Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Virol J ; 21(1): 177, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107806

RESUMO

BACKGROUND: Reticuloendotheliosis virus (REV), a member of the family Retroviridae, is a hot area of research, and a previous study showed that exosomes purified from REV-positive semen were not blocked by REV-specific neutralizing antibodies and established productive infections. METHODS: To further verify the infectivity of exosomes from REV-infected cells, we isolated and purified exosomes from REV-infected DF-1 cells and identified them using Western blot and a transmission electron microscope. We then inoculated 7-day-old embryonated eggs, 1-day-old chicks and 23-week-old hens with and without antibody treatment. REV was administered simultaneously as a control. RESULTS: In the absence of antibodies, the results indicated that REV-exosomes and REV could infect chicks, resulting in viremia and viral shedding, compared with the infection caused by REV, REV-exosomes reduced the hatching rate and increased mortality after hatching, causing severe growth inhibition and immune organ damage in 1-day-old chicks; both REV and REV-exosomes also could infect hens, however, lead to transient infection. In the presence of antibodies, REV-exosomes were not blocked by REV-specific neutralizing antibodies and infected 7-day-old embryonated eggs. However, REV could not infect 1-day-old chicks and 23-week-old hens. CONCLUSION: In this study, we compared the infectious ability of REV-exosomes and REV, REV-exosomes could escape from REV-specific neutralizing antibodies in embryonated eggs, providing new insights into the immune escape mechanism of REV.


Assuntos
Anticorpos Antivirais , Galinhas , Exossomos , Doenças das Aves Domésticas , Vírus da Reticuloendoteliose , Infecções por Retroviridae , Eliminação de Partículas Virais , Animais , Exossomos/virologia , Exossomos/imunologia , Anticorpos Antivirais/imunologia , Galinhas/virologia , Vírus da Reticuloendoteliose/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/imunologia , Infecções por Retroviridae/virologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/veterinária , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Viremia/virologia , Feminino
2.
J Allergy Clin Immunol ; 154(2): 435-446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878020

RESUMO

BACKGROUND: Biologic therapies inhibiting the IL-4 or IL-5 pathways are very effective in the treatment of asthma and other related conditions. However, the cytokines IL-4 and IL-5 also play a role in the generation of adaptive immune responses. Although these biologics do not cause overt immunosuppression, their effect in primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization has not been studied completely. OBJECTIVE: Our aim was to evaluate the antibody and cellular immunity after SARS-CoV-2 mRNA vaccination in patients on biologics (PoBs). METHODS: Patients with severe asthma or atopic dermatitis who were taking benralizumab, dupilumab, or mepolizumab and had received the initial dose of the 2-dose adult SARS-CoV-2 mRNA vaccine were enrolled in a prospective, observational study. As our control group, we used a cohort of immunologically healthy subjects (with no significant immunosuppression) who were not taking biologics (NBs). We used a multiplexed immunoassay to measure antibody levels, neutralization assays to assess antibody function, and flow cytometry to quantitate Spike-specific lymphocytes. RESULTS: We analyzed blood from 57 patients in the PoB group and 46 control subjects from the NB group. The patients in the PoB group had lower levels of SARS-CoV-2 antibodies, pseudovirus neutralization, live virus neutralization, and frequencies of Spike-specific B and CD8 T cells at 6 months after vaccination. In subgroup analyses, patients with asthma who were taking biologics had significantly lower pseudovirus neutralization than did subjects with asthma who were not taking biologics. CONCLUSION: The patients in the PoB group had reduced SARS-CoV-2-specific antibody titers, neutralizing activity, and virus-specific B- and CD8 T-cell counts. These results have implications when considering development of a more individualized immunization strategy in patients who receive biologic medications blocking IL-4 or IL-5 pathways.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , COVID-19/imunologia , COVID-19/prevenção & controle , Asma/tratamento farmacológico , Asma/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Estudos Prospectivos , Idoso , Vacinação , Interleucina-5/antagonistas & inibidores , Interleucina-5/imunologia
3.
Mol Ther Oncol ; 32(1): 200788, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596310

RESUMO

Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.

4.
Front Cell Infect Microbiol ; 14: 1371695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638823

RESUMO

Introduction: SARS-CoV-2 vaccines production and distribution enabled the return to normalcy worldwide, but it was not fast enough to avoid the emergence of variants capable of evading immune response induced by prior infections and vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and BQ.1.1, the antibody response of a cohort vaccinated with a two doses CoronaVac protocol and followed by two heterologous booster doses. Methods: To assess vaccination effectiveness, serum samples were collected from 160 individuals, in 3 different time points (9, 12 and 18 months after CoronaVac protocol). For each time point, individuals were divided into 3 subgroups, based on the number of additional doses received (No booster, 1 booster and 2 boosters), and a viral microneutralization assay was performed to evaluate neutralization titers and seroconvertion rate. Results: The findings presented here show that, despite the first booster, at 9m time point, improved neutralization level against omicron ancestor BA.1 (133.1 to 663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2 to 100.2, respectively). However, at 18m time point, the administration of a second booster dose considerably improved the antibody neutralization, and this was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1 (726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster, seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m), but after the second booster, seroconvertion was completely recovered (95% at 18m). Discussion: Our study reinforces the concerns about immunity evasion of the SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by vaccine induced antibodies than BA.1. On the other hand, the administration of a second booster significantly enhanced antibody neutralization capacity against these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to emerge, additional immunizations will be needed over time.


Assuntos
Vacina BNT162 , Vacinas contra COVID-19 , Vacinas de Produtos Inativados , Humanos , Anticorpos Antivirais , Imunização , SARS-CoV-2 , Anticorpos Neutralizantes
5.
Trends Microbiol ; 32(1): 79-92, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541811

RESUMO

The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.


Assuntos
COVID-19 , Doenças do Gato , Cervos , Doenças do Cão , Animais , Cães , Gatos , Humanos , SARS-CoV-2/genética , Cervos/metabolismo , Vison/metabolismo , Medição de Risco , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Ligação Proteica
6.
J Med Virol ; 95(12): e29252, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38078658

RESUMO

Three pandemics caused by human Betacoronavirus had broken out in the past two decades. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was one of the novel epidemic strains which caused the third pandemic, coronavirus disease 2019 (COVID-19), a global public health crisis. So far, more than millions of people have been infected. Considering the public health and economic impact of Betacoronavirus pandemic, drugs with broad-spectrum activity against these coronaviruses are urgently needed. In this study, two monoclonal antibodies targeting SARS-CoV-2 spike protein receptor-binding domain (RBD) with good neutralizing activity were used to construct a novel immunoglobulin-like bispecific antibody BI31. The neutralizing effect of BI31 against the pseudovirus and the authentic virus is better than that of its parent antibodies alone and in combination. What surprised us most was that the newly constructed bispecific antibody also had the neutralizing activity against SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) that the parent antibodies did not have. These suggested that the BI31 can not only be developed as a therapeutic drug against COVID-19 but it could also become a broad-spectrum therapeutic antibody against Betacoronavirus.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2
7.
Virol J ; 20(1): 257, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940989

RESUMO

BACKGROUND: Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied. METHODS: We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic. We engineered the resulting immune escape mutations E484K, -A, and -Q in recombinant SARS-CoV-2. We characterized viral replication, entry, and competitive fitness with and without immune serum from humans with defined exposure/vaccination history and hamsters monospecifically infected with the E484K variant. We additionally engineered a virus containing the Omicron signature mutations N501Y and Q498R that were predicted to epistatically enhance receptor binding. RESULTS: Multistep growth kinetics in Vero-, Calu-3, and NCI-H1299 were identical between viruses. Synchronized entry experiments based on cold absorption and temperature shift identified only an insignificant trend toward faster entry of the E484K variant. Competitive passage experiments revealed clear replicative fitness differences. In absence of immune serum, E484A and E484Q, but not E484K, were replaced by wildtype (WT) in competition assays. In presence of immune serum, all three mutants outcompeted WT. Decreased E484A fitness levels were over-compensated for by N501Y and Q498R, identifying a putative Omicron founder background that exceeds the intrinsic and effective fitness of WT and matches that of E484K. Critically, the E484A/Q498R/N501Y mutant and E484K have equal fitness also in presence of pre-Omicron vaccinee serum, whereas the fitness gain by E484K is lost in the presence of serum raised against the E484K variant in hamsters. CONCLUSIONS: The emergence of E484A and E484Q prior to widespread population immunity may have been limited by fitness costs. In populations already exposed to the early immune escape epitope E484K, the Omicron founder background may have provided a basis for alternative immune escape evolution via E484A. Studies of major antigenic epitope changes with and without their epistatic context help reconstruct the sequential adjustments of intrinsic fitness versus neutralization escape during the evolution of major SARS-CoV-2 variants in an increasingly immune human population.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Epitopos/genética , SARS-CoV-2/genética , Mutação , Soros Imunes , Epitopos Imunodominantes , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
8.
Antiviral Res ; 220: 105744, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944823

RESUMO

Working with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is restricted to biosafety level III (BSL-3) laboratory. The study used a trans-complementation system consisting of virus-like particles (VLPs) and DNA-launched replicons to generate SARS-CoV-2 single-round infectious particles (SRIPs) with variant-specific spike (S) proteins. S gene of Wuhan-Hu-1 strain (SWH1) or Omicron BA.1 variant (SBA.1), along with the envelope (E) and membrane (M) genes, were cloned into a tricistronic vector, co-expressed in the cells to produce variant-specific S-VLPs. Additionally, the replicon of the WH1-like strain without S, E, M and accessory genes, was engineered under the control by a CMV promoter to produce self-replicating RNAs within VLP-producing cells, led to create SWH1- and SBA.1-based SARS-CoV-2 SRIPs. The SBA.1-based SRIP showed lower virus yield, replication, N protein expression, fusogenicity, and infectivity compared to SWH1-based SRIPs. SBA.1-based SRIP also exhibited intermediate resistance to neutralizing antibodies produced by SWH1-based vaccines, but were effective at infecting cells with low ACE2 expression. Importantly, both S-based SRIPs responded similarly to remdesivir and GC376, with EC50 values ranging from 0.17 to 1.46 µM, respectively. The study demonstrated that this trans-complementation system is a reliable and efficient tool for generating SARS-CoV-2 SRIPs with variant-specific S proteins. SARS-CoV-2 SRIPs, mimicking authentic live viruses, facilitate comprehensive analysis of variant-specific virological characteristics, including antibody neutralization, and drug sensitivity in non-BSL-3 laboratories.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
J Infect Dis ; 228(Suppl 6): S398-S413, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849402

RESUMO

Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.


Assuntos
Infecções por Flavivirus , Flavivirus , Vacinas , Infecção por Zika virus , Zika virus , Animais , Humanos , Infecções por Flavivirus/prevenção & controle , Mosquitos Vetores , Infecção por Zika virus/prevenção & controle
10.
Cell ; 186(16): 3427-3442.e22, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421949

RESUMO

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Ligação Proteica , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
11.
Cell ; 186(6): 1263-1278.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868218

RESUMO

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.


Assuntos
COVID-19 , Vírus de RNA , Humanos , SARS-CoV-2/genética , Mutação , Anticorpos Neutralizantes , Anticorpos Antivirais
12.
Virology ; 576: 74-82, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183498

RESUMO

Dengue virus (DENV) is a prevalent mosquito-transmitted human pathogen, causing about 100 million cases of acute dengue fever and 21,000 deaths annually worldwide. Therapeutic neutralizing antibodies against dengue virus might be effective to treat severe dengue fever. Here, we showed that human monoclonal antibody (HMAb) 9C7 bound to all four intact serotypes of DENV but not to the recombinant envelope protein, suggesting HMAb 9C7 recognized a conformational epitope of the envelope protein. Taken together our results suggested that HMAb 9C7 neutralized all four serotypes of DENV in vitro and, for DENV-1, indicated activity at the pre- and post-attachment steps in the viral life cycle. HMAb 9C7 potently protected suckling mice from lethal challenge with all four serotypes of DENV. FcγRII-mediated uptake of immune complexes and antibody-dependent enhancement at low doses of the antibody were abolished by two Leu-to-Ala (9C7-LALA) mutations or deletion of nine amino acids (9C7-9del) in HMAb 9C7 Fc. Therefore, HMAb 9C7 represented a promising prophylactic and therapeutic agent against all four serotypes of DENV.


Assuntos
Vírus da Dengue , Dengue , Humanos , Camundongos , Animais , Vírus da Dengue/genética , Anticorpos Monoclonais , Sorogrupo , Anticorpos Antivirais , Complexo Antígeno-Anticorpo/genética , Anticorpos Neutralizantes , Epitopos , Aminoácidos/genética , Proteínas do Envelope Viral/genética , Reações Cruzadas
13.
mBio ; 13(4): e0199622, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35924850

RESUMO

The continuous emergence of SARS-CoV-2 variants with increased transmission and immune evasion has caused breakthrough infections in the vaccinated population. It is important to determine the threshold of neutralizing antibody titers (NT50) that permit breakthrough infections in humans. Here, we tested the neutralization titers of vaccinated patients who contracted Delta variant. All 64 patients with Delta breakthrough infections exhibited NT50 of less than 70. When the breakthrough sera were tested against USA-WA1/2020 (a strain isolated in late January 2020), 82.8%, 15.6%, and 1.6% of them had the NT50 ranges of <20, 20 to 50, and 50 to 69, respectively. When the same breakthrough sera were tested against Delta-spike SARS-CoV-2, 68.7%, 26.6%, and 4.7% of them had the NT50 ranges of <20, 20 to 50, and 50 to 69, respectively. Overall, the results suggest NT50 of 70 as a potential neutralizing threshold required to prevent Delta breakthrough infections. These clinical laboratory results have implications in vaccine strategy and public health policy. IMPORTANCE Given that neutralizing antibodies play a key role in protection of SARS-CoV-2 infection, it is important to define the neutralization levels in vaccinated individuals when they contracted breakthrough infections. In this study, we analyzed the neutralization levels from 64 vaccinated patients on days 0 to 5 before they tested positive for Delta breakthrough infections. The neutralization titers in these vaccinated individuals were all lower than 70 when they contracted breakthrough infections. The results suggest a neutralization titer of 70 as the potential threshold required to prevent breakthrough infections of Delta variant.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , Proteínas do Envelope Viral
14.
Cell Host Microbe ; 30(9): 1219-1230.e7, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35985336

RESUMO

Rabies virus (RABV) causes lethal encephalitis and is responsible for approximately 60,000 deaths per year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates host-cell entry. RABV-G's pre-fusion trimeric conformation displays epitopes bound by protective neutralizing antibodies that can be induced by vaccination or passively administered for post-exposure prophylaxis. We report a 2.8-Å structure of a RABV-G trimer in the pre-fusion conformation, in complex with two neutralizing and protective monoclonal antibodies, 17C7 and 1112-1, that recognize distinct epitopes. One of these antibodies is a licensed prophylactic (17C7, Rabishield), which we show locks the protein in pre-fusion conformation. Targeted mutations can similarly stabilize RABV-G in the pre-fusion conformation, a key step toward structure-guided vaccine design. These data reveal the higher-order architecture of a key therapeutic target and the structural basis of neutralization by antibodies binding two key antigenic sites, and this will facilitate the development of improved vaccines and prophylactic antibodies.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Anticorpos Monoclonais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Epitopos , Glicoproteínas/genética , Humanos , Proteínas de Membrana , Raiva/tratamento farmacológico , Raiva/prevenção & controle , Vacina Antirrábica/genética
15.
AIDS Res Ther ; 19(1): 33, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791004

RESUMO

BACKGROUND: Multi-types COVID-19 vaccines have shown safety and efficacy against COVID-19 in adults. Although current guidelines encourage people living with HIV (PLWH) to take COVID-19 vaccines, whether their immune response to COVID-19 vaccines is distinct from HIV-free individuals is still unclear. METHODS: Between March to June 2021, 48 PLWH and 40 HNC, aged 18 to 59 years, were enrolled in the study in Wuchang district of Wuhan city. All of them received inactivated COVID-19 vaccine (Sinopharm, WIBP-CorV, Wuhan Institute of Biological Products Co. Ltd) at day 0 and the second dose at day 28. The primary safety outcome was the combined adverse reactions within 7 days after each injection. The primary immunogenicity outcomes were SARS-CoV-2 neutralizing antibodies (nAbs) responses by chemiluminescence and total specific IgM and IgG antibodies responses by ELISA and colloidal gold at baseline (day 0), day 14, day 28, day 42, and day 70. RESULTS: In total, the study included 46 PLWH and 38 HNC who finished 70 days' follow-up. The frequency of adverse reactions to the first and second dose was not different between PLWH (30% and 11%) vs. HNC (32% and 24%). NAbs responses among PLWH peaked at day 70, while among HNC peaked at day 42. At day 42, the geometric mean concentration (GMC) and seroconversion rate of nAbs among PLWH were 4.46 binding antibody units (BAU)/mL (95% CI 3.18-5.87) and 26% (95% CI 14-41), which were lower than that among HNC [GMC (18.28 BAU/mL, 95% CI 10.33-32.33), seroconversion rate (63%, 95% CI 44-79)]. IgG responses among both PLWH and HNC peaked at day 70. At day 70, the geometric mean ELISA units (GMEU) and seroconversion rate of IgG among PLWH were 0.193 ELISA units (EU)/mL (95% CI 0.119-0.313) and 51% (95% CI 34-69), which was lower than that among HNC [GMEU (0.379 EU/mL, 95% CI 0.224-0.653), seroconversion rate (86%, 95% CI 64-97)]. There were no serious adverse events. CONCLUSIONS: Early humoral immune response to the inactivated COVID-19 vaccine was weaker and delayed among the PLWH population than that among HNC. This observation remained consistent regardless of a high CD4 count with effective antiretroviral therapy.


Assuntos
COVID-19 , Infecções por HIV , Vacinas de Produtos Inativados , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Imunidade , Imunoglobulina G/uso terapêutico , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos
16.
Open Forum Infect Dis ; 9(7): ofac216, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35794931

RESUMO

Immunoglobulin (Ig)G medicinal products manufactured in 2020 were tested for infectivity neutralization and hemagglutination inhibition against World Health Organization-selected influenza strains included in worldwide vaccines 2020-2022. The IgG batches (from US plasma) showed potent activity. Intravenous immunoglobulin could potentially add to therapies for serious influenza cases in immunocompromised patients. Further study is warranted.

17.
Front Immunol ; 13: 854952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784344

RESUMO

Striking number of mutations found in the spike protein of recently emerged SARS-CoV-2 Omicron subvariants BA.1, BA.2, BA.3 and BA.4/5 has raised serious concerns regarding the escape from current antibody therapies and vaccine protection. Here, we conducted comprehensive analysis on the extent of two major Omicron lineages BA.1/BA.1.1 and BA.2 to escape neutralization from the therapeutic antibodies approved by the regulatory authorities and convalescent plasma from SARS-CoV-2 patients infected during initial wave of pandemic in early 2020. We showed that Omicron BA.1/BA.1.1 were the most resistant in both magnitude and breadth against antibodies and convalescent plasma, followed by Beta, BA.2, Gamma, Delta and Alpha. While the majority of therapeutic antibodies lost binding and neutralization to Omicron variants, BRII combo (BRII-196 + BRII-198), S309, and AZ combo (COV2-2196 + COV2-2130) maintained neutralization despite of reduction due to either conserved epitope or combinational effect between the two designated antibodies. A single intraperitoneal injection of BRII combo as a prophylactic treatment protected animals from Omicron infection. Treated animals manifested normal body weight, survived infection up to 14 days, undetectable levels of infectious viruses in the lungs, and reduced lung pathology compared to the controls. Analyzing ACE2 from diverse host species showed that Omicron variants acquired ability to use mouse ACE2 for entry. These results demonstrate major antigenic shifts and potentially broadening the host range of two major Omicron lineages BA.1/BA.1.1 and BA.2, posing serious challenges to current antibody therapies and vaccine protection as well as increasing danger of spillover into the wildlife.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Animais Selvagens , Anticorpos Monoclonais , Anticorpos Neutralizantes , COVID-19/terapia , Imunização Passiva , Camundongos , SARS-CoV-2/genética , Soroterapia para COVID-19
18.
J Virol ; 96(13): e0040622, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35658529

RESUMO

The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.


Assuntos
Proteína gp41 do Envelope de HIV , HIV-1 , Alanina/genética , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Humanos
19.
Vaccines (Basel) ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35746460

RESUMO

Assessing COVID-19 vaccine effectiveness against emerging SARS-CoV-2 variants is crucial for determining future vaccination strategies and other public health strategies. When clinical effectiveness data are unavailable, a common method of assessing vaccine performance is to utilize neutralization assays using post-vaccination sera. Neutralization studies are typically performed across a wide array of settings, populations and vaccination strategies, and using different methodologies. For any comparison and meta-analysis to be meaningful, the design and methodology of the studies used must at minimum address aspects that confer a certain degree of reliability and comparability. We identified and characterized three important categories in which studies differ (cohort details, assay details and data reporting details) and that can affect the overall reliability and/or usefulness of neutralization assay results. We define reliability as a measure of methodological accuracy, proper study setting concerning subjects, samples and viruses, and reporting quality. Each category comprises a set of several relevant key parameters. To each parameter, we assigned a possible impact (ranging from low to high) on overall study reliability depending on its potential to influence the results. We then developed a reliability assessment tool that assesses the aggregate reliability of a study across all parameters. The reliability assessment tool provides explicit selection criteria for inclusion of comparable studies in meta-analyses of neutralization activity of SARS-CoV-2 variants in post-vaccination sera and can also both guide the design of future neutralization studies and serve as a checklist for including important details on key parameters in publications.

20.
Transfusion ; 62(7): 1347-1354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588314

RESUMO

BACKGROUND: The therapeutic benefit of convalescent plasma (CP) therapy to treat COVID-19 may derive from neutralizing antibodies (nAbs) to SARS-CoV-2. To investigate the effects of antigenic variation on neutralization potency of CP, we compared nAb titers against prototype and recently emerging strains of SARS-CoV-2, including Delta and Omicron, in CP donors previously infected with SARS-CoV-2 before and after immunization. METHODS AND MATERIALS: Samples were assayed from previously SARS-CoV-2 infected donors before (n = 17) and after one (n = 43) or two (n = 71) doses of Astra-Zeneca or Pfizer vaccinations. Ab titers against Wuhan/wild type (WT), Alpha, Beta, and Delta SARS-CoV-2 strains were determined by live virus microneutralization assay while titers to Omicron used a focus reduction neutralization test. Anti-spike antibody was assayed by Elecsys anti-SARS-CoV-2 quantitative spike assay (Roche). RESULTS: Unvaccinated donors showed a geometric mean titer (GMT) of 148 against WT, 80 against Alpha but mostly failed to neutralize Beta, Delta, and Omicron strains. Contrastingly, high GMTs were observed in vaccinated donors against all SARS-CoV-2 strains after one vaccine dose (WT:703; Alpha:692; Beta:187; Delta:215; Omicron:434). By ROC analysis, reactivity in the Roche quantitative Elecsys spike assay of 20,000 U/mL was highly predictive of donations with nAb titers of ≥1:640 against Delta (90% sensitivity; 97% specificity) and ≥1:320 against Omicron (89% sensitivity; 81% specificity). DISCUSSION: Vaccination of previously infected CP donors induced high levels of broadly neutralizing antibodies against circulating antigenic variants of SARS-CoV-2. High titer donations could be reliably identified by automated quantitative anti-spike antibody assay, enabling large-scale preselection of high-titer convalescent plasma.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , Variação Antigênica , COVID-19/terapia , Humanos , Imunização , Imunização Passiva , SARS-CoV-2 , Vacinação , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...