Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
Front Plant Sci ; 15: 1408833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091312

RESUMO

Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.

2.
Food Chem X ; 23: 101667, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39139493

RESUMO

By examining and analyzing bran-free fermented Baijiu (BFB) with varying storage periods (0-20 years), it was observed that the overall concentration of volatile compounds initially increases and subsequently decreases over time. Furthermore, BFB exhibited more kinds of long chain esters, higher concentration of acetals, and reduced furfural content. The process of cellaring can enhance the aged, sweet, and fruity aroma of BFB. 16 flavor compounds, including 1,1-diethoxyethane, ethyl dodecanoate, and ethyl hexadecanoate, can be used as markers for vintage BFB, and electronic sensory technology was capable of discerning BFB in different years. The results of redundancy analysis (RDA) showed a positive correlation between metals and aldehydes, esters, and ketones, while indicating a negative correlation with acids and alcohols. Al, Fe, and Ca underwent the most significant changes during storage period, and they were positively correlated with differential substances, such as benzaldehyde, vanillin, ethyl isovalerate, and ethyl palmitate (P < 0.01).

3.
Environ Technol ; : 1-16, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150857

RESUMO

In this study, the efficiency of a series of biochar-supported Cu catalysts, biochar-supported Zn catalysts, and biochar-supported Cu-Zn catalysts was determined through bioethanol dehydrogenation to the high-value chemical, acetaldehyde. Each metal, with weight percentages of 10, 20, and 30, and the combination of Cu-Zn, including 10 wt% of Cu and Zn, 15 wt% of Cu - 5 wt% of Zn, and 15 wt% of Cu and Zn, were fully loaded onto biochar using an incipient wetness impregnation technique. Subsequently, all biocatalysts were subjected to bioethanol dehydrogenation reactions in a temperature range of 200-400 °C. The optimum metal loading for the catalyst was found to be the combination of 15 wt% Cu and 15 wt% Zn. This catalyst resulted in a reasonable acetaldehyde yield of 56.2%, an initial bioethanol conversion of 57.3%, and a very high acetaldehyde selectivity of 98.1% at a mild reaction temperature of 300 °C and ambient pressure. These results were attributed to the optimal concentration of weak-medium acid and medium base sites. Active acid and base sites were identified through temperature-programmed desorption of ammonia (NH3-TPD) and temperature-programmed desorption of carbon dioxide (CO2-TPD), respectively. Furthermore, the reaction stability test of the best biocatalyst (15Cu-15Zn/BB) was proven by maintaining this reaction at the same temperature (300 °C) for 10 h. However, the catalytic performance slightly decreased due to the coke formation of Cu species.

4.
Micromachines (Basel) ; 15(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39203613

RESUMO

Acetaldehyde is a volatile organic compound that can cause damage at the cellular and genomic levels. The monitoring of acetaldehyde gas at low concentrations requires fast-response and low-cost sensors. Herein, we propose the design of an acetaldehyde gas sensor based on a low-cost Microelectromechanical System (MEMS) process. This sensor is formed by a single-clamped piezoelectric multilayer resonator (3000 × 1000 × 52.2 µm) with a simple operating principle and easy signal processing. This resonator uses a zinc oxide piezoelectric layer (1 µm thick) and a sensing film of titanium oxide (1 µm thick). In addition, the resonator uses a support layer of 304 stainless steel (50 µm thick) and two aluminum layers (100 nm thick). Analytical and Finite-Element Method (FEM) models are developed to predict the mechanical behavior of the gas sensor, considering the influence of the different layers of the resonator. The analytical results agree well with respect to the FEM model results. The gas sensor has a first bending frequency of 4722.4 Hz and a sensitivity of 8.22 kHz/g. A minimum detectable concentration of acetaldehyde of 102 ppm can be detected with the proposed sensor. This gas sensor has a linear behavior to detect different acetaldehyde concentrations using the frequency shifts of its multilayer resonator. The gas sensor design offers advantages such as small size, a light weight, and cost-efficient fabrication.

5.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39201725

RESUMO

It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.


Assuntos
Acetaldeído , Antioxidantes , Glutationa , Heme Oxigenase-1 , Hepatócitos , Quercetina , Espécies Reativas de Oxigênio , Acetaldeído/toxicidade , Acetaldeído/farmacologia , Quercetina/farmacologia , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Heme Oxigenase-1/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Linhagem Celular Tumoral , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética
6.
Nervenarzt ; 2024 Aug 22.
Artigo em Alemão | MEDLINE | ID: mdl-39172252

RESUMO

BACKGROUND: More than a decade ago disulfiram lost its approval for use in Germany. Nonetheless, a considerable number of psychiatric hospital outpatient departments as well as practicing physicians continue to prescribe it. These professionals have formed the "Network for Alcohol Aversive Pharmacotherapy" (NAP) to maintain a high quality of this treatment approach. OBJECTIVE: To describe the current use of disulfiram with respect to patient numbers and characteristics, side effects, and use of concomitant multimodal treatment forms. MATERIAL AND METHODS: Since 2019 the NAP has conducted an annual retrospective survey among its members regarding the aforementioned parameters. RESULTS: From 2019 to 2023 a total of 1579 treatment cases were described by 33 centers, 152 patients reported a total of 241 drinking events, 26 of them resulting in hospitalization but none causing complications or permanent harm. The most frequent side effects, in descending order, were unpleasant body odor (2.5%), fatigue, male sexual dysfunction, mildly elevated liver enzymes, allergic skin reactions and polyneuropathy (0.8%). More than one quarter of the patients suffered from comorbid depression, and approximately 5% from ADHD, borderline or other personality disorders, trauma-related disorders and anxiety disorders, respectively. Of the patients 33% were treated with antidepressants and 12% with sedating antipsychotics. Various forms of concomitant group therapy were offered to 66% of the patients. CONCLUSION: Treatment with disulfiram is legally possible, generally well-tolerated and safe. It is offered in most treatment centers as part of a comprehensive treatment plan that includes multimodal treatment of comorbid psychiatric disorders.

7.
Environ Sci Technol ; 58(36): 16066-16075, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39177446

RESUMO

Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 µM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, KD, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater KDs (66.7 ± 19.6 µM) overlap aqueous aliphatic but not aromatic aldehyde KDs. Phenylacetaldehyde (PA) and other ß,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN's %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.


Assuntos
Aldeídos , Monóxido de Carbono , Água do Mar , Aldeídos/química , Monóxido de Carbono/química , Água do Mar/química , Cianeto de Hidrogênio/química , Nitrilas/química
8.
Environ Sci Technol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135318

RESUMO

Vacuum-UV (185 nm, VUV) is widely applied to polish reverse osmosis permeate (ROP), such as the production of electronics-grade ultrapure water. In this study, the VUV oxidation of acetaldehyde, a common carbonyl in ROP, was found to be influenced by anions even at low concentrations. Interestingly, the influencing extent and mechanism varied depending on the anions. Bicarbonate minimally affected the VUV-photon absorption and •OH consumption, but at 5000 µg-C·L-1, it decreased the degradation of acetaldehyde by 58.7% possibly by scavenging organic radicals or other radical chain reactions. Nitrate strongly competed for VUV-photon absorption and •OH scavenging through the formation of nitrite, and at 500 µg-N·L-1, it decreased the removal rate of acetaldehyde degradation by 71.2% and the mineralization rate of dissolved organic carbon by 53.4%. Chloride competed for VUV-photon absorption and also generated reactive chlorine species, which did not affect acetaldehyde degradation but influenced the formation of organic byproducts. The radical chain reactions or activation of anions under VUV irradiation could compensate for the decrease in oxidation performance and need further investigation. In real ROPs, the VUV oxidation of acetaldehyde remained efficient, but mineralization was hindered due to nitrate and chloride anions. This study deepens the understanding of the photochemistry and feasibility of VUV in water with low concentrations of anions.

9.
J Transl Med ; 22(1): 697, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075523

RESUMO

BACKGROUND: Aldehyde dehydrogenase 2 (ALDH2) is critical for alcohol metabolism by converting acetaldehyde to acetic acid. In East Asian descendants, an inactive genetic variant in ALDH2, rs671, triggers an alcohol flushing response due to acetaldehyde accumulation. As alcohol flushing is not exclusive to those of East Asian descent, we questioned whether additional ALDH2 genetic variants can drive facial flushing and inefficient acetaldehyde metabolism using human testing and biochemical assays. METHODS: After IRB approval, human subjects were given an alcohol challenge (0.25 g/kg) while quantifying acetaldehyde levels and the physiological response (heart rate and skin temperature) to alcohol. Further, by employing biochemical techniques including human purified ALDH2 proteins and transiently transfected NIH 3T3 cells, we characterized two newly identified ALDH2 variants for ALDH2 enzymatic activity, ALDH2 dimer/tetramer formation, and reactive oxygen species production after alcohol treatment. RESULTS: Humans heterozygous for rs747096195 (R101G) or rs190764869 (R114W) had facial flushing and a 2-fold increase in acetaldehyde levels, while rs671 (E504K) had facial flushing and a 6-fold increase in acetaldehyde levels relative to wild type ALDH2 carriers. In vitro studies with recombinant R101G and R114W ALDH2 enzyme showed a reduced efficiency in acetaldehyde metabolism that is unique when compared to E504K or wild-type ALDH2. The effect is caused by a lack of functional dimer/tetramer formation for R101G and decreased Vmax for both R101G and R114W. Transiently transfected NIH-3T3 cells with R101G and R114W also had a reduced enzymatic activity by ~ 50% relative to transfected wild-type ALDH2 and when subjected to alcohol, the R101G and R114W variants had a 2-3-fold increase in reactive oxygen species formation with respect to wild type ALDH2. CONCLUSIONS: We identified two additional ALDH2 variants in humans causing facial flushing and acetaldehyde accumulation after alcohol consumption. As alcohol use is associated with a several-fold higher risk for esophageal cancer for the E504K variant, the methodology developed here to characterize ALDH2 genetic variant response to alcohol can lead the way precision medicine strategies to further understand the interplay of alcohol consumption, ALDH2 genetics, and cancer.


Assuntos
Acetaldeído , Aldeído-Desidrogenase Mitocondrial , Etanol , Variação Genética , Acetaldeído/metabolismo , Humanos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Camundongos , Etanol/metabolismo , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Masculino , Adulto , Feminino , Rubor/metabolismo , Rubor/genética
10.
J Biol Chem ; 300(8): 107559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002679

RESUMO

Many anaerobic microorganisms use the bifunctional aldehyde and alcohol dehydrogenase enzyme, AdhE, to produce ethanol. One such organism is Clostridium thermocellum, which is of interest for cellulosic biofuel production. In the course of engineering this organism for improved ethanol tolerance and production, we observed that AdhE was a frequent target of mutations. Here, we characterized those mutations to understand their effects on enzymatic activity, as well ethanol tolerance and product formation in the organism. We found that there is a strong correlation between NADH-linked alcohol dehydrogenase (ADH) activity and ethanol tolerance. Mutations that decrease NADH-linked ADH activity increase ethanol tolerance; correspondingly, mutations that increase NADH-linked ADH activity decrease ethanol tolerance. We also found that the magnitude of ADH activity did not play a significant role in determining ethanol titer. Increasing ADH activity had no effect on ethanol titer. Reducing ADH activity had indeterminate effects on ethanol titer, sometimes increasing and sometimes decreasing it. Finally, this study shows that the cofactor specificity of ADH activity was found to be the primary factor affecting ethanol yield. We expect that these results will inform efforts to use AdhE enzymes in metabolic engineering approaches.


Assuntos
Álcool Desidrogenase , Clostridium thermocellum , Etanol , Clostridium thermocellum/metabolismo , Clostridium thermocellum/genética , Etanol/metabolismo , Etanol/farmacologia , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Mutação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Engenharia Metabólica/métodos
11.
Food Chem ; 460(Pt 1): 140461, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047481

RESUMO

This study endeavors to examine the levels of risk factors in alcoholic beverages and propose mitigation strategies. GC-MS analysis was utilized to assess risk factors in various distilled-spirits. The content of such risk factors in spirits ranked as follows: vodka ≈ gin < baijiu < whiskey < brandy, and all were adhering to the Chinese national standard. Additionally, a method was refined to alleviate these risks, employing various reagents for activated carbon modification and evaluating their adsorption efficiency for risk factors reduction. Oxalic acid-modified activated carbon exhibited promising adsorption rates for risk factors with acceptable flavor compounds loss, rendering it a prospective solution for health hazard reduction. Characterization via SEM and nitrogen-adsorption-desorption was conducted on the optimal material, complemented by sensory experiments to optimize its application. This study offers valuable insights into the content of risk factors in alcoholic beverages, aiding in improving quality and safety of alcoholic beverages.


Assuntos
Acetaldeído , Bebidas Alcoólicas , Cromatografia Gasosa-Espectrometria de Massas , Metanol , Adsorção , Bebidas Alcoólicas/análise , Acetaldeído/análise , Acetaldeído/química , Metanol/química , Metanol/análise , Carvão Vegetal/química , Álcoois/química , Álcoois/análise , Fatores de Risco , Humanos , Paladar
12.
Food Chem X ; 23: 101621, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39071928

RESUMO

The value of Baijiu is affected by its flavor, age, and adulteration. Therefore, a simple and rapid identification method is crucial for the market. In this study, we present a rapid, non-intrusive identification technique for Baijiu utilizing the Tyndall effect combined with chemometrics analysis. Our experiment begins illuminating Baijiu with a 405 nm wavelength laser and recording the resulting bright light path due to the Tyndall effect. To further analyze the color and brightness information, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Hierarchical Cluster Analysis (HCA), and Multilayer Perceptron (MLP) were employed. This study establishes correlations between the brightness of the Tyndall light path and seven trace flavor compounds in Baijiu. The findings demonstrate that this method effectively identifies the flavor, age cellar, and adulteration of Baijiu and also quantitatively detects the concentrations of flavor compounds. Additionally, an analysis platform was developed to enable the rapid identification of Baijiu.

13.
World J Gastrointest Oncol ; 16(7): 3230-3240, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072174

RESUMO

BACKGROUND: Aldehyde (ALDH2) dysfunction has been verified to contribute to human cancers. AIM: To investigate the molecular mechanism and biological function of ALDH2 in colorectal cancer (CRC) progression. METHODS: Human CRC cells with high expression of ALDH2 were screened. After shRNA ALDH2 (sh-ALDH2) transfection, phenotypes [proliferation, apoptosis, acetaldehyde (ACE) accumulation, DNA damage] of CRC cells were verified using cell counting kit-8, flow cytometry, ACE assay, and comet assays. Western blotting was used for evaluation of the apoptosis proteins (Bax and Bcl-2) and JNK/p38 MAPK pathway-associated proteins. We subjected CVT-10216 (a selective ALDH2 inhibitor) to nude mice for establishment of SK-CO-1 mouse xenograft model and observed the occurrence of CRC. RESULTS: The inhibition of ALDH2 could promote the malignant structures of CRC cells, including apoptosis, ACE level, and DNA damage, and cell proliferation was decreased in the sh-ALDH2 group, whereas ALDH2 agonist Alda-1 reversed features. ALDH2 repression can cause ACE accumulation, whereas ACE enhanced CRC cell features related to increased DNA damage. Additionally, ALDH2 repression led to JNK/P38 MAPK activation, and apoptosis, ACE accumulation, and DNA damage were inhibited after p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125 addition. ACE accumulation and raised DNA damage were recognized in CVT-10216 treated-mouse tumor tissues in vivo. CONCLUSION: The repression of ALDH2 led to ACE accumulation, inducing cell apoptosis and DNA damage by the JNK/p38 MAPK signaling pathway activation in CRC.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38991992

RESUMO

Protective effect of quercetin against acetaldehyde was evaluated using the cultured hepatocyte models with aldehyde dehydrogenase (ALDH) isozyme deficiency (aldh2-kd and aldh1a1-kd). The quercetin-induced cytoprotection against acetaldehyde in the ALDH1A1-deficient mutant (aldh1a1-kd) was weaker than that in wild type. Furthermore, quercetin did not enhance the ALDH activity in aldh1a1-kd cells, suggesting that ALDH1A1 is involved in the quercetin-induced cytoprotection.

15.
World J Gastrointest Oncol ; 16(6): 2697-2715, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994159

RESUMO

BACKGROUND: Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC. AIM: To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC. METHODS: The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database. RESULTS: IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 µmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO). CONCLUSION: Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 µmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.

16.
Cell Rep ; 43(7): 114406, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38963759

RESUMO

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.


Assuntos
Acetaldeído , Melanoma , Peixe-Zebra , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Histonas/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Transcrição Gênica/efeitos dos fármacos , Crista Neural/metabolismo , Crista Neural/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124797, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991618

RESUMO

Discrimination of segmented Baijiu contributes to stabilizing the quality of products, improving revenue-generating effects. A fluorescence sensor array is constructed based on four fluorescence characteristic peaks of terbium@lanthanum metal-organic framework (Tb@La-MOF). Its fluorescence signal is specifically quenched, when Tb@La-MOF encounters acetaldehyde. Acetaldehyde may inhibit the absorption of energy by the organic ligands in MOF, or/and hydrogen bonding with -COOH on the organic ligand, resulting in energy transfer to Tb(Ⅲ). According to this, the quantitative detection of acetaldehyde is completed with a range of 10-300 µM and the detection limit of 5.5 µM. At the same time, it has been successfully applied to the discrimination of segmented Baijiu. Fifteen segmented from three wine cellars are 100 % discriminated with the combined processing of sensor arrays and analytical methods. Accuracy, simplicity, and low-cost are highlights of this fluorescence sensor array, which has considerable potential for application in detection, production, and food field.

18.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930972

RESUMO

Copper (II), a vital fungicide in organic viticulture, also acts as a wine oxidation catalyst. However, limited data are currently available on the impact that maximum allowed copper (II) ion doses in wine grapes at harvest can have on aged wine quality. This was the focus of the present study. We investigated the copper (II) effects by producing both white and red wines from musts containing three initial metal concentrations according to the limits set for organic farming. In detail, the influence of copper (II) on fermentation evolution, chromatic characteristics, and phenolic compounds was evaluated. Interestingly, the white wine obtained with the highest permitted copper (II) dose initially exceeded the concentration of 1.0 mg/L at fermentation completion. However, after one year of storage, the copper (II) content fell below 0.2 ± 0.01 mg/L. Conversely, red wines showed copper (II) levels below 1.0 mg/L at the end of fermentation, but the initial copper (II) level in musts significantly affected total native anthocyanins, color intensity, hue, and acetaldehyde concentration. After 12-month aging, significant differences were observed in polymeric pigments, thus suggesting a potential long-term effect of copper (II) on red wine color stability.


Assuntos
Acetaldeído , Cobre , Fermentação , Fenóis , Vitis , Vinho , Vinho/análise , Cobre/análise , Acetaldeído/análise , Fenóis/análise , Fenóis/química , Vitis/química , Cor , Antocianinas/análise , Antocianinas/química
19.
J Hazard Mater ; 474: 134747, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843638

RESUMO

We present a new method for investigating the oxidation and emission behavior of air-permeable materials. Employing this method, a differentiated statement can be made about the extent to which critical volatile organic compounds (VOCs) such as formaldehyde, acetaldehyde, and acrolein are contained in the material as impurities or formed by thermo-oxidative degradation of the polymer matrix in the use phase. The parameters affecting methods of VOC analysis are reviewed and considered for the developed method. The molecular mechanisms of VOC formation are discussed. Toxicological implications of the reaction kinetics are put into context with international guidelines and threshold levels. This new method enables manufacturers of cellular materials not only to determine the oxidative stability of their products but also to optimize them specifically for higher durability. ENVIRONMENTAL IMPLICATION: Cellular materials are ubiquitous in the technosphere. They play a crucial role in various microenvironments such as automotive interiors, building insulation, and cushioning. These materials are susceptible to oxidative breakdown, leading to the release of formaldehyde, acetaldehyde, and acrolein. The ecotoxicological profiles of these compounds necessitate monitoring and regulation. The absence of reproducible and reliable analytical methods restricts research and development aimed at risk assessment and mitigation. This work significantly enhances the toolbox for optimizing the oxidative stability of any open-cell cellular material and evaluating these materials in terms of their temperature-dependent oxidation and emission behavior.

20.
JMIR Public Health Surveill ; 10: e49826, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38796304

RESUMO

BACKGROUND: The alcohol-induced facial flushing phenotype (flushing) is common among East Asians. Despite a small intake of alcohol, they experience heightened levels of acetaldehyde, a group-1 carcinogen, which, in turn, causes unpleasant symptoms such as redness, acting as a robust protective mechanism against consuming alcohol. However, some individuals with this genetic trait exhibit weakened alcohol restraint, which increases the risk of developing alcohol-related cancers, such as esophageal and head or neck cancer, by several times. Although this flushing phenomenon is crucial for public health, there is a paucity of studies that have comprehensively investigated the effect of flushing or its genotype on alcohol consumption in a large group of East Asians while controlling for various sociodemographic and health-related variables at a country level. OBJECTIVE: This 2-year cross-sectional study aims to explore the effect of flushing on drinking behavior in Koreans and to examine whether the effect varies across sociodemographic and health-related factors. METHODS: We used data from the Korea National Health and Nutrition Examination Survey (KNHANES) for 2019 and 2020 conducted by the Korea Disease Control and Prevention Agency. Our sample comprised 10,660 Korean adults. The study investigated the association of 26 variables, including flushing, with drinking frequency and amount. The effect of flushing was examined with and without adjusting for the other 25 variables using multinomial logistic regression analysis. In addition, we tested the interaction effect with flushing and conducted a simple effect analysis. We used complex sample design elements, including strata, clusters, and weights, to obtain unbiased results for the Rao-Scott χ2 test, 2-tailed t test, and multinomial logistic regression analysis. RESULTS: The suppressive effect of flushing was significant (P<.001) across all pronounced categories of alcohol consumption in 2019. The ranges of standardized regression slopes and odds ratios (ORs) were -6.70≥ß≥-11.25 and 0.78≥OR≥0.50 for frequency and -5.37≥ß≥-17.64 and 0.73≥OR≥0.36 for amount, respectively. The effect became somewhat stronger when adjusted for confounders. The effect also exhibited an overall stronger trend as the severity of alcohol consumption increased. The ß values and ORs were consistently smaller in 2020 compared to the previous year. A simple effect analysis revealed a diminished alcohol-suppressive effect of flushing on alcohol consumption for specific groups (eg, those with low levels of education, limited family support, physical labor, or health-related issues). CONCLUSIONS: Our findings suggest that flushing suppresses drinking in Koreans overall but has little or no effect in certain susceptible populations. Therefore, health authorities should conduct targeted epidemiological studies to assess drinking patterns and disease profiles, particularly regarding alcohol-related cancers, and establish effective preventive measures tailored to this population.


Assuntos
Consumo de Bebidas Alcoólicas , Rubor , Fenótipo , Humanos , República da Coreia/epidemiologia , Masculino , Estudos Transversais , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Feminino , Rubor/epidemiologia , Adulto , Pessoa de Meia-Idade , Inquéritos Nutricionais , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...