Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.911
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39092907

RESUMO

Aflatoxins are carcinogens that can contaminate food and affect various body organs especially liver and kidney. When consumed, aflatoxin B1 (AFB1) is partially metabolised into aflatoxin M1 (AFM1), which is excreted in the urine.Breast milk may also contain AFM1 due to maternal dietary intake from contaminated food. This cross-sectional study aimed to determine the levels of AFM1 in both urine and breast milk among breastfeeding mothers (n = 256). The mother's demographic information was collected during recruitment. Mothers were then scheduled for an appointment to provide a morning urine sample along with five to ten mL samples of breast milk. AFM1 levels in both samples were analysed using an enzyme-linked immunosorbent assay (ELISA). Spearman's rho and Chi-square were used to determine the associations between mean levels of AFM1 in urine and breast milk. Findings show 68.0% of urine samples were contaminated with AFM1 (mean levels = 0.08 ± 0.04 ng/mL), while 14.8% of breast milk samples had AFM1 (mean levels = 5.94 ± 1.81 ng/kg). Urine AFM1 levels were not significantly associated with AFM1 levels in breast milk (p > 0.05). This study can act as a baseline for future research examining long-term aflatoxin exposure among both mothers and infants.

2.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954907

RESUMO

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Assuntos
Aflatoxina B1 , Ferroptose , Flavonoides , Hepatócitos , Proteína Supressora de Tumor p53 , Flavonoides/farmacologia , Aflatoxina B1/toxicidade , Ferroptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Proteína Supressora de Tumor p53/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Masculino , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Humanos , Espécies Reativas de Oxigênio/metabolismo
3.
J Hazard Mater ; 476: 135148, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986415

RESUMO

Aflatoxin B1 (AFB1) is the most toxic mycotoxin commonly found in the environment. Finding efficient and environmentally friendly ways to remove AFB1 is critical. In this study, Aspergillus luchuensis YZ-1 demonstrated a potent ability to adsorb AFB1 for the first time, and the binding of AFB1 to YZ-1 is highly stable. Spores exhibited higher adsorption efficiency than mycelia, adsorbing approximately 95 % of AFB1 within 15 min. The spores were comprehensively characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. Various adsorption kinetic models (pseudo-first and pseudo-second order), adsorption isotherm models (Freundlich and Langmuir), Fourier transform infrared, and X-ray photoelectron spectroscopy were used to investigate the adsorption properties and mechanisms. The adsorption capacity of spores decreased with heating, urea, and SDS treatments, indicating that spore proteins may be the primary substance for AFB1 adsorption. Subsequent experiments showed that proteins with molecular weights greater than 50 kDa played a key role in the adsorption. Additionally, the spores possess excellent storage properties and are valuable for adsorbing AFB1 from vegetable oils. Therefore, the YZ-1 spores hold promise for development into a novel biosorbent for AFB1 removal.

4.
Elife ; 122024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990939

RESUMO

The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.


Assuntos
Aspergillus flavus , Transdução de Sinais , Serina-Treonina Quinases TOR , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/patogenicidade , Serina-Treonina Quinases TOR/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Aflatoxinas/biossíntese , Aflatoxinas/metabolismo , Regulação Fúngica da Expressão Gênica , Virulência
5.
Food Chem ; 458: 140231, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959803

RESUMO

Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.

6.
Talanta ; 278: 126505, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968658

RESUMO

This study developed a smartphone-based biosensor that could simultaneously detect and degrade aflatoxin B1 (AFB1). A donor-acceptor covalent organic framework (COF) was bound onto the surface of stainless-steel mesh (SSM) via the in-situ synthesis, which was used to immobilize the aptamer (Apt) to specifically capture AFB1 and was also as a photocatalyst to degrade AFB1. Au@Ir nanospheres were synthesized, which exhibited better peroxidase catalytic activity (Km=5.36 × 10-6 M, Vmax=3.48 × 10-7 Ms-1, Kcat=1.00 × 107 s-1) than Ir@Au nanospheres, so Au@Ir nanospheres were linked with Apt2 to be utilized as the signal probe. The density functional theory calculation also described that Au@Ir nanospheres possessed the lower energy barriers to decompose H2O2 than Ir@Au nanospheres. Coupled with the "Color Picker" application in the smartphone, the established "sandwich-structure" colorimetric method exhibited a linear range of 0.5-200 µg L-1 and a detection limit of 0.045 µg L-1. The photocatalytic capacity of SSM/COF towards AFB1 was investigated and the degradation rate researched 81.14 % within 120 min under the xenon lamp irradiation, and the degradation products were validated by ESI-MS. It was applied for the detection of AFB1 in peanuts, corn, and wheat samples. Recoveries were ranging from 77.90 % to 112.5 %, and the matrix effect was 75.10-111.6 %. Therefore, the smartphone-based biosensor provided a simple, fast, and sensitive platform for the detection of AFB1, and meanwhile could realize the efficient degradation of AFB1.

7.
Food Chem ; 458: 140217, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38964106

RESUMO

Pretreatment steps of current rapid detection methods for mycotoxins in edible oils not only restrict detection efficiency, but also produce organic waste liquid to pollute environment. In this work, a pretreatment-free and eco-friendly rapid detection method for edible oil is established. This proposed method does not require pretreatment operation, and automated quantitative detection could be achieved by directly adding oil samples. According to polarity of target molecules, the content of surfactant in reaction solutions could be adjusted to achieve the quantitative detection of AFB1 in peanut oil and ZEN in corn oil. The recoveries are between 96.5%-110.7% with standard deviation <10.4%, and the limit of detection is 0.17 µg/kg for AFB1 and 4.91 µg/kg for ZEN. This method realizes full automation of the whole chain detection, i.e. sample in-result out, and is suitable for the on-site detection of batches of edible oils samples.

8.
Poult Sci ; 103(9): 104002, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39053371

RESUMO

Aflatoxin B1 (AFB1) is a significant pollutant found in food and feed, posing a threat to public health. The objective of this study was to assess the effect of Lactiplantibacillus plantarum (LACP) against AFB1 in growing rabbits by investigating growth, serum metabolites, immunity, antioxidant capacity, and inflammatory response. A total of 60 growing male rabbits (721.5 ± 2.68g) were allocated to 4 experimental groups. The control group receiving only a basal diet, the AFB1 group (0.3 mg AFB1/kg diet), the LACP group (1 × 109 cfu/g /kg diet), and the combination group (1 × 109 cfu/g + 0.3 mg AFB1/kg diet; AFB1+ LACP) for 8 wk. The administration of AFB1 alone significantly decreased the final body weight, body gain, and feed intake, while significantly increasing the feed conversion ratio (P < 0.05). A significant decline in total proteins and globulins, along with elevated levels of hepatic enzymes (AST, ALP, ALT, and GGT) and renal function markers (creatinine and uric acid), were observed in the AFB1-contaminated group (P < 0.05). Immunoglobulins (IgG and IgM) were significantly decreased, alongside a significant elevation of triglycerides, direct bilirubin, and indirect bilirubin in growing rabbits fed diets with AFB1 (P < 0.05). Supplementing the AFB1 diet with LACP restored the growth reduction, improved liver (AST, ALP, ALT, and GGT) and kidney (creatinine and uric acid) functions, and enhanced immune markers in rabbit serum (P < 0.05). Antioxidant indices (SOD, GSH, and CAT) were significantly decreased in the AFB1 group (P < 0.05). However, the addition of LACP to the AFB1-contaminated diets improved antioxidant capacity and malondialdehyde (MDA) and protein carbonylation (PC) in hepatic tissues of rabbits (P < 0.05). Serum interlukin-4 (IL-4) and interferon gamma (IFN-γ) levels were significantly increased in the AFB1 group (P < 0.05), but the addition of LACP significantly reversed this elevation. AFB1 downregulated the expression of immune-inflammatory genes such Nrf2, IL-10, and BCL-2 genes, while up-regulating the caspase-3 (CASP3) gene (P < 0.05). Supplementing AFB1 diet with LACP significantly decreased the expression of immune-inflammatory genes (Nrf2, IL-10, and BCL-2) and reduced the expression of the apoptotic-related gene CASP3. This study highlights the potential of L. plantarum (1 × 109 cfu/g /kg diet) as a protective agent against AFB1 in growing rabbits by enhancing antioxidant and immune function and reducing apoptosis and inflammation pathways.

9.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057344

RESUMO

Aspergillus flavus produces aflatoxin, a carcinogenic fungal toxin that poses a threat to the agricultural and food industries. There is a concern that the distribution of aflatoxin-producing A. flavus is expanding in Japan due to climate change, and it is necessary to understand what types of strains inhabit. In this study, we sequenced the genomes of four Aspergillus strains isolated from agricultural fields in the Ibaraki prefecture of Japan and identified their genetic variants. Phylogenetic analysis based on single-nucleotide variants revealed that the two aflatoxin-producing strains were closely related to A. flavus NRRL3357, whereas the two non-producing strains were closely related to the RIB40 strain of Aspergillus oryzae, a fungus widely used in the Japanese fermentation industry. A detailed analysis of the variants in the aflatoxin biosynthetic gene cluster showed that the two aflatoxin-producing strains belonged to different morphotype lineages. RT-qPCR results indicated that the expression of aflatoxin biosynthetic genes was consistent with aflatoxin production in the two aflatoxin-producing strains, whereas the two non-producing strains expressed most of the aflatoxin biosynthetic genes, unlike common knowledge in A. oryzae, suggesting that the lack of aflatoxin production was attributed to genes outside of the aflatoxin biosynthetic gene cluster in these strains.

10.
Toxins (Basel) ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39057928

RESUMO

Mycotoxins, especially aflatoxin B1 (AFB1) and fumonisin B1 (FMB1), are common contaminants in cereal-based foods. Instances of contamination are predicted to increase due to the current challenges induced by climate change. Despite the health benefits of whole grains, the presence of mycotoxins in bran remains a concern. Nonetheless, previous research indicates that wheat bran can adsorb mutagens. Therefore, this study investigated the capacity of maize, wheat, and oat brans to adsorb AFB1 and FMB1 under varying in vitro conditions, including pH, binding time, temperature, particle size, and the amount of bran utilized. Maize bran demonstrated a high AFB1 adsorption capacity (>78%) compared to wheat and oat brans. However, FMB1 was not adsorbed by the brans, possibly due to its hydrophilic nature. Lower temperature (≤25 °C) enhanced AFB1 adsorption efficacy in wheat and oat bran, while for maize bran, the highest adsorption occurred at 37 °C. A linear model following Henry's law best explained AFB1 adsorption by the brans. Further studies identified the pericarp layer of bran as the primary site of AFB1 adsorption, with the initial liquid volume being a critical factor. The study concludes that bran could potentially act as an effective bioadsorbent. Further research is essential to confirm the adsorption efficacy and the bioavailability of AFB1 through in vivo experiments.


Assuntos
Aflatoxina B1 , Avena , Fibras na Dieta , Contaminação de Alimentos , Fumonisinas , Triticum , Zea mays , Zea mays/química , Fumonisinas/química , Triticum/química , Adsorção , Aflatoxina B1/química , Avena/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Temperatura , Concentração de Íons de Hidrogênio
11.
Toxins (Basel) ; 16(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057954

RESUMO

Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus , Trichoderma , Compostos Orgânicos Voláteis , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Aflatoxinas/biossíntese , Trichoderma/metabolismo , Trichoderma/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico/farmacologia , Antibiose , Modelos Biológicos
12.
Toxins (Basel) ; 16(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057964

RESUMO

Non-genetic variation limits the identification of novel maize germplasm with genetic markers for reduced Aspergillus flavus infection and aflatoxin contamination. Aflatoxin measurements can vary substantially within fields containing the same germplasm following inoculation with A. flavus. While some variation is expected due to microenvironmental differences, components of field screening methodologies may also contribute to variability in collected data. Therefore, the objective of this study is to test the effects of three different shelling methods (whole ear (WE), ear end removal (EER), and inoculation site-surrounding (ISS)) to obtain bulk samples from maize on aflatoxin measurements. Five ears per row of three inbred lines and two hybrids were inoculated with A. flavus, then shelled using the three different methods, and aflatoxin was quantified. Overall, EER and ISS resulted in reduced coefficients of variance (CVs) in comparison to WE for both inbred and hybrid maize lines, with two exceptions. Susceptible B73 showed increased CVs with both EER and ISS compared to WE, and resistant Mp719's EER CVs marginally increased compared to WE. While WE is the standard practice for most breeding programs due to its technical simplicity, EER and ISS may allow for finely phenotyping parental lines for further breeding applications.


Assuntos
Aflatoxinas , Aspergillus flavus , Zea mays , Zea mays/microbiologia , Aflatoxinas/análise , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Contaminação de Alimentos/análise , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
13.
Animals (Basel) ; 14(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061586

RESUMO

The research aimed to evaluate how effective hydrated sodium calcium aluminosilicates (HSCASs) and discarded date pits (DDPs) are as dietary adsorbents for aflatoxin B1 (AFB1) in enhancing the performance and health of broiler chickens aged 16 to 30 days. A total of 240 Ross 308 straight-run broilers were randomly allocated into four dietary groups, each with 10 replicates: a control diet, a control diet with 1000 ppb AFB1, an AFB1-contaminated diet with 0.5% HSCAS, and an AFB1-contaminated diet with 4% DDP. Incorporating HSCASs or DDPs into the AFB1-contaminated diet resulted in significant improvements across various parameters, involving increased body weight, improved feed conversion ratio, higher dressing percentage, decreased relative weights of kidney and spleen, elevated serum levels of total protein, globulin, and glucose, reduced serum alanine aminotransferase activity, and heightened hepatic protein concentration and glutathione peroxidase activity, along with diminished hepatic malondialdehyde content and glutamic oxaloacetic transaminase activity. Moreover, both supplements led to increased ileal villus height and surface area, enhanced apparent nitrogen-corrected metabolizable energy digestibility, and decreased AFB1 residues in the liver and kidney. Moreover, the dietary inclusion of DDPs significantly decreased relative liver weight, raised serum albumin concentration, lowered serum alkaline phosphatase activity, enhanced hepatic total antioxidant capacity level, and augmented ileal villus width. Conversely, the dietary addition of HSCASs significantly heightened apparent crude protein digestibility. In conclusion, the inclusion of HSCASs and DDPs in AFB1-contaminated diets can mitigate the toxic effects of AFB1 on broiler chickens, with DDPs exhibiting additional advantages in optimizing liver function and gut morphology.

14.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063219

RESUMO

This article follows-up on our recently published work, which evaluated the impact of the addition of an alfalfa leaf-derived adsorbent in the aflatoxin B1 (AFB1)-contaminated diet in regard to the production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology of turkey poults. This paper presents complementary results on microbial community, ileal morphology, barrier function, and immunity. For this purpose, 350 1-day-old female turkey poults were randomly distributed into five groups: (1) Control, AFB1-free diet; (2) AF, AFB1-contaminated diet at 250 ng/g; (3) alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and (5) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). In general, in the AF group, the growth of opportunistic pathogens was promoted, which lead to gut dysbacteriosis, mainly influenced by Streptococcus lutetiensis. Conversely, a significant increase in beneficial bacteria (Faecalibacterium and Coprococcus catus) was promoted by the addition of the plant-based adsorbent. Moreover, the AF group had the lowest villus height and a compromised barrier function, as evidenced by a significant (p < 0.05) increase in fluorescein isothiocyanate dextran (FITC-d), but these negative effects were almost reversed by the addition of the alfalfa adsorbent. Furthermore, the AF + YCW and alfalfa + AF groups exhibited a significant increase in the cutaneous basophil hypersensitivity response compared to the rest of the experimental groups. Taken together, these results pointed out that the alfalfa counteracts the adverse effects of AFB1 in poults, facilitating the colonization of beneficial bacteria and improving the barrier function of the turkey poults.


Assuntos
Aflatoxina B1 , Ração Animal , Íleo , Medicago sativa , Folhas de Planta , Perus , Animais , Medicago sativa/química , Perus/microbiologia , Folhas de Planta/química , Íleo/efeitos dos fármacos , Íleo/microbiologia , Íleo/patologia , Íleo/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Adsorção
15.
Foods ; 13(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39063260

RESUMO

A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.

16.
Heliyon ; 10(12): e32192, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021920

RESUMO

Aflatoxin is one of the most toxic biotoxins found in contaminated agricultural products. It has strong mutagenicity, carcinogenesis and teratogenicity to humans and animals. In this study, instant catapult steam explosion combined with ammonia water was examined for its potential to degrade aflatoxin B1 in peanut cake in order to improve its utilization as a toxic-free animal feed. Incubation of AFB1-containing peanut cake followed by processing with Instant Catapult Steam Explosion (ICSE) led to approximately 79.03 % degradation of AFB1, while the degradation of AFB1 was up to 91.48 % under the treatment of ICSE combined with 4 % NH3·H2O at 1.2 MPa in 200 s of process time. After treatment, nutrients in peanut cake were not significantly changed. The toxicity of AFB1 degradation products was evaluated and the results showed that the toxicity of these products were found to be substantially less than that possessed by AFB1. A low chemical pollution, efficient and toxic-free technology system of AFB1 degradation was established, which detoxify aflatoxin-contaminated biomass for sustainable and safe utilization of agricultural biomass as animal feed.

17.
J Sci Food Agric ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041368

RESUMO

BACKGROUND: Organic trace minerals (TM) offer superior nutritional benefits because of their stable structure, making their addition to broiler diets potentially beneficial during challenging periods such as aflatoxin B1 (AFB1) contamination. The present study evaluated the impacts of different replacement levels of inorganic TM (ITM) with advanced chelate technology-based TM (ACTM) on the growth performance, serum biochemical parameters, antioxidant indicators, and some inflammatory and immune parameters of broilers fed diets contaminated with AFB1. A 42-day experiment involved randomly assigning 1-day-old broiler chickens (n = 480) to one of five dietary treatments, each with six replicates. The treatments were as follows: (1) NC: basal diet without AFB1 and recommended ITM levels; (2) PC: basal diet with 0.5 mg kg-1 AFB1 and recommended ITM levels; (3) TB: PC diet +1 g kg-1 toxin binder; (4) ACTM50: replacement of ITM with 50% ACTM in the PC diet; and (5) ACTM100: replacement of ITM with 100% ACTM in the PC diet. RESULTS: Compared with PC treatment, ACTM100 treatment resulted in increased (P < 0.05) body weight gain, serum zinc and glutathione concentrations, immunoglobulin Y level, antioxidant enzyme activities, and hepatic gene expression of nuclear factor erythroid 2-related factor 2, glutathione peroxidase-1, superoxide dismutase-1 and transforming growth factor beta 1. The ACTM100 group also exhibited decreased AFB1 residue in the liver and kidney, serum alanine transaminase activity and malondialdehyde concentration, and hepatic gene expression levels of nuclear factor-kappa B and interferon-gamma (P < 0.05). These values were comparable to those recorded in the TB and NC treatments. CONCLUSION: In conclusion, completely replacing ITM with ACTM can benefit the metabolism and mitigate AFB1-induced immunotoxicity and oxidative damage in chickens by altering the mRNA expression of nuclear factor-kappa B and nuclear factor erythroid 2-related factor 2, and some genes downstream their signaling pathways. © 2024 Society of Chemical Industry.

18.
Risk Anal ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033403

RESUMO

Mycotoxins are secondary metabolites produced by fungi found in corn and are anticipated to increase globally due to enhanced weather extremes and climate change. Aflatoxin (AFL) is of concern due to its harmful effects on human and animal health. AFL can move through complex grain supply chains in the United States, including multiple stakeholders from farms, grain elevators, grain and ethanol processors, and feed mills, before reaching end users, putting numerous entities at risk. Since corn is an essential food and feed product, risk management of AFL must be considered. This case study aimed to (1) calculate the probabilities of pivotal events with AFL in corn at Food Safety Modernization Act-regulated entities using an event tree analysis (ETA) and (2) propose recommendations based on factors identified through the ETA for AFL risk management. The ETA was based on historical AFL prevalence data in Iowa above a 20-part per billion (ppb) threshold (2.30%). Results showed four single-point failures in feed safety systems, where countermeasures did not function as designed. Failure is defined as the type 2 error of corn being infected with AFL <20 ppb, when it is >20 ppb, and the overall system fails to detect this with contaminated corn reaching end users. The success rate is defined as detecting the corn samples correctly >20 ppb. The average success rate was 50.14%, and the failure rate was 49.86%. It was concluded that risk-informed decisions are a critical component of effective AFL monitoring in corn, with timely intervention strategies needed to minimize the overall effects on end users.

19.
J Agric Food Chem ; 72(28): 15998-16009, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949246

RESUMO

Aflatoxin B1 is a notorious mycotoxin with mutagenicity and carcinogenicity, posing a serious hazard to human and animal health. In this study, an AFB1-degrading dipeptidyl-peptidase III mining from Aspergillus terreus HNGD-TM15 (ADPP III) with a molecular weight of 79 kDa was identified. ADPP III exhibited optimal activity toward AFB1 at 40 °C and pH 7.0, maintaining over 80% relative activity at 80 °C. The key amino acid residues that affected enzyme activity were identified as H450, E451, H455, and E509 via bioinformatic analysis and site-directed mutagenesis. The degradation product of ADPP III toward AFB1 was verified to be AFD1. The zebrafish hepatotoxicity assay verified the toxicity of the AFB1 degradation product was significantly weaker than that of AFB1. The result of this study proved that ADPP III presented a promising prospect for industrial application in food and feed detoxification.


Assuntos
Aflatoxina B1 , Aspergillus , Dipeptidil Peptidases e Tripeptidil Peptidases , Proteínas Fúngicas , Peixe-Zebra , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Aspergillus/enzimologia , Aspergillus/genética , Aspergillus/química , Aspergillus/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estabilidade Enzimática , Cinética , Peso Molecular , Concentração de Íons de Hidrogênio , Especificidade por Substrato
20.
Ecotoxicol Environ Saf ; 283: 116781, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067074

RESUMO

Aflatoxin B1 (AFB1) is recognized as the most toxic mycotoxin, widely present in nature and known to specifically target the liver, leading to severe consequences to animal and human health. The mechanisms underlying AFB1-induced hepatotoxicity involve oxidative stress and apoptosis. Radix Bupleuri (RB) and its extracts (RBE), traditional Chinese herbs with a rich history spanning over 2000 years, have been reported to possess hepatoprotective properties. Nevertheless, the impact of RBE on AFB1-induced liver injury remains to be fully elucidated. The current study utilized Pekin ducks as experimental models to explore the effects of RBE on AFB1-induced liver injury both in vitro and in vivo. In vitro findings indicated that RBE mitigated AFB1-induced cytotoxicity, improved primary duck hepatocytes (PDHs) morphology, and reduced intracellular reactive oxygen species (ROS) levels. In vivo experiments demonstrated that: I) RBE alleviated the growth inhibitory caused by AFB1, as evidenced by improved final body weight and weight gain. II) AFB1 led to significant alterations in serum biochemical parameters (AST, ALT, TP, and ALB) and liver lesions attenuated by RBE supplementation at 2.5 g/kg. III) RBE significantly mitigated oxidative stress induced by AFB1. IV) AFB1-induced changes in mRNA and protein levels associated with oxidative stress and apoptosis were counteracted by RBE. In conclusion, our results suggest that RBE offers protection against AFB1-induced liver injury in ducks, primarily through its antioxidative and anti-apoptotic properties. These findings indicate the potential of RBE in preventing and treating AFB1 poisoning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...