CZS. First, we exposed human neuroblastoma SK-N-AS cells to the 15 frequently used agrochemical molecules or derivative metabolites able to cross the blood-brain barrier. We found that a derived metabolite from a widely used herbicide in the Central-West region, 2,4-dichlorophenoxyacetic acid (2,4D), exacerbates ZIKV neurotoxic effects in vitro. We validate this observation by demonstrating vertical transmission leading to microcephaly in the offspring of immunocompetent C57BL/6J mice exposed to water contaminated with 0.025 mg/L of 2,4D. Newborn mice whose dams were exposed to 2,4D and infected with ZIKV presented a smaller brain area and cortical plate size compared to the control. Also, embryos from animals facing the co-insult of ZIKV and 2,4D exposition presented higher Caspase 3 positive cells in the cortex, fewer CTIP2+ neurons and proliferative cells at the ventricular zone, and a higher viral load. This phenotype is followed by placental alterations, such as vessel congestion, and apoptosis in the labyrinth and decidua. We also observed a mild spatial correlation between CZS prevalence and 2,4D use in Brazil's North and Central-West regions, with R2 = 0.4 and 0.46, respectively. Our results suggest that 2,4D exposition facilitates maternal vertical transmission of ZIKV, exacerbating CZS, possibly contributing to the high prevalence of this syndrome in Brazil's Central-West region compared to other regions.

14.
Cureus ; 16(8): e67068, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39286697

RESUMO

Introduction This study examines the geographic distribution and temporal trends of Zika virus (ZIKV) outbreaks in India from 2016 to 2023 using data from the Integrated Disease Surveillance Programme (IDSP). The burden of ZIKV in India has risen due to its rapid spread and significant health impacts. Existing literature highlights seasonal and geographic patterns but lacks a comprehensive, long-term analysis specific to India. This study addresses this gap by analyzing trends over seven years to inform better public health responses. Methods A secondary data analysis was conducted using publicly available data from the IDSP on reported Zika cases from January 2016 to December 2023. Descriptive statistical methods and geographic information system (GIS) mapping techniques were employed to analyze the geographic distribution and temporal trends of ZIKV outbreaks in India. The data were analyzed and visualized using R software version 4.3.2 (R Foundation for Statistical Computing, Vienna, Austria), with heat maps and choropleth maps to identify hotspots, and line diagrams to identify temporal trends. Results Zika outbreaks predominantly occurred during the post-monsoon season, accounting for 47.62% (n = 10) of the total 21 outbreaks, followed by the monsoon season with 33.33% (n = 7), and summer with 19.05% (n = 4). Two deaths were reported during a significant outbreak in Madhya Pradesh in 2018. Temporal trends indicated notable spikes in cases in 2018 (131 cases) and 2021 (234 cases), with no cases reported in 2019 and 2020. The geographic distribution maps highlighted significant concentrations of ZIKV outbreaks in specific districts within Uttar Pradesh, Madhya Pradesh, and Kerala. Discussion The study identified seasonal patterns, with most cases occurring in the post-monsoon season. The geographic spread of the ZIKV was observed in eight states from 2016 to 2023. GIS identified three hotspots in Uttar Pradesh, Madhya Pradesh, and Kerala. Conclusion The study highlights the need for heightened surveillance and targeted intervention preparedness during high-risk seasons. Enhancing testing facilities and data reporting systems could improve outbreak identification, management, and response.

15.
Biochem Biophys Res Commun ; 733: 150671, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39298919

RESUMO

In the current biopharmaceutical scenario, constant bioprocess monitoring is crucial for the quality and integrity of final products. Thus, process analytical techniques, such as those based on Raman spectroscopy, have been used as multiparameter tracking methods in pharma bioprocesses, which can be combined with chemometric tools, like Partial Least Squares (PLS) and Artificial Neural Networks (ANN). In some cases, applying spectra pre-processing techniques before modeling can improve the accuracy of chemometric model fittings to observed values. One of the biological applications of these techniques could have as a target the virus-like particles (VLP), a vaccine production platform for viral diseases. A disease that has drawn attention in recent years is Zika, with large-scale production sometimes challenging without an appropriate monitoring approach. This work aimed to define global models for Zika VLP upstream production monitoring with Raman considering different laser intensities (200 mW and 495 mW), sample clarification (with or without cells), spectra pre-processing approaches, and PLS and ANN modeling techniques. Six experiments were performed in a benchtop bioreactor to collect the Raman spectral and biochemical datasets for modeling calibration. The best models generated presented a mean absolute error and mean relative error respectively of 3.46 × 105 cell/mL and 35 % for viable cell density (Xv); 4.1 % and 5 % for cell viability (CV); 0.245 g/L and 3 % for glucose (Glc); 0.006 g/L and 18 % for lactate (Lac); 0.115 g/L and 26 % for glutamine (Gln); 0.132 g/L and 18 % for glutamate (Glu); 0.0029 g/L and 3 % for ammonium (NH4+); and 0.0103 g/L and 2 % for potassium (K+). Sample without conditioning (with cells) improved the models' adequacy, except for Glutamine. ANN better predicted CV, Gln, Glu, and K+, while Xv, Glc, Lac, and NH4+ presented no statistical difference between the chemometric tools. For most of the assessed experimental parameters, there was no statistical need for spectra pre-filtering, for which the models based on the raw spectra were selected as the best ones. Laser intensity impacts quality model predictions in some parameters, Xv, Gln, and K+ had a better performance with 200 mW of intensity (for PLS, ANN, and ANN, respectively), for CV the 495 mW laser intensity was better (for PLS), and for the other biochemical variables, the use of 200 or 495 mW did not impact model fitting adequacy.

16.
Virol Sin ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251138

RESUMO

Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs-berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine-and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle. Furthermore, we synthesized a fluorophore-conjugated BBA and showed that BBAs targeted endolysosomes, causing lysosomal pH alkalization. Mechanistic studies on inhibiting ZIKV infection by BBAs revealed that these compounds blocked TRPML channels, leading to lysosomal dysfunction and reducing the expression of NCAM1, a key receptor for the entry of ZIKV into cells, thereby decreasing cells susceptibility to ZIKV infection. Additionally, BBAs inhibited the fusion of autophagosomes and lysosomes, significantly reducing viral RNA replication. Collectively, our results suggest that BBAs inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy, respectively, underscoring the potential of BBAs as therapeutic agents against flavivirus infections.

17.
Curr Pharm Des ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39225215

RESUMO

The 21st century has shown us how rapidly the pandemic can evolve and devastate the life of human beings without differentiating between the continents. Even after the global investment of billions of dollars into the healthcare sector, we are still lacking multiple therapeutics against emerging viruses. World Health Organization (WHO) has listed a number of viruses that could take the form of pandemics at anytime, depending upon their mutations. Among those listed, the SARS-CoV, Ebola, Zika, Nipah, and Chikungunya (CHIKV) are the most known viruses in terms of their number of outbreaks. The common feature among these viruses is their RNA-based genome. Developing a new therapeutic candidate for these RNA viruses in a short period of time is challenging. In-silico drug designing techniques offer a simple solution to these problems by implementing supercomputers and complicated algorithms that can evaluate the inhibition activity of proposed synthetic compounds without actually doing the bioassays. A vast collection of protein crystal structures and the data on binding affinity are useful tools in this process. Taking this into account, we have summarized the in-silico based therapeutic advances against SARS-CoV, Ebola, Zika, Nipah, and CHIKV viruses by encapsulating state-of-art research articles into different sections. Specifically, we have shown that computer- aided drug design (CADD) derived synthetic molecules are the pillars of upcoming therapeutic strategies against emerging and neglected viruses.

18.
Virol J ; 21(1): 209, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227837

RESUMO

BACKGROUND: Early pregnancy Zika virus (ZIKV) infection is associated with major brain damage in fetuses, leading to microcephaly in 0.6-5.0% of cases, but the underlying mechanisms remain largely unknown. METHODS: To understand the kinetics of ZIKV infection during fetal development in a nonhuman primate model, four cynomolgus macaque fetuses were exposed in utero through echo-guided intramuscular inoculation with 103 PFU of ZIKV at 70-80 days of gestation, 2 controls were mock inoculated. Clinical, immuno-virological and ultrasound imaging follow-ups of the mother/fetus pairs were performed until autopsy after cesarean section 1 or 2 months after exposure (n = 3 per group). RESULTS: ZIKV was transmitted from the fetus to the mother and then replicate in the peripheral blood of the mother from week 1 to 4 postexposure. Infected fetal brains tended to be smaller than those of controls, but not the femur lengths. High level of viral RNA ws found after the first month in brain tissues and placenta. Thereafter, there was partial control of the virus in the fetus, resulting in a decreased number of infected tissue sections and a decreased viral load. Immune cellular and humoral responses were effectively induced. CONCLUSIONS: ZIKV infection during the second trimester of gestation induces short-term brain injury, and although viral genomes persist in tissues, most of the virus is cleared before delivery.


Assuntos
Encéfalo , Modelos Animais de Doenças , Feto , Complicações Infecciosas na Gravidez , Carga Viral , Infecção por Zika virus , Zika virus , Animais , Feminino , Gravidez , Infecção por Zika virus/virologia , Feto/virologia , Complicações Infecciosas na Gravidez/virologia , Encéfalo/virologia , Macaca fascicularis/virologia , RNA Viral , Placenta/virologia , Transmissão Vertical de Doenças Infecciosas
19.
Chem Asian J ; : e202400826, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222039

RESUMO

The Zika virus (ZIKV) is a global health threat due to its rapid spread and severe health implications, including congenital abnormalities and neurological complications. Differentiating ZIKV from other arboviruses such as dengue virus (DENV) is crucial for effective diagnosis and treatment. This study presents the development of a biosensor for detecting the ZIKV non-structural protein 1 (NS1) using gold nanoparticles (AuNPs) functionalized with monoclonal antibodies employing dynamic light scattering (DLS). The biosensor named ZINS1-mAb-AuNP exhibited specific binding to the ZIKV NS1 protein, demonstrating high colloidal stability indicated by a hydrodynamic diameter (DH) of 140 nm, detectable via DLS. In the absence of the protein, the high ionic strength medium caused particle aggregation. This detection method showed good sensitivity and specificity, with a limit of detection (LOD) of 0.96 µg mL-1, and avoided cross-reactivity with DENV2 NS1 and SARS-CoV-2 spike proteins. The ZINS1-mAb-AuNP biosensor represents a promising tool for the early and accurate detection of ZIKV, facilitating diagnostic and treatment capabilities for arboviral infections.

20.
Chin Med Sci J ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39318276

RESUMO

Objectives To identify the 5' untranslated region of Zika virus (ZIKV5'UTR) RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site (IRES) located in ZIKV5'UTR and virus production. Methods Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining. Subsequently, liquid chromatography-tandem mass spectrometry (LC-MS/MS), bioinformatics analysis, and western blot were used to identify the candidate proteins binding to ZIKV5'UTR. Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production. Results tRSA RNA pull-down assay, LC-MS/MS, and western blot analysis showed that polypyrimidine tract-binding protein (PTB) bound to the ZIKV 5'UTR Furthermore, dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV (t = 10.220, P < 0.001), while PTB knockdown had the opposite effect (t = 4.897, P < 0.01). Additionally, virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer (t = 6.400, P < 0.01), whereas reducing PTB expression level weakened virus infectivity (t = 5.055, P < 0.01). Conclusion PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...