Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 55: 110744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39156671

RESUMO

This data article presents details on the assessment of fracture parameters of laboratory asphalt mixtures produced using both natural and recycled concrete aggregates. The gap-graded stone matrix asphalt (SMA) is created by incorporating Trinidad Lake Asphalt (TLA) binder with carefully calibrated mixtures of recycled concrete aggregates (0 %, 10 %, 35 %, and 50 %) and natural aggregates (limestone and dust filler). The dataset variables were chosen based on the specifications of the single-edge notched beam (SENB) and semi-circular bending (SCB) tests, which are currently used for quality control and assurance (QC & QA) assessment of asphalt concrete mixtures. The data parameters provided include air void content, voids in mineral aggregates, voids filled with asphalt, density, Marshall Stability, Flow, test temperature, peak loads, RCA content, and notch depths. The fracture resistance of the mixes was studied by analysing the fracture energy, tensile strength, and fracture toughness for the collected dataset. The data shows that incorporating up to 10 % of RCA into SMA mixes, similar fracture properties can be achieved compared to traditional SMA mixtures. This presents a sustainable and environmentally advantageous option, however, it is important to exercise caution as the RCA content increases.

2.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125182

RESUMO

In order to improve the basic pavement performance of high-elastic asphalt concrete filled in the expansion longitudinal joints of seamless bridges, rubber particles and polyester fibers were added to optimize the mix proportion of elastic asphalt concrete, and the optimal asphalt-aggregate ratio was determined. The influence of rubber particles and polyester fibers on the basic pavement performance of high-elastic asphalt concrete was studied. The results show that when the dosage of polyester fiber is not more than 0.6%, the optimal asphalt-aggregate ratio is 1:5, and when it exceeds 0.6%, the optimal asphalt-aggregate ratio is 1:4. The incorporation of rubber particles reduces the compressive strength of high-elastic asphalt concrete but enhances its high-temperature stability, fracture performance, and deformation recovery ability. The incorporation of polyester fibers improves its compressive strength, high-temperature stability, fracture performance, and deformation recovery ability. In addition, the incorporation of rubber granules and polyester fibers promotes the use of green building materials and provides strong support for sustainable building practices.

3.
Materials (Basel) ; 17(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39063767

RESUMO

Abrasion wear is a significant concern for cutting tools, particularly when milling asphalt concrete due to the presence of hard mineral aggregate particles. The pressure exerted on the cutting tool by the chipped material and the resulting cutting forces directly influence tool wear. To estimate the cutting forces in asphalt milling, the authors propose using either laboratory experiments or cost-effective Discrete Element Method (DEM) modeling-by simulating the real conditions-as direct measurement under real conditions is challenging. This article presents results from an original experimental program aimed at determining the cutting forces during asphalt pavement milling. A specialized stand equipped with a moving plate and recording devices was designed to vary milling depth, rotational speed, and advance speed. The experimental results for horizontal force values were compared with numerical results from DEM modeling. It was found that both increasing the milling depth and the advance speed lead to higher cutting forces. Generally, DEM modeling trends align with experimental results, although DEM values are generally higher. The statistical analysis allowed identification of the milling depth as the most significant parameter influencing cutting force and the optimal combination of milling parameters to achieve minimum horizontal force acting on cutting tooth, namely, 15 mm milling depth and 190 mm/min advanced speed.

4.
Materials (Basel) ; 17(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063848

RESUMO

This study addresses the issue of construction stagnation affecting the adhesion and tensile properties of hydraulic asphalt concrete with acid aggregate. It investigates the impact of rest periods on the tensile characteristics of such materials under standard construction conditions. The influence of varying rest durations and asphalt temperatures on the tensile behavior of the concrete is assessed through indoor experiments. The bonding between asphalt and aggregate is examined, along with the tensile property variations of the concrete. The study found that the standstill time significantly affects the adhesion of asphalt, with the adhesion decreasing progressively with increased temperature and rest time, irrespective of the addition of anti-stripping agents. However, the inclusion of these agents can mitigate the reduction in adhesion. Furthermore, the study identified that rest duration has a more substantial impact on adhesion than temperature. The splitting tests demonstrate that the tensile properties of asphalt concrete are considerably affected by the resting time. Over a period of 0, 10, 20, and 30 days of rest, an increase in splitting strength and a decrease in splitting displacement were observed. The findings offer valuable insights for predicting the tensile performance of asphalt concrete in practical engineering applications after a period of rest.

5.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998373

RESUMO

The effect of moisture on the fracture resistance of asphalt concrete is a significant concern in pavement engineering. To investigate the effect of the water vapor concentration on the fracture properties of asphalt concrete, this study first designed a humidity conditioning program at the relative humidity (RH) levels of 2%, 50%, 80%, and 100% for the three types of asphalt concrete mixtures (AC-13C, AC-20C, and AC-25C).The finite element model was developed to simulate the water vapor diffusion and determine the duration of the conditioning period. The semi-circular bending (SCB) test was then performed at varying temperatures of 5 °C, 15 °C, and 25 °C to evaluate the fracture energy and tensile strength of the humidity-conditioned specimens. The test results showed that the increasing temperature and the RH levels resulted in a lower peak load but greater displacement of the mixtures. Both the fracture energy and tensile strength tended to diminish with the rising temperature. It was also found that moisture had a significant effect on the tensile strength and fracture energy of asphalt concrete. Specifically, as the RH level increased from 2% to 100% (i.e., the water vapor concentration rose from 0.35 g/m3 to 17.27 g/m3), the tensile strength of the three types of mixtures was reduced by 34.84% on average, which revealed that the water vapor led to the loss of adhesion and cohesion within the mixture. The genetic expression programming (GEP) model was developed to quantify the effect of water vapor concentrations and temperature on the fracture indices.

6.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930246

RESUMO

This paper aims to reveal the interaction relationship between microcracks and macrocracks and the influence of the interaction on the crack propagation behavior. A theoretical model of asphalt concrete was established for the interaction between microcracks with different crack densities and a macrocrack. And a meso-structure model of AC-13 dense-graded asphalt concrete was established by combining the Talyor medium method and the DEM (discrete element method). Macro and micro parameters, such as the stress-strain characteristics, crack evolution parameters, and crack tip stress field, were obtained through a semi-circular bend virtual test and used to study the characteristics of crack propagation under the interaction between microcracks and the macrocrack. The results indicate that the interaction has an effect throughout the process of asphalt concrete damage, and shows shielding and acceleration effects as the microcrack density changes. When the microcrack density is low (f3 ≤ 0.8), the crack propagation process, which is affected by the interaction effect, exhibits significant differences, and the interaction effect shows the shielding effect. When the microcrack density is high (f3 > 0.8), the fracture stage is mainly affected by the interaction effect, which shows the acceleration effect. The results provide a predictive theoretical and numerical model for low-temperature cracking of asphalt pavement, and theoretical support for the design, maintenance, and upkeep of long-life pavement.

7.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893891

RESUMO

Hydraulic asphalt concrete is known for its excellent seepage control performance and strong deformation resistance. This engineering material has widespread applications in the seepage control structures of hydraulic buildings. Recent projects have investigated the use of acidic aggregates to improve economic efficiency. However, they have also highlighted the weaker adhesion between acidic aggregates and asphalt, which necessitates stringent construction process control. This study investigates the impact of resting conditions on the tensile properties of acidic aggregate hydraulic asphalt concrete. The results of the tensile testing indicate that the storage time significantly affects the performance of asphalt concrete. The tensile strength of the specimens without anti-stripping agents decreased from 1.711 MPa to 0.914 MPa after resting periods of 0, 10, 20, and 30 days. The specimens treated with anti-stripping agents also showed a decrease in tensile strength over time, similar to the trend observed in the previous specimens. Digital specimen simulations indicated a decrease in cohesion between the asphalt and the aggregate from 5.375 MPa to 2.664 MPa after 30 days, representing a reduction of 50.44%. To counteract the effect of the storage time on the bonding between acidic aggregates and asphalt, this study recommends reducing the grading index and maximum size of aggregates, decreasing the coarse aggregate content, and selecting smooth aggregate shapes.

8.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893944

RESUMO

Stone matrix asphalt and asphalt concrete mixture with 13.2 mm nominal maximum aggregate size (named SMA13 and AC13, respectively) are widely used in the surface course of asphalt pavement in China. Generally, the pavement performance of SMA13 is superior to that of AC13, while the cost of the former is significantly higher than that of the latter. The objective of this paper was to develop a new hot mix asphalt (named SMAC13) whose performance and cost are between SMA13 and AC13. A boundary sieve size (BSS) of 2.36 mm was selected between fine and coarse aggregates. Based on the union set of aggregate gradation ranges of SMA13 and AC13, the family of gradation curves in the forms of S shapes were designed in terms of the BSS passing rate. According to the evaluation of the skeleton interlock of coarse aggregate of the gradation curve family, the aggregate gradation range of SMAC13 was determined. Also, the performance of three kinds of asphalt mixtures were compared through laboratory tests. The results indicated that SMA13 shows the best rutting resistance, followed by SMAC13 then AC13, while in terms of low-temperature performance in resistance to cracking, the sequence is SMAC13, AC13, and SMA13. The sequence of water stability is AC13, SMAC13, and SMA13. Furthermore, the cost of SMAC13 is 25% less than that of SMA13. Therefore, SMAC13 can be used as an alternative for the surface course of asphalt pavement in terms of performance and cost.

9.
Sci Rep ; 14(1): 13254, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858366

RESUMO

Bitumen, aggregate, and air void (VA) are the three primary ingredients of asphalt concrete. VA changes over time as a function of four factors: traffic loads and repetitions, environmental regimes, compaction, and asphalt mix composition. Due to the high as-constructed VA content of the material, it is expected that VA will reduce over time, causing rutting during initial traffic periods. Eventually, the material will undergo shear flow when it reaches its densest state with optimum aggregate interlock or refusal VA content. Therefore, to ensure the quality of construction, VA in asphalt mixture need to be modeled throughout the service life. This study aims to implement a hybrid evolutionary polynomial regression (EPR) combined with a teaching-learning based optimization (TLBO) algorithm and multi-gene genetic programming (MGGP) to predict the VA percentage of asphalt mixture during the service life. For this purpose, 324 data records of VA were collected from the literature. The variables selected as inputs were original as-constructed VA, VA orig (%); mean annual air temperature, MAAT (°F); original viscosity at 77 °F, η o r i g , 77 (Mega-Poises); and time (months). EPR-TLBO was found to be superior to MGGP and existing empirical models due to the interquartile ranges of absolute error boxes equal to 0.67%. EPR-TLBO had an R2 value of more than 0.90 in both the training and testing phases, and only less than 20% of the records were predicted utilizing this model with more than 20% deviation from the observed values. As determined by the sensitivity analysis, η o r i g , 77 is the most significant of the four input variables, while time is the least one. A parametric study showed that regardless of MAAT , η o r i g , 77 , of 0.3 Mega-Poises, and VA orig above 6% can be ideal for improving the pavement service life. It was also witnessed that with an increase of MAAT from 37 to 75 °F, the serviceability of asphalt concrete takes 15 months less on average.


Assuntos
Materiais de Construção , Hidrocarbonetos , Algoritmos
10.
Materials (Basel) ; 17(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793508

RESUMO

In the finite element analysis of asphalt concrete (AC), it is nowadays common to incorporate the information from the underlying scales to study the overall response of this material. Heterogeneity observed at the asphalt mixture scale is analyzed in this paper. Reliable finite element analysis (FEA) of asphalt concrete comprises a set of complex issues. The two main aspects of the asphalt concrete FEA discussed in this study are: (1) digital reconstruction of the asphalt pavement microstructure using processing of the high-quality images; and (2) FEA of the asphalt concrete idealized samples accounting for the viscoelastic material model. Reconstruction of the asphalt concrete microstructure is performed using a sequence of image processing operations (binarization, removing holes, filtering, segmentation and boundaries detection). Geometry of the inclusions (aggregate) are additionally simplified in a controlled mode to reduce the numerical cost of the analysis. As is demonstrated in the study, the introduced geometry simplifications are justified. Computational cost reduction exceeds of several orders of magnitude additional modeling error occurring due to the applied simplification technique. Viscoelastic finite element analysis of the AC identified microstructure is performed using the Burgers material model. The analysis algorithm is briefly described with a particular focus on the computational efficiency aspects. In order to illustrate the proposed approach, a set of 2D problems is solved. Numerical results confirm both the effectiveness of the self-developed code and the applicability of the Burgers model to the analyzed class of AC analysis problems. Further research directions are also described to highlight the potential benefits of the developed approach to numerical modeling of asphalt concrete.

11.
Polymers (Basel) ; 16(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794564

RESUMO

The purpose of these studies was to establish the influence of the microstructural and rheological characteristics of modified bitumen compositions on the strength indicators of asphalt concrete. The effect of additives concentration on the rheological characteristics and microstructure of binary "bitumen-surfactant", "bitumen-AG-4I", and ternary "bitumen-AG-4I-AG-4I" systems has been studied. To assess the effect of bitumen dispersion on the physical and mechanical characteristics of modified asphalt concrete samples, the compressive strength value was determined. The following chemicals have been used as additives: the original product AS-1, industrial additive AMDOR-10, and used sealant AG-4I, a product based on polyisobutylene and petroleum oils. At an increased content of AG-4I (C ≥ 1.0 g/dm3) in ternary systems, the contribution of the emerging intermolecular polyisobutylene network to the development of structuring processes increases while the viscous effect of the surfactant AS-1 decreases. It has been established that the minimum size of bee-like bitumen structures (1.66 µm) is recorded with the joint presence of additives in the bitumen, AS-1 at a level of 1.0 g/dm3 and AG-4I at a level of 1.0 g/dm3. Under the same concentration regimes of the ternary bitumen composition, the maximum increase in compressive strength RD was achieved with the smallest size of bee-like structures of modified bitumen.

12.
Environ Sci Pollut Res Int ; 31(24): 35619-35630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38740680

RESUMO

Electric-arc-furnace (EAF) steelmaking uses scrap iron and steel as raw materials. Scrap iron and steel originate from complex sources and may contain heavy metal components which can leach into the environment over time due to wear-and-tear. A by-product of the EAF steelmaking process is oxidizing slag, and approximately 1.2 million metric tons is produced every year in Taiwan alone. This study investigated substitution of natural aggregates with oxidizing slag in dense-graded asphalt concrete. We evaluated the water resistance and asphalt film thickness of the oxidizing slag substituted asphalt concrete and further explored the performance of oxidizing slag as paving material. We determined the dissolved and total amounts of heavy metals in the oxidizing slag, comparing these results with current regulatory controls to assess the environmental compatibility of the oxidizing slag. We found that due to the complicated sources of oxidizing slag, the basic properties should be analyzed on a batch-to-batch basis. Furthermore, we recommend trial mixing before upscaling the production of oxidizing slag substituted dense-graded asphalt concrete to confirm the mixing time required to achieve uniformity. The results also show that in comparison to natural aggregates used in asphalt concrete, oxidizing slag exhibits superior performance in terms of increased asphalt film thickness and improved water resistance. Furthermore, oxidizing slag as an aggregate material was associated with decreased heavy metal leaching and reduced environmental pollution. The results of the toxicity characteristic leaching procedure (TCLP) met regulatory requirements. However, the microwave-assisted aqua-regia digestion procedure showed heavy metal concentrations exceeding the monitoring standards for food crops. Considering environmental compatibility, it is recommended that controlling the total amount of heavy metals in oxidizing slag should be included in regulatory requirements. Furthermore, we should prohibit the use of materials such as oxidizing slag and other steel furnace slag in the roadways adjacent to edible crop farmlands.


Assuntos
Materiais de Construção , Hidrocarbonetos , Metais Pesados , Metais Pesados/química , Hidrocarbonetos/química , Taiwan , Oxirredução , Aço/química
13.
Materials (Basel) ; 17(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612020

RESUMO

Salt erosion has an adverse impact on the durability of asphalt pavements. Porous asphalt concrete is particularly susceptible to the influence of salt. In this study, a finite element model was developed to investigate the fracture behavior of PAC exposed to salt erosion. The 2D heterogeneous structure of PAC was generated with an image-aided approach to computationally study the fracture behavior of PAC. Laboratory SCB tests were conducted to validate the finite element model. The simulation results of the SCB tests indicate that the peak load of the PAC decreased by 21.8% in dry-wet cycles and 26.1% in freeze-thaw cycles compared to the control group. The salt solution accelerated the degradation of the durability of PAC under both dry-wet cycles and freeze-thaw cycle conditions, which is consistent with laboratory tests. After flushing treatment before the drying phase, the peak load of the PAC in salt environments increased by 5.3% compared to that of the samples with no flushing. Salt erosion also results in a higher average value of scalar stiffness degradation (SDEG), and the damaged elements were primarily the cohesive elements in the fracture of the PAC. Additionally, the influence of crucial factors including the void content, adhesion and cohesion, and loading rate on the fracture behavior of the PAC was analyzed. As the void content increases, the average SDEG value of the cohesive elements increases and surpasses the average SDEG value of the adhesive elements at a void content of approximately 9%. The performance of the fine aggregate matrix (FAM) has a much greater impact than the FAM-aggregate interface on the durability of the PAC. And there were more damaged CZM elements with the increase in the loading rate. Salt erosion results in higher SDEG values and a larger number of cohesive damaged elements at each loading rate.

14.
Data Brief ; 54: 110382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623546

RESUMO

This data article presents information on the measurement of Indirect Tensile Stiffness Modulus of laboratory and field asphalt mixtures. The asphalt mixes are composed of three distinct binders that were categorised by their penetration grade (40/55-TLA, 60/75-TLA, and 60/70-MB) and aggregates (limestone, sharp sand, and filler). The asphalt mixtures are called dense-graded hot mix asphalt (HMA) and gap-graded stone matrix asphalt (SMA). The variables in the dataset were selected in accordance with the specifications of the dynamic modulus models that are currently in use as well as the needs for the quality control and assurance (QC & QA) assessment of asphalt concrete mixes. The data parameters included are temperature, asphalt content, and binder viscosity, air void content, cumulative percent retained on 19, 12.5, and 4.75 mm sieves, maximum theoretical specific gravity, aggregate passing #200 sieve, effective asphalt content, density, flow, marshal stability, coarse-to-fine particle ratio and the Indirect Tensile Stiffness Modulus (ITSM). Utilising soft computing techniques, models were developed utilising the data thus eliminating the requirement for complex and time-consuming laboratory testing.

15.
Data Brief ; 53: 110224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435730

RESUMO

Permanent deformation in asphalt concrete pavements is pervasive distress [1], influenced by various factors such as environmental conditions, traffic loading, and mixture properties. A meticulous investigation into these factors has been conducted, yielding a robust dataset from uniaxial repeated load tests on 108 asphalt concrete samples. Each sample underwent systematic evaluation under varied test temperatures, loading conditions, and mixture properties, ensuring the data's comprehensiveness and reliability. The materials used, sourced locally, were selected to enhance the study's relevance to pavement constructions in hot climate areas, considering different asphalt cement grades and contents to understand material variability effects on deformation. The detailed dataset created from the experimental program acts as a pivotal resource for refining predictive models and optimizing asphalt concrete mixtures and pavement design strategies, aimed at improving pavement performance and longevity under diverse operational and environmental conditions.

16.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399054

RESUMO

The cracking problem of asphalt concrete panels is a crucial consideration in the design of hydraulic asphalt concrete seepage control bodies. Panels experiencing uneven rises or falls of water levels during impoundment may exhibit loading rate effects. Investigating the fracture toughness value of asphalt concrete under varying loading rates is essential. This study employs a statistical method to calculate the fracture index KIC, using the semi-circular bending test (SCB) to examine the effect of loading rates on the Type I fracture mode of hydraulic asphalt concrete. The data are analyzed using the two-parameter Weibull distribution curve, offering insights into the minimum number of KIC test specimens. The results indicate an increase in KIC with loading rate, with greater data dispersion at faster rates. The Weibull distribution curve successfully fits the fracture behavior under different loading rates, providing valuable predictions. This study estimates the minimum number of SCB test specimens to be nine, based on a confidence level of 0.95 and a relative deviation not exceeding 5%.

17.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337254

RESUMO

Despite their effectiveness in preventing icing, hydrophobic coatings possess drawbacks such as susceptibility to detachment and limited wear resistance, leading to inadequate longevity in melting ice/snow. To enhance the surface stability and durability of superhydrophobic coatings, nanoparticle/epoxy formulations were developed using three types of nanoparticles, two dispersion techniques, three application methods, and two epoxy resin introduction approaches. Testing encompassed water contact angle measurements, assessment of ice adhesion force, and determination of icing rates on asphalt concrete coated with these hydrophobic formulations. Fourier-transform infrared spectroscopy was employed to analyze the molecular structures of the coatings, while scanning electron microscopy facilitated observation of the surface morphology of the hydrophobic coatings. The findings indicated that nano-ZnO, TiO2, and SiO2 particles could be modified into hydrophobic forms using stearic acid. Application of the hydrophobic coating improved the concrete's hydrophobicity, reduced ice adhesion strength on both concrete and asphalt, and delayed the onset of icing. Furthermore, optimal dosages of stearic acid, nanoparticles, and epoxy resin were identified as crucial parameters within specific ranges to ensure the optimal hydrophobicity and durability of the coatings.

18.
Materials (Basel) ; 17(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255521

RESUMO

Asphalt concrete is widely used in hydraulic structure facilities as an impermeable structure in alpine cold regions, and its dynamic mechanical properties are influenced by the strain rate and specimen size. However, the specimen size has an important effect on mechanical properties; few systematic studies have investigated on the size effect of hydraulic asphalt concrete (HAC) under dynamic or static loading rates. In the present study, four sizes of cylindrical roller-compacted hydraulic asphalt concrete (RCHAC) specimens with heights of 50 mm, 100 mm, 150 mm, and 200 mm were prepared and tested under different loading rates ranging from 10-5 s-1 to 10-2 s-1 to investigate the size effects of mechanical properties and failure modes at the temperature of 5 °C. The effect of strain rate on the size effects of the compressive strength and the elastic modulus of RCHAC have also been explored. These tests indicate that when the specimen size increases, the compressive strength and failure degree decrease, while the elastic modulus increases. When the height increases from 50 mm to 200 mm, the compressive strength at different strain rates decreased by more than 50%. Furthermore, the elastic modulus increased by about 211.8% from 0.51 GPa to 1.59 GPa at a strain rate of 10-5 s-1, and increased by 150% from 5.08 GPa to 12.71 GPa at a strain rate of 10-2 s-1. As the strain rate increases, the variation trends with the size of the compressive strength, elastic modulus, and failure degree are distinctly intensified. A modified dynamic size effect law, which incorporates both the specimen size and strain rate, is proposed and verified to illustrate the dynamic size effect for the RCHAC under different loading rates.

19.
Materials (Basel) ; 16(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138685

RESUMO

The choice of a substance as a healing agent for asphalt concrete is determined by the scientific experience of researchers and the results of exploratory studies. There are no standard approaches for selecting healing agents or assessing their compatibility with the matrix components in asphalt concrete. However, such methods would make it possible to systematize research in the field of self-healing asphalt concrete and significantly expand the list of healing agents potentially suitable for encapsulation and ensuring the formation of a healing effect. An approach has been proposed for studying a substance and assessing the suitability of its use as a healing agent during encapsulation, using alginate technology in terms of solubility, homogeneity in a system with bitumen, and adhesive strength. This set of indicators can be used in the development and design of self-healing asphalt concrete, as well as for expanding the list of healing agents that can be used to implement self-healing technology. This article discusses sunflower oil and AR polymers as healing agents for self-healing asphalt concretes. The substances under consideration are capable of forming a homogeneous system ∆δ → 0 with bitumen, and the double systems "SfO-bitumen" and "ARP-bitumen" have a Gibbs energy value ∆G < 0, which confirms this. The studied healing agents are able to form an emulsion in alginate aqueous solutions, which was confirmed by the structuring effect and the extreme influence of their concentration on viscosity. The strength of the adhesive bonds under the influence of SfO was 14.2% of the initial value of the tensile strength during splitting. Under the influence of ARP, the strength of the adhesive bonds was 5.8% of the initial value of the tensile strength at splitting. The use of an activator in asphalt concrete makes it possible to increase the strength of the adhesive bonds to 25-45% of the initial splitting strength.

20.
Materials (Basel) ; 16(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138752

RESUMO

The balanced mix design (BMD) constitutes a significant step forward in the pursuit of better-performing asphalt mixtures. This approach/framework offers increased innovative opportunities for the proper design and production of engineered asphalt mixtures without the need to strictly adhere to traditional volumetric requirements. The primary objective of this paper is to conduct a comprehensive investigation of the permanent deformation (rutting) behavior of surface mixtures (SMs) with conventional and high reclaimed asphalt pavement (HRAP) contents through full-scale accelerated testing under incremental loading conditions while accounting for the environmental aging effect. HRAP SMs were designed in this study, marking the initial application of Virginia Department of Transportation (VDOT) BMD special provisions, with attempts to incorporate 45% and even 60% RAP. Results showed that all BMD HRAP mixtures exhibited higher rut depths compared to the control mixture, which can be attributed to the inclusion of high binder contents aimed at enhancing cracking resistance. The asphalt pavement analyzer (APA) rut test and the stress sweep rutting tests were performed on mixtures sampled during production. Correlation analysis revealed significant and strong positive correlations between accelerated pavement testing (APT) and the multilevel laboratory rutting performance tests considered in this study. Finally, while acknowledging the limitations and all the assumptions considered in this study, the correlation analysis recommended refining the VDOT BMD APA rut depth threshold by lowering the current limit of 8 mm to 7 mm to ensure good performing mixtures from a rutting point of view.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...