Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929693

RESUMO

Recent studies have shown that seagrasses could possess potential applications in the treatment of inflammatory disorders. Five seagrass species (Zostera muelleri, Halodule uninervis, Cymodocea rotundata, Syringodium isoetifolium, and Thalassia hemprichii) from the Great Barrier Reef (QLD, Australia) were thus collected, and their preliminary antioxidant and anti-inflammatory activities were evaluated. From the acetone extracts of five seagrass species subjected to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging antioxidant assay, the extract of Z. muelleri had the highest activity (half minimal concentration of inhibition (IC50) = 138 µg/mL), with the aerial parts (IC50 = 119 µg/mL) possessing significantly higher antioxidant activity than the roots (IC50 ≥ 500 µg/mL). A human peripheral blood mononuclear cells (PBMCs) assay with bacterial lipopolysaccharide (LPS) activation and LEGENDplex cytokine analysis showed that the aerial extract of Z. muelleri significantly reduced the levels of inflammatory cytokines tumour necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 by 29%, 74%, and 90%, respectively, relative to the LPS treatment group. The aerial extract was thus fractionated with methanol (MeOH) and hexane fraction, and purification of the MeOH fraction by HPLC led to the isolation of 4-hydroxybenzoic acid (1), luteolin (2), and apigenin (3) as its major constituents. These compounds have been previously shown to reduce levels of TNF-α, IL-1ß, and IL-6 and represent some of the major bioactive components of Z. muelleri aerial parts. This investigation represents the first study of the antioxidant and anti-inflammatory properties of Z. muelleri and the first isolation of small molecules from this species. These results highlight the potential for using seagrasses in treating inflammation and the need for further investigation.

2.
Mar Environ Res ; 191: 106160, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678099

RESUMO

BACKGROUND AND AIMS: Long distance dispersal (LDD) contributes to the replenishment and recovery of tropical seagrass habitats exposed to disturbance, such as cyclones and infrastructure development. However, our current knowledge regarding the physical attributes of seagrass fragments that influence LDD predominantly stems from temperate species and regions. The goal of this paper is to measure seagrass fragment density and viability in two tropical species, assessing various factors influencing their distribution. METHODS: We measured the density and viability of floating seagrass fragments for two tropical seagrass species (Zostera muelleri and Halodule uninervis) in two coastal seagrass meadows in the central Great Barrier Reef World Heritage Area, Australia. We assessed the effect of wind speed, wind direction, seagrass growing/senescent season, seagrass meadow density, meadow location and dugong foraging intensity on fragment density. We also measured seagrass fragment structure and fragment viability; i.e., potential to establish into a new plant. KEY RESULTS: We found that seagrass meadow density, season, wind direction and wind speed influenced total fragment density, while season and wind speed influenced the density of viable fragments. Dugong foraging intensity did not influence fragment density. Our results indicate that wave action from winds combined with high seagrass meadow density increases seagrass fragment creation, and that more fragments are produced during the growing than the senescent season. Seagrass fragments classified as viable for Z. muelleri and H. uninervis had significantly more shoots and leaves than non-viable fragments. We collected 0.63 (±0.08 SE) floating viable fragments 100 m-2 in the growing season, and 0.13 (±0.03 SE) viable fragments 100 m-2 in the senescent season. Over a third (38%) of all fragments collected were viable. CONCLUSION: There is likely to be a large number of viable seagrass fragments available for long distance dispersal. This study's outputs can inform dispersal and connectivity models that are used to direct seagrass ecosystem management and conservation strategies.


Assuntos
Alismatales , Dugong , Zosteraceae , Animais , Ecossistema , Austrália
3.
Mar Environ Res ; 188: 106010, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141708

RESUMO

Zostera muelleri is an abundant seagrass species distributed through intertidal and shallow subtidal waters on the subtropical coasts of Australia. The vertical distribution of Zostera is likely defined by tidal influences, particularly desiccation and light reduction stresses. These stresses were expected to affect the flowering of Z. muelleri; however, it is difficult to quantify the effects of tidal inundation with field studies due to multiple confounding environmental factors affecting flowering (e.g., water temperature, herbivory, nutrients). A laboratory aquarium experiment compared the effects of two levels of tidal height (intertidal and subtidal) and light intensity (shaded and unshaded) on flowering timing, abundance, the ratio between flowering shoots and vegetative shoots, the morphology and duration of flower development. The earliest and greatest flowering intensity was recorded in the subtidal-unshaded group, with no flowers observed in the intertidal-shaded group. Notably, the peak flowering time was the same across shaded and unshaded treatments. Shading prolonged the timing of the first flowering and reduced the density of flowering shoots and spathes, while tidal inundation had a more significant effect on the density of flowering shoots and the density of spathes. Results showed that Z. muelleri could flower under low light conditions or tidal stress but not when exposed to both stresses simultaneously in a laboratory 'nursery setting'. Therefore, applying subtidal-unshaded conditions appears to be beneficial for seagrass nurseries aimed at improved flower abundance despite the plants previously being collected from and adapted to intertidal meadows. Further studies that explore the suitable conditions for triggering and optimising the flowering will be beneficial in designing cost-effective seagrass nurseries.


Assuntos
Zosteraceae , Austrália , Luz
4.
Mar Environ Res ; 179: 105698, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35872443

RESUMO

Seagrass meadows are an important habitat for Testudines (sea turtles) and Sirenia (dugong and manatee) megaherbivores. Megaherbivores can influence the structuring of seagrass meadows; for example, foraging patterns have been found to relate to seagrass phenological strategy. However, as these observations are derived from uncontrolled field studies, it is unclear whether grazing drives such changes or if the changes are related to other factors (e.g., temperature, tidal depth, light). In the present study, a mesocosm experiment was designed to test the impacts of grazing on metrics of flowering of Zostera muelleri over two consecutive flowering seasons. Prior to each flowering season, plants were cropped to 3 cm and 1 cm lengths to represent turtle and dugong grazing, respectively. This study measured the timing of flowering, the number of flowering shoots, the height of the flowering shoot, and the number of spathes (sheathing bracts containing seeds) per flowering shoot in each replicate (n = 5) weekly. Cropping had no significant influence on the timing of flowering (i.e., number of days to first and peak flowering) indicating that it is not a trigger for flowering. However, cropping significantly reduced the maximum density of flowering shoots and spathes, which was proposed to be due to resource allocation differences between clonal growth and flower production. A reduction in the flowering ratio was observed in both cropped plant groups and the relatively high density and the ratio of flowering observed in the 1 cm group indicate that the plant was adapting to cope with stress. Morphology of flowering (i.e., the maximum height of flowering shoot and the maximum number of spathes per flowering shoot) was not significantly affected by cropping and these two variables were strongly correlated. The results suggest that cropping can influence the overall flowering densities in a season but not the timing of flowering. This study demonstrated that cropping prior to the flowering season can reduce the expected production of spathes in seed nurseries and suggests it may be beneficial to consider megaherbivores in seed-based restoration activities.


Assuntos
Tartarugas , Zosteraceae , Animais , Ecossistema , Plantas , Reprodução
5.
Front Plant Sci ; 11: 494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411166

RESUMO

While thermal priming and the relative role of epigenetic modifications have been widely studied in terrestrial plants, their roles remain unexplored in seagrasses so far. Here, we experimentally compared the ability of two different functional types of seagrass species, dominant in the Southern hemisphere, climax species Posidonia australis and pioneer species Zostera muelleri, to acquire thermal-stress memory to better survive successive stressful thermal events. To this end, a two-heatwave experimental design was conducted in a mesocosm setup. Findings across levels of biological organization including the molecular (gene expression), physiological (photosynthetic performances and pigments content) and organismal (growth) levels provided the first evidence of thermal priming in seagrasses. Non-preheated plants suffered a significant reduction in photosynthetic capacity, leaf growth and chlorophyll a content, while preheated plants were able to cope better with the recurrent stressful event. Gene expression results demonstrated significant regulation of methylation-related genes in response to thermal stress, suggesting that epigenetic modifications could play a central role in seagrass thermal stress memory. In addition, we revealed some interspecific differences in thermal responses between the two different functional types of seagrass species. These results provide the first insights into thermal priming and relative epigenetic modifications in seagrasses paving the way for more comprehensive forecasting and management of thermal stress in these marine foundation species in an era of rapid environmental change.

6.
Mar Environ Res ; 149: 80-89, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181418

RESUMO

Photosynthesis in the seagrass Zostera muelleri remains poorly understood. We investigated the effect of reduced irradiance on the incorporation of 13C, gene expression of photosynthetic, photorespiratory and intermediates recycling genes as well as the enzymatic content and activity of Rubisco and PEPC within Z. muelleri. Following 48 h of reduced irradiance, we found that i) there was a ∼7 fold reduction in 13C incorporation in above ground tissue, ii) a significant down regulation of photosynthetic, photorespiratory and intermediates recycling genes and iii) no significant difference in enzyme activity and content. We propose that Z. muelleri is able to alter its physiology in order to reduce the amount of C lost through photorespiration to compensate for the reduced carbon assimilation as a result of reduced irradiance. In addition, the first estimated rate constant (Kcat) and maximum rates of carboxylation (Vcmax) of Rubisco is reported for the first time for Z. muelleri.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zosteraceae/metabolismo , Austrália , Isótopos de Carbono/análise , Expressão Gênica , Luz , Fosfoenolpiruvato Carboxilase/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Zosteraceae/genética
7.
Front Plant Sci ; 9: 894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008728

RESUMO

The response of seagrass systems to a severe disturbance provides an opportunity to quantify the degree of resilience in different meadows, and subsequently to test whether there is a genetic basis to resilience. We used existing data on levels of long-standing disturbance from poor water quality, and the responses of seagrass (Zostera muelleri) after an extreme flood event in Moreton Bay, Queensland, Australia. Sites were grouped into high and low disturbance categories, in which seagrass showed high and low resilience, respectively, as determined by measuring rates of key feedback processes (nutrient removal, suppression of sediment resuspension, and algal grazing), and physiological and morphological traits. Theoretically, meadows with higher genotypic diversity would be expected to have greater resilience. However, because the more resilient meadows occur in areas historically exposed to high disturbance, the alternative is also possible, that selection will have resulted in a narrower, less diverse subset of genotypes than in less disturbed meadows. Levels of genotypic and genetic diversity (allelic richness) based on 11 microsatellite loci, were positively related (R2 = 0.58). Genotypic diversity was significantly lower at highly disturbed sites (R = 0.49) than at less disturbed sites (R = 0.61). Genotypic diversity also showed a negative trend with two morphological characteristics known to confer resilience on seagrass in Moreton Bay, leaf chlorophyll concentrations and seagrass biomass. Genetic diversity did not differ between disturbed and undisturbed sites. We postulate that the explanation for these results is historical selection for genotypes that confer protection against disturbance, reducing diversity in meadows that contemporarily show greater resilience.

8.
New Phytol ; 219(3): 1005-1017, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29855044

RESUMO

Seagrasses are globally important coastal habitat-forming species, yet it is unknown how seagrasses respond to the combined pressures of ocean acidification and warming of sea surface temperature. We exposed three tropical species of seagrass (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri) to increasing temperature (21, 25, 30, and 35°C) and pCO2 (401, 1014, and 1949 µatm) for 7 wk in mesocosms using a controlled factorial design. Shoot density and leaf extension rates were recorded, and plant productivity and respiration were measured at increasing light levels (photosynthesis-irradiance curves) using oxygen optodes. Shoot density, growth, photosynthetic rates, and plant-scale net productivity occurred at 25°C or 30°C under saturating light levels. High pCO2 enhanced maximum net productivity for Z. muelleri, but not in other species. Z. muelleri was the most thermally tolerant as it maintained positive net production to 35°C, yet for the other species there was a sharp decline in productivity, growth, and shoot density at 35°C, which was exacerbated by pCO2 . These results suggest that thermal stress will not be offset by ocean acidification during future extreme heat events and challenges the current hypothesis that tropical seagrass will be a 'winner' under future climate change conditions.


Assuntos
Ácidos/química , Oceanos e Mares , Pressão , Estresse Fisiológico , Temperatura , Clima Tropical , Zosteraceae/fisiologia , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Zosteraceae/efeitos dos fármacos , Zosteraceae/efeitos da radiação
9.
Front Plant Sci ; 8: 1416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861098

RESUMO

The availability of the first complete genome sequence of the marine flowering plant Zostera marina (commonly known as seagrass) in early 2016, is expected to significantly raise the impact of seagrass proteomics. Seagrasses are marine ecosystem engineers that are currently declining worldwide at an alarming rate due to both natural and anthropogenic disturbances. Seagrasses (especially species of the genus Zostera) are compromised for proteomic studies primarily due to the lack of efficient protein extraction methods because of their recalcitrant cell wall which is rich in complex polysaccharides and a high abundance of secondary metabolites in their cells. In the present study, three protein extraction methods that are commonly used in plant proteomics i.e., phenol (P); trichloroacetic acid/acetone/SDS/phenol (TASP); and borax/polyvinyl-polypyrrolidone/phenol (BPP) extraction, were evaluated quantitatively and qualitatively based on two dimensional isoelectric focusing (2D-IEF) maps and LC-MS/MS analysis using the two most abundant Australian seagrass species, namely Zostera muelleri and Posidonia australis. All three tested methods produced high quality protein extracts with excellent 2D-IEF maps in P. australis. However, the BPP method produces better results in Z. muelleri compared to TASP and P. Therefore, we further modified the BPP method (M-BPP) by homogenizing the tissue in a modified protein extraction buffer containing both ionic and non-ionic detergents (0.5% SDS; 1.5% Triton X-100), 2% PVPP and protease inhibitors. Further, the extracted proteins were solubilized in 0.5% of zwitterionic detergent (C7BzO) instead of 4% CHAPS. This slight modification to the BPP method resulted in a higher protein yield, and good quality 2-DE maps with a higher number of protein spots in both the tested seagrasses. Further, the M-BPP method was successfully utilized in western-blot analysis of phosphoenolpyruvate carboxylase (PEPC-a key enzyme for carbon metabolism). This optimized protein extraction method will be a significant stride toward seagrass proteome mining and identifying the protein biomarkers to stress response of seagrasses under the scenario of global climate change and anthropogenic perturbations.

10.
Front Plant Sci ; 8: 1446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878790

RESUMO

Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.

11.
Mar Pollut Bull ; 109(1): 461-470, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27269385

RESUMO

Seagrass meadows in many parts of the globe are threatened by a range of processes including port development, dredging and land clearing in coastal catchments, which can reduce water clarity and increase sedimentation pressure. As rates of seagrass loss increase, there is an urgent need to understand the potential impacts of development on these critical species. This research compares the effects of shading and burial by fine sand on two seagrass species Zostera muelleri and Halophila ovalis in Port Curtis Bay, an industrial harbour located on the continental margin adjacent to the Great Barrier Reef Heritage Area, Australia. The research finds that shading in combination with burial causes a significant decline in growth rates in both species, but that burial ≥10mm reduces growth rates to a greater extent than shading. The paper concludes by discussing the implications of these findings for port management and impact assessment.


Assuntos
Hydrocharitaceae , Zosteraceae , Austrália , Sedimentos Geológicos , Luz
12.
Front Plant Sci ; 7: 2023, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144245

RESUMO

Seagrasses are marine ecosystem engineers that are currently declining in abundance at an alarming rate due to both natural and anthropogenic disturbances in ecological niches. Despite reports on the morphological and physiological adaptations of seagrasses to extreme environments, little is known of the molecular mechanisms underlying photo-acclimation, and/or tolerance in these marine plants. This study applies the two-dimensional isoelectric focusing (2D-IEF) proteomics approach to identify photo-acclimation/tolerance proteins in the marine seagrass Zostera muelleri. For this, Z. muelleri was exposed for 10 days in laboratory mesocosms to saturating (control, 200 µmol photons m-2 s-1), super-saturating (SSL, 600 µmol photons m-2 s-1), and limited light (LL, 20 µmol photons m-2 s-1) irradiance conditions. Using LC-MS/MS analysis, 93 and 40 protein spots were differentially regulated under SSL and LL conditions, respectively, when compared to the control. In contrast to the LL condition, Z. muelleri robustly tolerated super-saturation light than control conditions, evidenced by their higher relative maximum electron transport rate and minimum saturating irradiance values. Proteomic analyses revealed up-regulation and/or appearances of proteins belonging to the Calvin-Benson and Krebs cycle, glycolysis, the glycine cleavage system of photorespiration, and the antioxidant system. These proteins, together with those from the inter-connected glutamate-proline-GABA pathway, shaped Z. muelleri photosynthesis and growth under SSL conditions. In contrast, the LL condition negatively impacted the metabolic activities of Z. muelleri by down-regulating key metabolic enzymes for photosynthesis and the metabolism of carbohydrates and amino acids, which is consistent with the observation with lower photosynthetic performance under LL condition. This study provides novel insights into the underlying molecular photo-acclimation mechanisms in Z. muelleri, in addition to identifying protein-based biomarkers that could be used as early indicators to detect acute/chronic light stress in seagrasses to monitor seagrass health.

13.
Mar Pollut Bull ; 100(1): 476-482, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428624

RESUMO

Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.


Assuntos
Carbono/análise , Ecossistema , Sedimentos Geológicos/análise , Zosteraceae , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Queensland
14.
J Exp Bot ; 66(5): 1489-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563969

RESUMO

Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered. Genome sequence data for the widespread Australian seagrass species Zostera muelleri were generated and the unassembled data were compared with the annotated genes of five sequenced plant species (Arabidopsis thaliana, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Genes which are conserved between Z. muelleri and the five plant species were identified, together with genes that have been lost in Z. muelleri. The effect of gene loss on biological processes was assessed on the gene ontology classification level. Gene loss in Z. muelleri appears to influence some core biological processes such as ethylene biosynthesis. This study provides a foundation for further studies of seagrass evolution as well as the hormonal regulation of plant growth and development.


Assuntos
Etilenos/metabolismo , Genoma de Planta , Zosteraceae/genética , Ecossistema , Genômica , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zosteraceae/metabolismo
15.
New Phytol ; 205(3): 1264-1276, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25367685

RESUMO

Seagrass is constantly challenged with transporting sufficient O2 from above- to belowground tissue via aerenchyma in order to maintain aerobic metabolism and provide protection against phytotoxins. Electrochemical microsensors were used in combination with a custom-made experimental chamber to analyse the belowground biogeochemical microenvironment of Zostera muelleri under changing environmental conditions. Measurements revealed high radial O2 release of up to 500 nmol O2 cm(-2) h(-1) from the base of the leaf sheath, maintaining a c. 300-µm-wide plant-mediated oxic microzone and thus protecting the vital meristematic regions of the rhizome from reduced phytotoxic metabolites such as hydrogen sulphide (H2S). H2S intrusion was prevented through passive diffusion of O2 to belowground tissue from leaf photosynthesis in light, as well as from the surrounding water column into the flow-exposed plant parts during darkness. Under water column hypoxia, high belowground H2S concentrations at the tissue surface correlated with the inability to sustain the protecting oxic microshield around the meristematic regions of the rhizome. We also found increased pH levels in the immediate rhizosphere of Z. muelleri, which may contribute to further detoxification of H2S through shifts in the chemical speciation of sulphide. Zostera muelleri can modify the geochemical conditions in its immediate rhizosphere, thereby reducing its exposure to H2S.


Assuntos
Sedimentos Geológicos/química , Sulfeto de Hidrogênio/toxicidade , Oxigênio/metabolismo , Zosteraceae/metabolismo , Concentração de Íons de Hidrogênio , Modelos Biológicos , Complexo de Proteína do Fotossistema II/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Teoria Quântica , Rizoma/efeitos dos fármacos , Rizoma/metabolismo , Rizosfera , Espectrometria de Fluorescência
16.
Mar Pollut Bull ; 83(2): 475-82, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-23993389

RESUMO

Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change.


Assuntos
Herbivoria , Temperatura , Zosteraceae/fisiologia , Ecossistema , Aquecimento Global , Oceanos e Mares , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...