Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(34): 45632-45639, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146238

RESUMO

Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte's concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.


Assuntos
Amônia , Colorimetria , Smartphone , Amônia/análise , Colorimetria/instrumentação , Colorimetria/métodos , Poluentes Químicos da Água/análise , Sistemas Automatizados de Assistência Junto ao Leito , Limite de Detecção , Água/química
2.
Adv Mater ; 36(36): e2313547, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011781

RESUMO

The straightforward synthesis of noble-metal-nanoparticle-decorated ordered mesoporous transition metal oxides remains a great challenge due to the difficulty of balancing the interactions between precursors and templates. Herein, a solvent-pair-enabled multicomponent coassembly (SPEMC) strategy is developed for straightforward synthesis of noble-metal-nanoparticle-decorated nitrogen-doped ordered mesoporous tungsten oxide (abbreviated as NM/N-mWO3, NM = Pt, Rh, Pd). The amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS) copolymers coassemble with ammonium metatungstate (AMT) clusters and different kinds of hydrophilic noble metal precursors without phase separation. SPEMC synthesis requires no direct interaction between PEO-b-PS and AMT, thus the assembly equilibriums between noble metal precursors and PEO-b-PS can be readily controlled. The obtained NM/N-mWO3 nanocomposites possess ordered mesopores, abundant oxygen vacancies, and metal-metal oxide interfaces. As a result, the Pt/N-mWO3 sensors exhibit superior ammonia sensing performances with high sensitivity, an ultralow limit of detection (51.2 ppb), good selectivity, and long-term stability. Spectroscopic analysis reveals that ammonia is oxidized stepwise to NO, NO2 -, and NO3 - during the sensing process. Moreover, a portable wireless module based on Pt/N-mWO3 sensor can recognize ppm-level concentration of ammonia, which lays a solid foundation for its application in various fields.

3.
Nanomaterials (Basel) ; 14(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921885

RESUMO

This study focuses on the influence of electrospray deposition parameters on the morphology, topography, optical and sensing properties of ZnO films deposited on gold electrodes of quartz crystal resonators. The substrate temperature, precursor feed rate and emitter's voltage were varied. Zinc acetate dehydrate dissolved in a mixture of deionized water, ethanol and acetic acid was used as a precursor. The surface morphology and average roughness of the films were studied by scanning electron microscopy (SEM) and 3D optical profilometry, respectively, while the optical properties were investigated by diffuse reflectance and photoluminescence measurements. The sensing response toward ammonia was tested and verified by the quartz crystal microbalance (QCM) method. The studies demonstrated that electrospray deposition parameters strongly influence the surface morphology, roughness and gas sensing properties of the films. The deposition parameters were optimized in order for the highest sensitivity toward ammonia to be achieved. The successful implementation of the electrospray method as a simple, versatile and low-cost method for deposition of ammonia-sensitive and selective ZnO films used as a sensing medium in QCM sensors was demonstrated and discussed.

4.
ACS Nano ; 18(1): 364-372, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147595

RESUMO

Elevated levels of ammonia in breath can be linked to medical complications, such as chronic kidney disease (CKD), that disturb the urea balance in the body. However, early stage CKD is usually asymptomatic, and mass screening is hindered by high instrumentation and operation requirements and accessible and reliable detection methods for CKD biomarkers, such as trace ammonia in breath. Enabling methods would have significance in population screening for early stage CKD patients. We herein report a method to effectively immobilize transition metal selectors in close proximity to a single-walled carbon nanotube (SWCNT) surface using pentiptycene polymers containing metal-chelating backbone structures. The robust and modular nature of the pentiptycene metallopolymer/SWCNT complexes creates a platform that accelerates sensor discovery and optimization. Using these methods, we have identified sensitive, selective, and robust copper-based chemiresistive ammonia sensors that display low parts per billion detection limits. We have added these hybrid materials to the resonant radio frequency circuits of commercial near-field communication (NFC) tags to achieve robust wireless detection of ammonia at physiologically relevant levels. The integrated devices offer a noninvasive and cost-effective approach for early detection and monitoring of CKD.


Assuntos
Amônia , Insuficiência Renal Crônica , Humanos , Antracenos , Insuficiência Renal Crônica/diagnóstico , Polímeros/química
5.
Nanotechnology ; 34(43)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37489852

RESUMO

Two-dimensional materials have attracted a great deal of interest in developing nanodevices for gas-sensing applications over the years. The 2D BeN4monolayer, a recently synthesized single-layered Dirac semimetal, has the potential to function as a gas sensor. This study analyzes the NH3sensing capacity of the pristine and vacancy-induced BeN4monolayers using first-principles density functional theory (DFT) calculations. As per the results, the NH3molecule is physisorbed on the pristine BeN4via weak Van der Waals interaction with a poor adsorption energy of -0.41 eV and negligible charge transfer. Introducing Be vacancy in BeN4increased the NH3adsorption energy to -0.83 eV due to the improved charge transfer (0.044 e) from the defective monolayer to the NH3molecule. The structural stability, sufficient recovery time (74 s) at room temperature, and superior work function sensitivity promise the potential application of defective BeN4as an NH3sensor. This research will be a theoretical groundwork for creating innovative BeN4-based NH3gas sensors.

6.
Nanomaterials (Basel) ; 13(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368265

RESUMO

In this paper, the heterostructure of MoS2/WS2 was prepared by a hydrothermal method; the n-n heterostructure was demonstrated using TEM combined with Mott-Schottky analysis. The valence and conduction band positions were further identified by the XPS valence band spectra. The NH3-sensing properties were assessed at room temperature by changing the mass ratio of the MoS2 and WS2 components. The 50 wt%-MoS2/WS2 sample exhibited the best performance, with a peak response of 23643% to NH3 at a concentration of 500 ppm, a minimum detection limit of 20 ppm, and a fast recovery time of 2.6 s. Furthermore, the composites-based sensors demonstrated an excellent humidity immune property with less than one order of magnitude in the humidity range of 11-95% RH, revealing the practical application value of these sensors. These results suggest that the MoS2/WS2 heterojunction is an intriguing candidate for fabricating NH3 sensors.

7.
Talanta ; 258: 124418, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931059

RESUMO

Ammonia detection is needed in several sectors including environmental monitoring, automobile industry, and in medical diagnosis. Conducting polymers, such as polyaniline (PANI), have been utilized to develop NH3 sensors operating at room temperature. However, the performance of these sensors in terms of sensitivity and selectivity need improvement. Functionalization of conducting PANI with metal nanocomposites have shown improved sensor performance. In this work, we report a highly sensitive copper-based nanocomposite for NH3 detection. The novelty lies in utilization of copper-ethylenediamine (Cu-en) nanocomposite functionalized over PANI for gas sensing. Resistance of the 20 wt% Cu-en with PANI increased 3.8 times upon exposure to 100 ppm of NH3. The nanocomposite sensor detected NH3 concentrations as low as 2 ppm. Further, the sensing mechanism was studied by in-situ IV characteristics and impedance spectroscopy during NH3 exposure. NH3 showed ionic interaction with PANI, and Cu2+. The strong affinity of Cu2+ for the lone pair of NH3 enhanced the sensor response from 0.78 to 3.8 for 100 ppm of NH3 at 20 °C. The sensor response was completely recovered after heating at 75 °C, which indicates reusability of the sensor. The sensor showed selectivity for NH3 over ethanol and H2S. The response was reasonably stable after bending the flexible sensor for 1000 times at a radius of 5 mm.

8.
Biosensors (Basel) ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36832023

RESUMO

Opportune sensing of ammonia (NH3) gas is industrially important for avoiding hazards. With the advent of nanostructured 2D materials, it is felt vital to miniaturize the detector architecture so as to attain more and more efficacy with simultaneous cost reduction. Adaptation of layered transition metal dichalcogenide as the host may be a potential answer to such challenges. The current study presents a theoretical in-depth analysis regarding improvement in efficient detection of NH3 using layered vanadium di-selenide (VSe2) with the introduction of point defects. The poor affinity between VSe2 and NH3 forbids the use of the former in the nano-sensing device's fabrications. The adsorption and electronic properties of VSe2 nanomaterials can be tuned with defect induction, which would modulate the sensing properties. The introduction of Se vacancy to pristine VSe2 was found to cause about an eight-fold increase (from -012 eV to -0.97 eV) in adsorption energy. A charge transfer from the N 2p orbital of NH3 to the V 3d orbital of VSe2 has been observed to cause appreciable NH3 detection by VSe2. In addition to that, the stability of the best-defected system has been confirmed through molecular dynamics simulation, and the possibility of repeated usability has been analyzed for calculating recovery time. Our theoretical results clearly indicate that Se-vacant layered VSe2 can be an efficient NH3 sensor if practically produced in the future. The presented results will thus potentially be useful for experimentalists in designing and developing VSe2-based NH3 sensors.


Assuntos
Amônia , Eletrônica , Teoria da Densidade Funcional , Adsorção , Emoções
9.
Chemistry ; 29(1): e202202658, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36210474

RESUMO

The electrochemical sensing is a potential method for detection of trace toxic substance. Herein, the heterojunction of netlike ZnO/BiOCl nanosheets was constructed for the enhanced electrochemical detection of ammonia. Cyclic voltammetry and linear sweep voltammetry were used to investigate the electrochemical performance. The results show that the ZnO/BiOCl-modified electrode exhibits higher sensitivity towards ammonia compared with the ZnO and BiOCl-based electrodes, which is ascribed to band structure and fast electron transfer. The high response of 11.8 µA mM-1 and a low detection limit (LOD) of 0.25 µM are achieved. In addition, the ZnO/BiOCl material exhibits high selectivity, repeatability and stability. The better linear relationship between concentration and current (R2 =0.99) is significant for quantitative detection of ammonia, implying that netlike ZnO/BiOCl nanosheets can serve as electrochemical sensing platform for detecting toxic substance. This research provides a strategy for fabricating two-dimensional netlike materials and regulating heterojunctions used for electrochemical application.


Assuntos
Aminas , Óxido de Zinco , Óxido de Zinco/química , Amônia , Eletrodos
10.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684936

RESUMO

Ammonia (NH3) is a vital compound in diversified fields, including agriculture, automotive, chemical, food processing, hydrogen production and storage, and biomedical applications. Its extensive industrial use and emission have emerged hazardous to the ecosystem and have raised global public health concerns for monitoring NH3 emissions and implementing proper safety strategies. These facts created emergent demand for translational and sustainable approaches to design efficient, affordable, and high-performance compact NH3 sensors. Commercially available NH3 sensors possess three major bottlenecks: poor selectivity, low concentration detection, and room-temperature operation. State-of-the-art NH3 sensors are scaling up using advanced nano-systems possessing rapid, selective, efficient, and enhanced detection to overcome these challenges. MXene-polymer nanocomposites (MXP-NCs) are emerging as advanced nanomaterials of choice for NH3 sensing owing to their affordability, excellent conductivity, mechanical flexibility, scalable production, rich surface functionalities, and tunable morphology. The MXP-NCs have demonstrated high performance to develop next-generation intelligent NH3 sensors in agricultural, industrial, and biomedical applications. However, their excellent NH3-sensing features are not articulated in the form of a review. This comprehensive review summarizes state-of-the-art MXP-NCs fabrication techniques, optimization of desired properties, enhanced sensing characteristics, and applications to detect airborne NH3. Furthermore, an overview of challenges, possible solutions, and prospects associated with MXP-NCs is discussed.

11.
ACS Appl Mater Interfaces ; 13(14): 16155-16165, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33792285

RESUMO

Breathomics is a widely emerging tool for noninvasive disease diagnosis and focuses on the detection of various levels of volatile organic compounds and inorganic gases present in human breath. One of the rapid, easy-to-use, and noninvasive detection methods being investigated is a system that can measure exhaled breath ammonia levels and can be correlated to the functional state of protein metabolic pathways and the renal functioning system. In this work, we have demonstrated the development of an electrochemical nose system using ferrocene encapsulated into zeolitic imidazole framework, Fc@ZIF-8, which can be successfully used for the detection of ammonia levels in breath. This is the first report of an electrochemical gas sensor platform that uses a faradaic probe (that is ferrocene) encapsulated into a metal-organic framework cavity used for disease diagnosis by monitoring the levels of the target gas and can be used for breathomics applications. This work demonstrates that low levels of ammonia gas (up to 400 ppb) can be detected with high sensitivity and specificity. The morphological and structural characterization of the novel, synthesized Fc@ZIF-8 nanocomposite has been performed using powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, ultraviolet-visible spectroscopy, and dynamic light scattering. Electrochemical characterization of the material has been performed using a standard glassy carbon electrode, and further application of the material has been shown using the in-house designed and reported spiral electrochemical notification coupled electrode, used for ammonia gas sensing. Cross-reactivity studies have also been performed to demonstrate sensor specificity toward the target gas. We demonstrate the first of its kind electrochemical bifunctional probe platform that can be used for sensing ammonia levels in breath, with high sensitivity and specificity, due to the hybrid material system-zinc-imidazole framework 8 (having excellent physisorption properties) and ferrocene (acting as a redox mediator). We envision that such a sensing system will allow noninvasive and early diagnosis of chronic kidney disease, thus leading to early treatment and a decrease in the mortality rate.


Assuntos
Amônia/análise , Técnicas Eletroquímicas/instrumentação , Nariz Eletrônico , Testes Respiratórios , Estruturas Metalorgânicas/química , Microscopia Eletrônica de Varredura , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral/métodos
12.
Polymers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353209

RESUMO

Polypyrrole (PPy) and Polypyrrole/MoS2 (PPy/MoS2) nanocomposites were successfully prepared, characterized and studied for ammonia sensing properties. The as-prepared PPy and PPy/MoS2 nanocomposites were confirmed by FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) techniques. The ammonia sensing properties of PPy and PPy/MoS2 nanocomposites were studied in terms of change in DC electrical conductivity on exposure to ammonia vapors followed by ambient air at room temperature. It was observed that the incorporation of MoS2 in PPy showed high sensitivity, significant stability and excellent reversibility. The enhanced sensing properties of PPy/MoS2 nanocomposites could be attributed to comparatively high surface area, appropriate sensing channels and efficiently available active sites. The sensing mechanism is explained on the basis of simple acid-base chemistry of polypyrrole.

13.
ACS Appl Mater Interfaces ; 12(46): 52070-52081, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33147020

RESUMO

Conductive hydrogels have emerged as promising candidate materials for fabricating wearable electronics because of their fascinating stimuli-responsive and mechanical properties. However, the inherent instability of hydrogels seriously limits their application scope. Herein, the stable, ultrastretchable (upon to 1330% strain), self-healing, and transparent organohydrogel was exploited as a novel gas-responsive material to fabricate NH3 and NO2 gas sensors for the first time with extraordinary performance. A facile solvent substitution method was employed to convert the unstable hydrogel into the organohydrogel with a remarkable moisture retention (avoid drying within a year), frost resistance (freezing point below -130 °C), and unimpaired mechanical and gas sensing properties. First-principles simulations were performed to uncover the mechanisms of antidrying and antifreezing effects of organohydrogels and the interactions between NH3/NO2 and organohydrogels, revealing the vital role of hydrogen bonds in enhancing the stability and the adsorption of NH3/NO2 on the organohydrogel. The organohydrogel gas sensor displayed high sensitivity, ultralow theoretical limit of detection (91.6 and 3.5 ppb for NH3 and NO2, respectively), reversibility, and fast recovery at room temperature. It exhibited the capabilities to work at a highly deformed state with nondegraded sensing performance and restore all the electrical, mechanical, and sensing properties after mechanical damage. The gas sensing mechanism was understood by considering the gas adsorption on functional groups, dissolution in the solvent, and the hindering effect on the transport of ions.

14.
ACS Appl Mater Interfaces ; 12(18): 20623-20632, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297738

RESUMO

To address the low gas sensitivity of pristine graphene (Gr), chemical modification of Gr has been proved as a promising route. However, the existing chemical functionalization method imposes the utilization of toxic chemicals, increasing the safety risk. Herein, vitamin C (VC)-modified reduced graphene hydrogel (V-RGOH) is synthesized via a green and facile self-assembly process with the assistance of biocompatible VC molecules for high-performance NH3 and NO2 detection. The three-dimensional (3D) structured V-RGOH is highly sensitive to low-concentration NH3 and NO2 at room temperature. In comparison with those of the unmodified RGOH, the V-RGOH gas sensors display an order of magnitude higher sensitivity and much lower limit of detection, resulting from the enhanced interaction between VC and analytes. NH3 and NO2 with extremely low concentrations of 500 and 100 ppb are detected experimentally. Notably, imbedded microheaters are exploited to explore the temperature-dependent gas sensing properties, revealing the negative and positive impacts of temperature on the sensitivity and recovery speed, respectively. Notably, the V-RGOH sensor exhibits remarkable selectivity and linearity and a wide detection range. This work reveals the remarkable effects of chemical modification with biodegradable molecules and 3D structure design on improving the gas sensing performance of the Gr material.

15.
Int Microbiol ; 22(1): 49-58, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30810931

RESUMO

Green route for silver nanoparticle synthesis has gained increasing attention. Cyanobacteria are one of the promising organisms to produce a number of secondary metabolites that are capable of reducing silver ions to small-sized silver nanoparticles. In the present study, we employed an aqueous extract of the cyanobacterium Haloleptolyngbya alcalis KR2005/106 isolated from a soda lake for biosynthesis of silver nanoparticles (AgNPs). The extract acted as a reducing agent for AgNPs synthesis and resulted formation of nanoparticles < 50 nm in size. In this study, synthesis of AgNPs obtained only in the sample exposed to photosynthetically active radiation (PAR) while the synthesis of AgNPs was not observed in the samples kept in dark. The biogenic fabrication of AgNPs was carried out by optimizing several governing parameters such as concentration of the silver nitrate solution, pH, temperature, and amount of biomass. Results obtained through different analytical techniques revealed that cyanobacterial taxon H. alcalis isolated from saline-alkaline habitat is a potential candidate for biosynthesis of optimum-sized spherical AgNPs. Surface plasmon resonance (SPR) property of AgNPs was exploited for aqueous ammonia sensing and revealed that AgNPs synthesized using aqueous extract of cyanobacterium H. alcalis could be employed for colorimetric detection of dissolved ammonia for monitoring quality of water.


Assuntos
Amônia/análise , Misturas Complexas/metabolismo , Cianobactérias/metabolismo , Nanopartículas Metálicas , Prata/metabolismo , Colorimetria/métodos , Cianobactérias/isolamento & purificação , Escuridão , Lagos/microbiologia , Luz , Oxirredução , Nitrato de Prata/metabolismo , Ressonância de Plasmônio de Superfície
16.
ACS Appl Mater Interfaces ; 10(32): 27465-27471, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30020761

RESUMO

The construction of colorimetric sensing materials with high selectivity, low detection limits, and great stability provides a significant way for facile device implementation of an ammonia (NH3) sensor. Herein, with excellent alkaline stability and exposed N sites in molecule as well as with naked-eye color switching nature generated from changeable cobalt (Co) valence, a three-dimensional mixed-valence cobalt(II/III) metal-organic framework (FJU-56) with tris-(4-tetrazolyl-phenyl)amine (H3L) ligand was synthesized for colorimetric sensing toward ammonia. The activated FJU-56 demonstrates a limit of detection of 1.38 ppm for ammonia sensing, with high selectivity in ammonia and water competitive adsorption, and shows outstanding stability and reversibility in the cyclic test. The NH3 or water molecules binding to the exposed N sites with the hydrogen-bond are observed by single-crystal X-ray diffraction, determining that the attachment of guest molecules to the FJU-56 framework changes the valence of Co ions with a naked-eye color switching response, which provides an ocular demonstration for ammonia capture and a valuable insight into ammonia sensing.

17.
Artigo em Inglês | MEDLINE | ID: mdl-27863254

RESUMO

The physiological effects of high environmental ammonia (HEA) exposure have been well documented in many aquatic species. In particular, it has recently been demonstrated that exposure to ammonia in fish leads to a similar hyperventilatory response as observed during exposure to hypoxia. In littoral crabs, such as the green crab (Carcinus maenas), exposure to severe hypoxia triggers an emersion response whereby crabs escape hypoxia to breathe air. We hypothesized that exposure to HEA in green crabs would lead to a similar behavioural response which is specific to ammonia. Using an experimental arena containing a rock bed onto which crabs could emerse, we established that exposure to HEA (4mmol/l NH4HCO3) for 15min triggers emersion in crabs. In experiments utilizing NaHCO3 controls and NH4HCO3 injections, we further determined that emersion was triggered specifically by external ammonia and was independent of secondary acid-base or respiratory disturbances caused by HEA. We then hypothesized that emersion from HEA provides a physiological benefit, similar to emersion from hypoxia. Exposure to 15min of HEA without emersion (no rock bed present) caused significant increases in arterial haemolymph total ammonia (Tamm), pH, and [HCO3-]. When emersion was allowed, arterial haemolymph Tamm and [HCO3-] increased, but no alkalosis developed. Moreover, emersion decreased haemolymph partial pressure of NH3 relative to crabs which could not emerse. Overall, we demonstrate a novel behavioural response to HEA exposure in crabs which we propose may share similar mechanistic pathways with the emersion response triggered by hypoxia.


Assuntos
Amônia/toxicidade , Crustáceos/fisiologia , Exposição Ambiental , Animais , Humanos
18.
J Colloid Interface Sci ; 480: 76-84, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27416288

RESUMO

According to environmental protection agencies (EPA), the emission threshold of NH3 in air is 1000kg/yr which is now about 20Tg/yr. Hence, there is a rapid increase in need of NH3 sensors to timely detect and control NH3 emissions. Metal oxide nanostructures such as CuO with special features are potential candidates for NH3 sensing. In the present study, morphology controlled 3-dimensional CuO superstructures were synthesized by surfactant-free hydrothermal method for NH3 detection. In addition to conventional hydrothermal method where water as solvent, a modified approach using a mixture of water and ethylene glycol (EG) was used as solvent to control the growth process. Hierarchical superstructures namely, snowflake-like, flower-like, hollow-sphere-like and urchin-like feature with particle dimensions ranging from 0.3 to 1µm were obtained by varying water/EG ratio and reaction temperature. The synthesized nanostructures exhibited morphology dependent luminescence and gas sensing properties. The surface area and pore distribution determined by BET surface analysis also largely influenced by the presence of EG in the reaction system. The average pore diameter enhanced from 6nm to 14nm by the addition of 10ml EG as solvent. The room temperature ammonia sensing behavior of all samples was studied using an indigenous gas sensing set-up. It was found that hollow-sphere like CuO nanostructures showed a maximum sensitivity of 150% towards 600ppm ammonia with a response and recovery time of 6min. The hydrothermal synthesis strategy reported here has the advantage of producing shape controlled hierarchical materials are highly suitable for various technological applications.

19.
Nanoscale Res Lett ; 10(1): 461, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625885

RESUMO

Zn-doped NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing material with excellent comprehensive performance, which could real-time detect and monitor ammonia (NH3) in the surrounding environment. The morphology and structure analysis indicated that the as-fabricated semiconductor films were composed of particles with diameters ranging from 80 to 160 nm, and each particle was composed of small crystalline grain with a narrow size about 20 nm, which was the face-centered cubic single crystal structure. X-ray diffraction peaks shifted toward lower angle, and the size of the lattice increased compared with undoped NiO, which demonstrated that zinc ions have been successfully doped into the NiO host structure. Simultaneously, we systematically investigated the gas-sensing properties of the Zn-doped NiO sensors for NH3 detection at room temperature. The sensor based on doped NiO sensing films gave four to nine times faster response and four to six times faster recovery speeds than those of sensor with undoped NiO films, which is important for the NiO sensor practical applications. Moreover, we found that the doped NiO sensors owned outstanding selectivity toward ammonia.

20.
J Hazard Mater ; 262: 64-70, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24012961

RESUMO

This paper reports the fabrication of layered double hydroxide (LDH)/conductive polymer multilayer films by alternate assembly of exfoliated ZnAl-LDH nanosheets and polyaniline (PANI) on silicon wafer substrates using the layer-by-layer (LBL) deposition technology. UV-vis absorption spectroscopy indicates a stepwise and regular growth of the (LDH/PANI)n multilayer films upon increasing deposition cycles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the surfaces of the films are microscopy smooth and uniform with a thickness of 2 nm per bilayer. Furthermore, the resulting (LDH/PANI)n multilayer films possess high selectively response to ammonia at room temperature. The presence of LDH nanosheets plays a critical role on the gas sensing for the pure PANI film has very low response to ammonia. The LBL assembly process based on LDH combines the conducting polymer and nano-inorganic material, which provides opportunities to develop new inorganic-organic films for gas sensing.


Assuntos
Amônia/análise , Compostos de Anilina/química , Hidróxidos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectrofotometria Ultravioleta , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...