Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Sci Total Environ ; 949: 174771, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009154

RESUMO

Over the last century, the Atacama Desert has been exploited due to the mineral resources in this environment. These anthropogenic effects have primarily been linked to the development of the mining industry, the impact of which remains uncertain. Here, we use high-resolution geochemical characterization and magnetic properties analysis from the sedimentary core of Inka Coya Lake, located in the Atacama Desert, to assess the anthropogenic impact in this metallogenic region. The geochemistry and magnetic properties changed with core depth. Elements, such as Cu, Ni, and Zn, increased during the lake's most recent period. Additionally, an increase in mass magnetic susceptibility (χ) and a decrease in magnetic susceptibility depending on the frequency (χfd%) may be attributed to fine iron oxide grains originating from industrial and urban sources. Moreover, indices of pollution classified the sediment of Inka Coya Lake as slightly polluted and strongly polluted with Ni, and Cu, respectively. This could reflect a period of pollution caused by the increase in the production of copper sulfide. These results highlight the possible impact of mining activities in the hyper-arid core of the Atacama Desert, which affects surrounding areas through dispersive processes, even reaching high altitudes, and provides a scientific basis for the prevention of environmental pollution from mining and the protection of the sediment and water source in the Atacama Desert.

2.
Integr Zool ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011657

RESUMO

Natural native forests are rapidly being replaced by anthropogenic forests often with a strong presence of invasive alien plant species. Eucalypt species are widely planted worldwide, with Eucalyptus globulus plantations being particularly expressive in Portugal. Poor forestry practices often lead to the associated expansion of invasive species, such as Acacia dealbata. However, we still know relatively little about the functioning of anthropogenic forests, such as seed and pollen dispersal services. Here, we compared bird abundance and richness and the seed and pollen dispersal networks in both forest types. Anthropogenic forests presented lower bird abundance, and smaller, more simplified, and more random (abundance-based) seed dispersal services than those of natural forests. Interestingly, the pollen dispersal network was more similar than the seed dispersal network for both forest types and dominated by opportunistic and neutral processes, given the absence of specialized nectarivorous. The proportion of birds transporting seeds decreased, while those carrying pollen significantly increased in the anthropogenic forest compared to the native forest. Our work highlights the impact of anthropogenic forests on bird abundance, with consequences for seed dispersal services and forest regeneration.

3.
Environ Sci Pollut Res Int ; 31(34): 47291-47297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38992303

RESUMO

Urbanization and technological advancements result in the dispersion of antropogenic electromagnetic fields (EMF) that can affect on ecosystems. Therefore, it is important to understand their impact on the environment. Aquatic ecosystems are subject to EMF as part of various electricity sources, e.g., high-voltage transmission lines (HVTL). We examined the impact of EMF generated by HVTL on the spatial arrangement and survival of pike (Esox lucius) embryos. Fertilized eggs were incubated under two HVTL configurations 110 kV and 220 kV compared with a control group devoid of anthropogenic EMF. Embryo orientation and survival were monitored until blastopore closure. The control group showed dominance in the arrangement of embryos along the N-S, NNW-SSE, and NNE-SSW axes, with a slight prevalence of northern directions. EMF originating from HVTL did not exert a significant influence on the spatial arrangement of pike embryos, although some deviations from the arrangement noticed in the control group were observed. Increased embryo mortality was observed only at 110 kV site, but probably due to factors unrelated to EMF. In conclusion, EMF generated by HVTL did not significantly change pike embryo orientation or chances of survival. However, longer exposure or higher EMF levels could provoke notable reactions, requiring ongoing evaluation as power networks continue to spread more widely.


Assuntos
Campos Eletromagnéticos , Embrião não Mamífero , Esocidae , Animais
4.
Sci Total Environ ; 940: 173579, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823713

RESUMO

Human land use changes are threatening the integrity and health of coastal ecosystems worldwide. Intensified land use for anthropogenic purposes increases sedimentation rates, pollutants, and nutrient concentrations into adjacent coastal areas, often with detrimental effects on marine life and ecosystem functioning. However, how these factors interact to influence ecosystem health in mangrove forests is poorly understood. This study investigates the effects of catchment human land use on mangrove forest architecture and sedimentary attributes at a landscape-scale. Thirty sites were selected along a gradient of human land use within a narrow latitudinal range, to minimise the effects of varying climatic conditions. Land use was quantified using spatial analysis tools with existing land use databases (LCDB5). Twenty-six forest architectural and sedimentary variables were collected from each site. The results revealed a significant effect of human land use on ten out of 26 environmental variables. Eutrophication, characterised by changes in redox potential, pH, and sediment nutrient concentrations, was strongly associated with increasing human land use. The δ15N values of sediments and leaves also indicated increased anthropogenic nitrogen input. Furthermore, the study identified a positive correlation between human land use and tree density, indicating that increased nutrient delivery from catchments contributes to enhanced mangrove growth. Propagule and seedling densities were also positively correlated with human land use, suggesting potential recruitment success mechanisms. This research underpins the complex interactions between human land use and mangrove ecosystems, revealing changes in carbon dynamics, potential alterations in ecosystem services, and a need for holistic management approaches that consider the interconnectedness of species and their environment. These findings provide essential insights for regional ecosystem models, coastal management, and restoration strategies to address the impacts of human pressures on temperate mangrove forests, even in estuaries that may be relatively healthy.


Assuntos
Monitoramento Ambiental , Áreas Alagadas , Florestas , Conservação dos Recursos Naturais , Eutrofização
5.
Mar Pollut Bull ; 205: 116598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885576

RESUMO

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.


Assuntos
Golfinhos , Monitoramento Ambiental , Ésteres , Metaboloma , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Brasil , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Ésteres/análise , Ésteres/metabolismo , Golfinhos/metabolismo , Tecido Adiposo/metabolismo , Dietilexilftalato/metabolismo , Plastificantes , Disruptores Endócrinos/análise , Masculino , Feminino , Dibutilftalato
6.
Sci Total Environ ; 946: 173822, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38906293

RESUMO

Land use conversion of natural to production systems is one of the most important threats to belowground communities and to the key ecosystem processes in which they are involved. Available literature shows positive, negative, and neutral effects of land use changes on soil fauna communities; and these varying effects may be due to different characteristics of natural and production systems and soil organisms. We hypothesize that land conversion from high to low plant biomass, diversity, and structural complexity systems may have the most negative impacts on soil fauna. Here, we performed the first meta-analysis evaluating the overall effects of land use conversion on soil invertebrate communities and the influence of factors related to characteristics of natural and production systems, of soil fauna communities and methods. We compiled a dataset of 260 publications that yielded 1732 observations for soil fauna abundance and 459 for richness. Both abundance and richness showed a global decline as a consequence of natural land conversion to production systems. These negative effects were stronger, in general, when the conversion occurred in tropical and subtropical sites, and when natural systems were replaced by croplands, pastures and grazing systems. The effects of land use conversion also depended on soil property changes. In addition, the abundance of most taxa and richness of Acari and Collembola were strongly reduced by land use changes while Annelida were not affected. The highest reduction in abundance was recorded in omnivores and predators, whereas detritivores showed a reduction in richness. Our meta-analysis shows consistent evidence of soil biodiversity decline due to different land use changes and the partial dependence of those effects on the magnitude of changes in vegetation. These findings stress the need to continue developing production modes that effectively preserve soil biodiversity and ecosystem processes, without hampering food production.


Assuntos
Biodiversidade , Invertebrados , Solo , Solo/química , Invertebrados/fisiologia , Animais , Ecossistema , Agricultura , Monitoramento Ambiental
7.
Plants (Basel) ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674553

RESUMO

Ecological records from before and after the creation of natural parks are valuable for informing conservation and management but are often unavailable. High-resolution paleoecological studies may bridge the gap and provide the required information. This paper presents a 20th-century subdecadal reconstruction of vegetation and landscape dynamics in a national park of the Pyrenean highlands. The park lands had traditionally been used for cultivation, extensive grazing, forest exploitation, and hydroelectricity generation following the damming of numerous glacial lakes. A significant finding is that forests have dominated the landscape, with negligible changes in composition, and only experienced fluctuations in forest cover, influenced by both climatic and anthropogenic factors. The creation of the park (1955) and the initial restrictions on forest exploitation did not significantly affect vegetation cover or composition. Major forest expansion did not occur until several decades later, 1980, when the park was enlarged and forest exploitation was further restricted. This expansion peaked in the 1990s, coinciding with a warming trend and a decrease in fire incidence, before declining due to warmer and drier climates. This decline was coeval with the ongoing global forest dieback and may be exacerbated by the predicted global warming in this century, which could also increase fire incidence due to dead-wood accumulation. Currently, the main threats are global warming/drying, fire, and tourism intensification. Similar high-resolution paleoecological records in protected areas are globally scarce and would be capable in providing the long-term ecological scope required to properly understand forest dynamics and optimize conservation measures.

8.
Sci Total Environ ; 930: 172800, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38679086

RESUMO

This overview presents comparison of common microtechnofossils with other geochemical markers that may have the great potential to be the anthropogenic signatures for recent and future sediment strata. The novel man-made products encompass spherical and spheroidal fly-ash particulates, microplastics, synthetic crystals, and more recently examined glass microspheres. Due to their low specific gravity and small size varying from a tiny fraction of millimeter to approximately 5 mm, microtechnofossils may be transported over a long distance from their primary or secondary sources by water and wind. Of these technogenic materials, among the most resistant to physical and chemical degradation are glass microbeads, and additionally synthetic crystals and some types of fly-ash particulates derived mostly from coal/oil combustion, metal ore smelting operations and cement/lime manufacturing. Nonetheless, synthetic glass microspheres have found exponentially growing applications as reflective ingredients in traffic-related paints and building facades, as well as in a variety of applications mostly as low-density fillers of many materials. In contrast to anthropogenic fly-ash and microplastic particles, glass microspheres resemble in many respects common detrital quartz grains. Moreover, like quartz, they are resistant to depositional and diagenetic processes, which is a prerequisite for future geologic archives preserving anthropogenic signals. These and other characteristics make glass microspheres a more widely used product in various fields thus assigning them to a new emerging and globally spreading chronostratigraphic marker of human-impacted sediments.

9.
J Environ Manage ; 358: 120946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652991

RESUMO

Wilderness areas are natural landscape elements that are relatively undisrupted by human activity and play a critical role in maintaining ecological equilibrium, preserving naturalness, and ensuring ecosystem resilience. Since 2000, monitoring of global wilderness areas has increased owing to the availability of spatial map data and remote sensing imagery related to human activity and/or human footprint. Progress has been made in the remote sensing of wilderness areas by relying on available historical literature (e.g., published papers, books, and reports). However, to our knowledge, a synthesis of wilderness area research from a remote sensing perspective has not yet been performed. In this preliminary review, we discuss the concept of wilderness in different historical eras and systematically summarize dynamic wilderness monitoring at local, national, and global scales, available remotely sensed indicators, disparities and commonalities in identification methods, and mapping uncertainties. Finally, since this field remains in its initial stage owing to a lack of unified standards and vertical/horizontal comparisons, we present insights into future research directions, particularly with regard to remote sensing. The findings of this review may help to improve the overall understanding of current wilderness patterns (i.e., increases/decreases) and the mechanisms by which they change, as well as provide guidance for global nature conservation programs.


Assuntos
Monitoramento Ambiental , Meio Selvagem , Humanos , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto
10.
Mar Environ Res ; 197: 106478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594093

RESUMO

Increasing impacts of both fisheries and climate change have resulted in shifts in the structure and functioning of marine communities. One recurrent observation is the rise of cephalopods as fish recede. This is generally attributed to the removal of main predators and competitors by fishing, while mechanistic evidence is still lacking. In addition, climate change may influence cephalopods due to their high environmental sensitivity. We aim to unveil the effects of different anthropogenic and environmental drivers at different scales focusing on the cephalopod community of the Western Mediterranean Sea. We investigate several ecological indicators offering a wide range of information about their ecology, and statistically relating them with environmental, biotic and fisheries drivers. Our results highlight non-linear changes of indicators along with spatial differences in their responses. Overall, the environment drivers have greater effects than biotic and local human impacts with contrasting effects of temperature across the geographic gradient. We conclude that cephalopods may be impacted by climate change in the future while not necessary through positive warming influence, which should make us cautious when referring to them as generalized winners of current changes.


Assuntos
Cefalópodes , Ecossistema , Animais , Humanos , Cefalópodes/fisiologia , Mar Mediterrâneo , Mudança Climática , Pesqueiros
11.
J Hazard Mater ; 471: 134395, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663293

RESUMO

Microplastic (MP) pollution is widely spread in oceans, freshwater, and terrestrial environments but MPs in mountainous headwater ecosystem are rarely reported. This study focuses on the headwater of Yangtze tributaries of the Hindu Kush-Himalayan (HKH) region. Five streams at elevations of 900 to 3300 m were selected to investigate the distribution of MPs in water and sediments across altitudes. MPs were found in all water and sediment samples from top stream zone nearly in absence of anthropogenic activity, low anthropogenic zone, and high anthropogenic zone, increased from 12-54, 81-185 to 334-847 items/L, and 2-35, 26-84 to 124-428 items/kg, respectively. This elevation-dependent MP distribution indicated that as elevation decreased, anthropogenic activities intensified and increased MPs input and their abundance, size, and diversity. Notably, hydraulic projects, such as damming, were identified as potential barriers to the migration of MPs downstream. Microbiome analyses revealed the presence of bacterial genes associated with plastic biodegradation in all sediment samples. The study indicates that Shangri-la mountainous streams have been polluted with MPs for years with potential risk of generation of nano-sized particles via natural fragmentation and biodegradation, and thus raises concern on MPs pollution in headwaters streams in mountainous regions.


Assuntos
Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Rios , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rios/química , Sedimentos Geológicos/química , China , Efeitos Antropogênicos
12.
Environ Res ; 251(Pt 1): 118587, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437903

RESUMO

Nitrate (NO3-) pollution in irrigation canals is of great concern because it threatens canal water use; however, little is known about it at present. Herein, a combination of positive matrix factorization (PMF), isotope tracers, and Mixing Stable Isotope Analysis in R (MixSIAR) was developed to identify anthropogenic impacts and quantitative sources of NO3- in a rural-urban canal in China. The NO3- concentration (0.99-1.93 mg/L) of canal water increased along the flow direction and was higher than the internationally recognized eutrophication risk value in autumn and spring. The inputs of the Fuhe River, NH4+ fertilizer, soil nitrogen, manure & sewage, and rainfall were the main driving factors of canal water NO3- based on principal component analysis and PMF, which was supported by evidence from δ15N/δ18O-NO3-. According to the chemical and isotopic analyses, nitrogen transformation was weak, highlighting the potential of δ15N/δ18O-NO3- to trace NO3- sources in canal water. The MixSIAR and PMF results with a <15% divergence emphasized the predominance of the Fuhe River (contributing >50%) and anthropogenic impacts (NH4+ fertilizer plus manure & sewage, >37%) on NO3- in the entire canal, reflecting the effectiveness of the model analysis. According to the MixSIAR model, (1) higher NO3- concentration in canal water was caused by the general enhancement of human activities in spring and (2) NO3- source contributions were associated with land-use patterns. The high contributions of NH4+ fertilizer and manure & sewage showed inverse spatial variations, suggesting the necessity of reducing excessive fertilizer use in the agricultural area and controlling blind wastewater release in the urban area. These findings provide valuable insights into NO3- dynamics and fate for sustainable management of canal water resources. Nevertheless, long-term chemical and isotopic monitoring with alternative modeling should be strengthened for the accurate evaluation of canal NO3- pollution in future studies.


Assuntos
Monitoramento Ambiental , Nitratos , Isótopos de Nitrogênio , Poluentes Químicos da Água , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , China , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Fertilizantes/análise , Rios/química , Cidades , Irrigação Agrícola
13.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38552152

RESUMO

Drylands account for 45% of the Earth's land area, supporting ~40% of the global population. These regions support some of the most extreme environments on Earth, characterized by extreme temperatures, low and variable rainfall, and low soil fertility. In these biomes, microorganisms provide vital ecosystem services and have evolved distinctive adaptation strategies to endure and flourish in the extreme. However, dryland microbiomes and the ecosystem services they provide are under threat due to intensifying desertification and climate change. In this review, we provide a synthesis of our current understanding of microbial life in drylands, emphasizing the remarkable diversity and adaptations of these communities. We then discuss anthropogenic threats, including the influence of climate change on dryland microbiomes and outline current knowledge gaps. Finally, we propose research priorities to address those gaps and safeguard the sustainability of these fragile biomes.


Assuntos
Ecossistema , Microbiota , Conservação dos Recursos Naturais , Mudança Climática , Solo , Temperatura Alta
14.
Chemosphere ; 355: 141782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548083

RESUMO

While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Ambientais , Ecossistema , Estuários , Baías , Rios/química , Agricultura , Preparações Farmacêuticas
15.
Ecol Evol ; 14(3): e11140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495434

RESUMO

The Arctic ecosystems and their species are exposed to amplified climate warming and, in some regions, to rapidly developing economic activities. This study assesses, models, and maps the geographic patterns of community-level plant species richness in the Western Siberian Arctic and estimates the relative impact of environmental and anthropogenic factors driving these patterns. With our study, we aim at contributing toward conservation efforts for Arctic plant diversity in the Western Siberian Arctic. Western Siberian Arctic, Russia. We investigated the relative importance of environmental and anthropogenic predictors of community-level plant species richness in the Western Siberian Arctic using macroecological models trained with an extensive geobotanical dataset. We included vascular plants, mosses and lichens in our analysis, as non-vascular plants substantially contribute to species richness and ecosystem functions in the Arctic. We found that the mean community-level plant species richness in this vast Arctic region does not decrease with increasing latitude. Instead, we identified an increase in species richness from South-West to North-East, which can be well explained by environmental factors. We found that paleoclimatic factors exhibit higher explained deviance compared to contemporary climate predictors, potentially indicating a lasting impact of ancient climate on tundra plant species richness. We also show that the existing protected areas cover only a small fraction of the regions with highest species richness. Our results reveal complex spatial patterns of community-level species richness in the Western Siberian Arctic. We show that climatic factors such as temperature (including paleotemperature) and precipitation are the main drivers of plant species richness in this area, and the role of relief is clearly secondary. We suggest that while community-level plant species richness is mostly driven by environmental factors, an improved spatial sampling will be needed to robustly and more precisely assess the impact of human activities on community-level species richness patterns. Our approach and results can be used to design conservation strategies and to investigate drivers of plant species richness in other arctic regions.

16.
Sci Rep ; 14(1): 4722, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413813

RESUMO

In an increasingly human- and road-dominated world, the preservation of functional ecosystems has become highly relevant. While the negative ecological impacts of roads on ecosystems are numerous and well documented, roadless areas have been proposed as proxy for functional ecosystems. However, their potential remains underexplored, partly due to the incomplete mapping of roads. We assessed the accuracy of roadless areas identification using freely available road-data in two regions with contrasting levels of anthropogenic influence: boreal Canada and temperate Central Europe (Poland, Slovakia, Czechia, and Hungary). Within randomly selected circular plots (per region and country), we visually examined the completeness of road mapping using OpenStreetMap 2020 and assessed whether human influences affect mapping quality using four variables. In boreal Canada, roads were completely mapped in 3% of the plots, compared to 40% in Central Europe. Lower Human Footprint Index and road density values were related to greater incompleteness in road mapping. Roadless areas, defined as areas at least 1 km away from any road, covered 85% of the surface in boreal Canada (mean size ± s.d. = 272 ± 12,197 km2), compared to only 0.4% in temperate Central Europe (mean size ± s.d. = 0.6 ± 3.1 km2). By visually interpreting and manually adding unmapped roads in 30 randomly selected roadless areas from each study country, we observed a similar reduction in roadless surface in both Canada and Central Europe (27% vs 28%) when all roads were included. This study highlights the urgent need for improved road mapping techniques to support research on roadless areas as conservation targets and surrogates of functional ecosystems.


Assuntos
Ecossistema , Humanos , Europa (Continente) , Canadá , Polônia , Hungria
17.
Ambio ; 53(4): 592-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273093

RESUMO

Human threats to biodiversity are prevalent within protected areas (PAs), undermining their effectiveness in halting biodiversity loss. Certain threats tend to co-occur, resulting in amplified cumulative impact through synergistic effects. However, it remains unclear which threats are related the most. We analyzed a dataset of 71 human threats in 18 013 terrestrial PAs of the European Union's Natura 2000 network, using a Joint Species Distribution Modelling approach, to assess the threats' co-occurrence patterns and potential drivers. Overall, threats were more frequently correlated positively than negatively. Threats related to agriculture and urbanization were correlated strongly with most other threats. Approximately 70% of the variance in our model was explained by country-specific factors, indicating the importance of local drivers. Minimizing the negative impact of key threats can likely reduce the impact of related threats. However, more research is needed to understand better the relationships among threats and, importantly, their combined impact on biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Conservação dos Recursos Naturais/métodos , Urbanização , Agricultura , Ecossistema
18.
Environ Monit Assess ; 196(2): 194, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265534

RESUMO

Interpretation of a fossil pollen data for the vegetation and climate reconstruction of any region needs a modern pollen-vegetation analogue for its calibration. We analyzed the surface sediments and moss polsters for the pollen and microcharcoal records to understand the modern pollen-vegetation relationship and human activities in the Baspa Valley, Kinnaur, Himachal Pradesh. Presently, valley is occupied by the arboreal and non-arboreal vegetation of temperate to subalpine habitats and land use activities. The recovered pollen assemblages showed variability in the dispersal behavior of pollen of taxa growing along the valley transect and also captured the signals of human activities over land use. The overall dominance of arboreal pollen in the recovered pollen assemblage corresponds with the dominant growth of conifers and broadleaf tree taxa and represents the valley vegetation at a regional scale. However, the profuse pollen production of a few arboreal taxa and long distance pollen transport from one vegetation zone to other by the strong upthermic valley winds could bias the pollen representation of in-situ vegetation. The high pollen frequency of non-arboreal taxa in the open meadows represents the near vicinity to their plant source. Human activities like fire burning and cultivation by the local population are evident by the recovery of microcharcoal particles and pollen of plants belonging to Cerealia Poaceae, Asteraceae, Amaranthaceae, Polygonaceae, Rosaceae, Juglandaceae, etc. The dataset taken as modern pollen-vegetation analogue is useful to assess past changes in the vegetation and land cover in relation to climate and human factors for future sustenance.


Assuntos
Meio Ambiente , Monitoramento Ambiental , Humanos , Himalaia , Pólen , Clima
19.
Environ Int ; 183: 108370, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091822

RESUMO

The Tibetan Plateau is a pristine environment with limited human disturbance, with its aerosol microbiome being primarily influenced by the monsoon and westerly circulations. Additionally, the diversity and abundance of airborne microorganisms are also affected by anthropogenic activities, such as animal farming, agriculture, and tourism, which can lead to increased risks to the ecosystem and human health. However, the impact of anthropogenic activities on airborne microbes on the Tibetan Plateau has been rarely studied. In this work, we investigated the airborne bacteria of areas with weak (rural glacier) and strong human disturbance (urban building), and found that anthropogenic activities increased the diversity of airborne bacteria, and the concentration of potential airborne pathogens. Moreover, airborne bacteria in rural aerosols demonstrated significant differences in their community structure during monsoon- and westerly-affected seasons, while this pattern was weakened in urban aerosols. Additionally, urban aerosols enriched Lactobacillus sp. (member of genus Lactobacillus), which are potential pathogens from anthropogenic sources, whereas rural aerosols enriched A. calcoaceticus (member of genus Acinetobacter) and E. thailandicus (member of genus Enterococcus), which are both speculated to be sourced from surrounding animal farming. This study evaluated the impact of human activities on airborne bacteria in the Tibetan Plateau and contributed to understanding the enrichment of airborne pathogens in natural and anthropogenic background.


Assuntos
Poluentes Atmosféricos , Microbiota , Humanos , Tibet , Poluentes Atmosféricos/análise , Efeitos Antropogênicos , Monitoramento Ambiental , Bactérias , Aerossóis/análise
20.
J Environ Manage ; 351: 119727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070422

RESUMO

Quantifying anthropogenic impacts on blue space (BS) and its effect on human and socio-ecological health was least explored. The present study aimed to do this in reference to the urban BS transformation scenario of Eastern India. To measure BS transformation, Landsat image-based water indices were run from 1990 to 2021. Anthropogenic impact score (AIS) and 7 components scores of 78 selected BS on 70 parameters related data driven from the field. Total 345 respondents were taken for human and socio-ecological health assessment. For this, depression (DEP), anxiety (ANX), stress (STR), physical activities (PA), social capital (SC), therapeutic landscape (TL) and environment building (EB) parameters were taken. The result exhibited that BS was reduced. About 50% of urban core BS was reported highly impacted. Human and socio-ecological health was identified as good in proximity to BS, but it was observed better in the cases of larger peripheral BS. AIS on BS was found to be positively associated with mental health (0.47-0.63) and negatively associated with PA, SC, TL and EB (-0.50 to -0.90). Standard residual in ordinary least square was reported low (-1.5 to 1.5) in 95% BS. Therefore, BS health restoration and management is crucial for sustaining the living environment.


Assuntos
Efeitos Antropogênicos , Exercício Físico , Humanos , Fatores Socioeconômicos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...