Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990171

RESUMO

The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.

2.
Nat Prod Res ; : 1-6, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980006

RESUMO

A new polyketide, mauritone A (1) with six known polyketides curvulone B (2), curvularin (3), 12-oxocurvularin (4), (10E,15S)-10,11-dehydrocurvularin (5), (11R,15S)-11-hydroxycurvularin (6), and (11S,15S)-11-hydroxycurvularin (7) were isolated from the fungal-bacterial symbiont Aspergillus spelaeus GXIMD 04541/Sphingomonas echinoides GXIMD 04532 derived from Mauritia arabica. Their structures were elucidated by extensive spectral analysis. All compounds (1-7) were evaluated for their anti-inflammatory effects. The inhibitory effects of 4, 5, and 7 on nitric oxide (NO) production were found to be significant, with IC50 values of 5.5 ± 0.26, 2.0 ± 0.31, and 8.3 ± 0.62 µM, respectively, surpassing that of the positive control quercetin (10.6 ± 0.64 µM). Compounds 3 and 6 exhibited moderate inhibition of NO, with IC50 values of 18.6 ± 0.53 and 12.7 ± 0.45 µM, respectively.

3.
J Agric Food Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847422

RESUMO

Sitobion miscanthi L-type symbiont (SMLS) is a bacterial symbiont commonly found in the wheat aphid S. miscanthi. A new aphid densovirus, S. miscanthi densovirus (SmDV), was recently identified in S. miscanthi. In this study, the similar cellular tropism of SmDV and SMLS in aphid embryos was uncovered using in situ hybridization. SmDV infection significantly decreased the longevity and number of S. miscanthi offspring. However, the SmDV titers were significantly suppressed after SMLS transmission, thus reducing the negative effects of SmDV infection on S. miscanthi fitness. Moreover, an integrative analysis of RNA-seq datasets showed that SMLS inhibited the expression of genes related to the phosphatidylinositol 3-kinase (Pl3K)/Akt pathways and further induced the expression of antiviral factors associated with the apoptosis and FoxO signaling pathways. These results indicate that SMLS mediates host antiviral defenses to inhibit the propagation of SmDV, which was further verified by an RNA interference assay.

4.
Front Microbiol ; 15: 1295696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495512

RESUMO

Harmful algal blooms (HABs) in natural waters are of escalating global concern due to their detrimental impact on environmental health. Emerging evidence indicates that algae-bacteria symbionts can affect HAB features, though much about this interplay remains largely unexplored. The current study isolated a new species of Mucilaginibacter (type strain JXJ CY 39T) from culture biomass of the bloom-causing Microcystis aeruginosa FACHB-905 (Maf) from Lake Dianchi, China. Strain JXJ CY 39T was an aerobic, Gram-stain-negative rod bacterium that grew at 5-38°C, pH 4.0-11.0, and 0-3.0% NaCl. Taxonomic evaluation proposed a new species, with Mucilaginibacter lacusdianchii sp. nov., as the species epithet. Experimental results revealed that strain JXJ CY 39T spurred the growth of Maf by supplying soluble phosphorus and nitrogen during cultivation, despite the unavailability of soluble phosphorus and nitrogen. Additionally, by producing the plant hormone indole-3-acetate, strain JXJ CY 39T possibly impacted Maf's functionality. Results from co-culture experiments with other strains from Maf biomass showed possible effects of strain JXJ CY 39T on the relationship between Maf and other cohabiting bacteria, as well as microcystin toxin production characteristics. Although Maf could foster the growth of strain JXJ CY 39T by supplying organic carbon, the strain's growth could be regulated via specific chemical compounds based on antibiotic assays. Community composition analysis disclosed that this Mucilaginibacter strain positively affected Maf's growth and modified densities and types of bacteria linked to Maf. Overall, these results suggest that the interactions between important HAB-causing organisms and their attached bacteria are complex, dynamic, and may influence the growth characteristics of algae.

5.
Front Microbiol ; 15: 1352378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426058

RESUMO

Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.

6.
mBio ; 15(3): e0244823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315036

RESUMO

Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy. IMPORTANCE: Most insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.


Assuntos
Hemípteros , Infecções por Rickettsia , Rickettsia , Animais , Hemípteros/microbiologia , Herbivoria , Simbiose , Plantas
7.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930120

RESUMO

Diaphorina citri is the hemipteran pest and vector of a devastating bacterial pathogen of citrus worldwide. In addition to the two core bacterial endosymbionts of D. citri, Candidatus Carsonella ruddii and Candidatus Profftella armatura, the genome of a novel endosymbiont and as of yet undescribed microbe was discovered in a Hawaiian D. citri population through deep sequencing of multiple D. citri populations. Found to be closely related to the genus Asaia in the family Acetobacteraceae by 16S rRNA gene sequence analysis, it forms a sister clade along with other insect-associated 16S rRNA gene sequences from uncultured bacterium found associated with Aedes koreicus and Sogatella furcifera. Multilocus sequence analysis confirmed the phylogenetic placement sister to the Asaia clade. Despite the culturable Asaia clade being the closest phylogenetic neighbour, attempts to culture this newly identified bacterial endosymbiont were unsuccessful. On the basis of these distinct genetic differences, the novel endosymbiont is proposed to be classified into a candidate genus and species 'Candidatus Kirkpatrickella diaphorinae'. The full genome was deposited in GenBank (accession number CP107052; prokaryotic 16S rRNA OP600170).


Assuntos
Citrus , Hemípteros , Animais , Simbiose , Havaí , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Bactérias/genética , Hemípteros/microbiologia
8.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769258

RESUMO

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Assuntos
Heterópteros , Simbiose , Masculino , Animais , Simbiose/fisiologia , Sêmen , Sistema Digestório/microbiologia , Insetos , Heterópteros/fisiologia , Bactérias/genética , Metamorfose Biológica
9.
Saudi Pharm J ; 31(8): 101680, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37448846

RESUMO

Carotenoids have shown beneficial applications in cosmetology, pharmacology, and medicine. However, environmental stress in the marine environment can trigger the production of unique secondary metabolites, such as carotenoids. These compounds can also be sustainably produced by symbiotic bacteria. We hypothesized that the soft corals in tropical regions may produce diverse biological secondary metabolites, including carotenoids, both by the host organism and their bacterial symbiont. The unique carotenoids may provide promising biological activity such as antioxidant, UV photoprotector, and antibacterial activities. To this end, we isolated and characterized the carotenoids isolated from the bacterial symbiont of Sinularia sp., a soft coral from Panjang Island, North Java Sea, strain 19. PP.Sc.13. Bacterial identification was performed using DNA barcoding of the 16S rRNA region. Identification of carotenoids was carried out using a spectrophotometer, High-Performance Liquid Chromatography (HPLC), and attenuated total reflection fourier-transformed infrared (ATR-FTIR) spectroscopy. The antioxidant activity was estimated using the diphenylpicrylhydrazyl (DPPH) method, while the Sun Protection Factor (SPF) and % transmission of erythema and pigmentation were determined based on colorimetric methods. The antibacterial activity assay was carried out using the agar diffusion method against two multidrug-resistant bacteria. The bacterial symbiont was identified as Virgibacillus sp. and the carotenoids isolated from this symbiont exhibited significant antioxidant activity and extra sun protection effect, thus categorized as UVA sunblock. Furthermore, the isolated carotenoids exhibited antibacterial activities against Methicillin Resistant-Staphylococcus aureus (MRSA) and Multidrug-resistant (MDR) Escherichia coli. This study provides evidence of the carotenoids produced by the soft coral bacterial symbiont Virgibacillus sp., which may be used as an antioxidant, sun protection, and antibacterial agent. Further investigation of the de novo biological production of carotenoids by Virgibacillus sp. is warranted.

10.
Methods Mol Biol ; 2632: 101-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781724

RESUMO

When extracting DNA of invertebrates for long-read sequencing, not only enough quantity and size of the DNA but, depending on the species, elimination of contamination of endosymbiotic Wolbachia genome also has to be achieved. These requirements become troublesome, especially in small-sized species with a limited number of individuals available for the experiment. In this chapter, using tiny parasitoid wasps (Reclinervellus nielseni) parasitizing spiders as hosts, we developed a method of eliminating the Wolbachia genomes by means of an antibiotic administration to adult wasps via honey solution. Twenty days of rifampicin treatment since their emergence from cocoons resulted in a significant decrease in the Wolbachia genomes while keeping good DNA conditions for nanopore sequencing. An adequate quantity of DNA was then gained by pooling several individuals. The method could be applied to other insects or invertebrates that can be maintained by laboratory feeding with liquid food.


Assuntos
Vespas , Wolbachia , Animais , Wolbachia/genética , Vespas/genética , Genoma , Insetos/genética , Rifampina , Simbiose/genética
11.
Insects ; 13(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36354861

RESUMO

The research was focused on the ability of wheat aphids Sitobion avenae, harboring bacterial secondary symbionts (BSS) Hamiltonella defensa or Regiella insecticola, to withstand exposure to fungal isolates of Beauveria bassiana and Metarhizium brunneum. In comparison to aphids lacking bacterial secondary symbionts, BSS considerably increased the lifespan of wheat aphids exposed to B. bassiana strains (Bb1022, EABb04/01-Tip) and M. brunneum strains (ART 2825 and BIPESCO 5) and also reduced the aphids' mortality. The wheat aphid clones lacking bacterial secondary symbionts were shown to be particularly vulnerable to M. brunneum strain BIPESCO 5. As opposed to wheat aphids carrying bacterial symbionts, fungal pathogens infected the wheat aphids lacking H. defensa and R. insecticola more quickly. When treated with fungal pathogens, bacterial endosymbionts had a favorable effect on the fecundity of their host aphids compared to the aphids lacking these symbionts, but there was no change in fungal sporulation on the deceased aphids. By defending their insect hosts against natural enemies, BSS increase the population of their host society and may have a significant impact on the development of their hosts.

12.
Front Physiol ; 13: 1028409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246139

RESUMO

Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont's synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.

13.
Microorganisms ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889078

RESUMO

Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus. Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.

14.
Insects ; 13(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35621797

RESUMO

The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous insect pest with many host-specialized biotypes, such as the Cucurbitaceae- and Malvaceae-specialized (CU and MA) biotypes. Bacterial symbionts were reported to determine the host range in some aphids. Whether this is the case in A. gossypii remains unknown. Here, we tested the host specificity of the CU and MA biotypes, compared the host specificity between the wingless and winged morph within the same biotype, and analyzed the composition of the bacterial symbionts. The reproduction of the CU and MA biotypes reduced by 66.67% and 82.79%, respectively, on non-native hosts, compared with on native hosts. The composition of bacterial symbionts was not significantly different between the CU and MA biotypes, with a Buchnera abundance >95% in both biotypes. Meanwhile, the winged morph produced significantly more nymphs than the wingless morph on non-native hosts, and the Buchnera abundance in the winged morph was only about 10% of that in the wingless morph. There seemed to be a relationship between the Buchnera abundance and host specificity. We regulated the Buchnera abundance by temperature and antibiotics, but did not find that a low Buchnera abundance resulted in the high reproduction on non-native hosts. We conclude that the host specificity of A. gossypii is not controlled by specific bacterial symbionts or by Buchnera abundance.

15.
Insect Mol Biol ; 31(4): 457-470, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35302262

RESUMO

Pederin, a group of antitumor compounds, is produced by an endosymbiotic bacterium of Paederus fuscipes. Pederin content differed between male and female P. fuscipes, but the reason why these differences are maintained remains unexplored. Here, the pederin-producing bacteria (PPB) infection rate in P. fuscipes was investigated. Furthermore, we assessed the microbiota structure differences in male and female P. fuscipes harbouring PPB and sequenced the transcriptome of both sexes to shed light on genes of interest. Of the 625 analysed beetles (275 females, 350 males), 96.36% of females and 31.14% of males were positive for PPB infection. PPB accounted for 54.36%-82.70% of the bacterial population in females but showed a much lower abundance in males (0.92%-3.87%). Reproductive organs possessed the highest PPB abundance compared with other parts of females, but no such relationships existed in males. Moreover, we provide the first transcriptome analysis of male and female P. fuscipes harbouring PPB and identified 8893 differentially expressed unigenes. Our results indicated that the pederin content difference between males and females might be caused by the PPB density difference in hosts. The biosequence data would be helpful for illustrating the mechanism that regulates PPB density in P. fuscipes.


Assuntos
Besouros , Microbiota , Animais , Bactérias/genética , Besouros/genética , Feminino , Masculino , Piranos , Transcriptoma
16.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33605997

RESUMO

The whitefly Bemisia tabaci is a destructive agricultural pest that frequently harbors various species of secondary symbionts including Rickettsia. Previous studies have revealed that the infection of Rickettsia can improve whitefly performance on food plants; however, to date, no evidence has shown, if, and how, Rickettsia manipulates the plant-insect interactions. In the current study, the effects of Rickettsia persistence on the induced plant defenses and the consequent performance of whitefly B. tabaci were investigated. Results revealed that Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks. The different expression genes of cotton plants were mostly concentrated in the phytohormone signaling pathways, the marker genes of jasmonic-acid signaling pathway (AOC, AOS, LOX, MYC2) were significantly downregulated, while the marker genes of the salicylic-acid signaling pathway (WRKY70, PR-1) were upregulated. Biological experiments revealed that the fecundity of Rickettsia negative B. tabaci significantly increased when they fed on Rickettsia-persistent cotton plants. Taken together, we provide experimental evidence that the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host.


Assuntos
Hemípteros , Rickettsia , Animais , Rickettsia/genética , Simbiose
17.
Gigascience ; 9(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185242

RESUMO

BACKGROUND: Many plant viruses are vector-borne and depend on arthropods for transmission between host plants. Begomoviruses, the largest, most damaging and emerging group of plant viruses, infect hundreds of plant species, and new virus species of the group are discovered each year. Begomoviruses are transmitted by members of the whitefly Bemisia tabaci species complex in a persistent-circulative manner. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops, as well as in many agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; however, the causes for these variations are attributed among others to genetic differences among vector populations, as well as to differences in the bacterial symbionts housed within B. tabaci. RESULTS: Here, we performed discovery proteomic analyses in 9 whitefly populations from both Middle East Asia Minor I (MEAM1, formerly known as B biotype) and Mediterranean (MED, formerly known as Q biotype) species. We analysed our proteomic results on the basis of the different TYLCV transmission abilities of the various populations included in the study. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. CONCLUSIONS: Our data demonstrate that the proteomic signatures of better vector populations differ considerably when compared with less efficient vector populations in the 2 whitefly species tested in this study. While MEAM1 efficient vector populations have a more lenient immune system, the Q efficient vector populations have higher abundance of proteins possibly implicated in virus passage through cells. Both species show a strong link of the facultative symbiont Rickettsia to virus transmission.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Bactérias , Doenças das Plantas , Proteômica
18.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32559297

RESUMO

Wolbachia is a maternally inherited bacterium ubiquitous in insects that has attracted interest as a prospective insect pest-control agent. Here, we detected and characterized Wolbachia in the leafhoppers Matsumuratettix hiroglyphicus (Matsumura) (Cicadellidae: Hemiptera) and Yamatotettix flavovittatus Matsumura (Cicadellidae: Hemiptera), insect vectors of the phytoplasma that cause white leaf disease in sugarcane. The 16S rRNA and wsp gene markers revealed that Wolbachia was not present in the M. hiroglyphicus but naturally occurs in Y. flavovittatus. Additionally, the infection rates in adult leafhoppers ranged from 0 to 100% depending on geographic location. Moreover, Wolbachia was detected in the eggs and first- to fifth-instar nymphs of Y. flavovittatus. A phylogenic tree of Wolbachia indicated that it resided in the monophyletic supergroup B clade and clustered in the Ori subgroup. Furthermore, fluorescence in situ hybridization revealed that Wolbachia localized to the egg apices, randomly distributed in the egg cytoplasm, and was concentrated in the nymph and adult bacteriomes, as well as occasional detection in the thorax and abdomen. To the best of our knowledge, the present study is the first to demonstrate the prevalence of Wolbachia in the leafhopper Y. flavovittatus. The obtained results would provide useful information for the future development of Wolbachia as a biological control agent for the leafhopper vectors.


Assuntos
Hemípteros/microbiologia , Simbiose , Wolbachia/fisiologia , Animais , Feminino , Hemípteros/crescimento & desenvolvimento , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/microbiologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Óvulo/crescimento & desenvolvimento , Óvulo/microbiologia , Doenças das Plantas/microbiologia , Saccharum/microbiologia
19.
Front Microbiol ; 10: 2179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620116

RESUMO

The white-backed planthopper (WBPH), Sogatella furcifera Horváth (Hemiptera: Delphacidae), is an economically significant rice insect pest that harbors a primary fungal yeast-like symbiont (YLS), and some secondary bacterial symbionts like Wolbachia and Cardinium. In the present study, an additional bacterial symbiont in WBPH was characterized. Phylogenetic analysis employing the 16S rRNA gene showed a bacterium closely related to Asaia of Nilaparvata lugens and Nysius expressus, and Asaia krungthepensis. TEM observation of the bacterium showed the typical morphology of Asaia sp. with signature filamentous structures in the nucleoid region. These results indicate that the bacterium belongs to Asaia. The Asaia bacterium was detected in all the tested individual adults and tissues of the laboratory WBPH population but showed varying infection rates (ca 45%) in the field collected WBPH populations. Quantitative PCR analysis revealed that Asaia sp. were significantly more abundant in WBPH females than males, and mainly distributed in the guts, fatty bodies, and salivary glands. Asaia-infected WBPH were of shorter nymphal duration and heavier adult weight than Asaia-free WBPH, while Asaia-free WBPH comparatively fed more, indicating that Asaia plays a role in improving WBPH fitness through involvement in host's nutrient supply.

20.
Microb Ecol ; 77(4): 1092-1106, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30627761

RESUMO

We characterized a novel Holospora-like bacterium (HLB) (Alphaproteobacteria, Holosporales) living in the macronucleus of the brackish water ciliate Frontonia salmastra. This bacterium was morphologically and ultrastructurally investigated, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and performed in situ hybridization experiments with a specifically-designed probe. A new taxon, "Candidatus Hafkinia simulans", was established for this HLB. The phylogeny of the family Holosporaceae based on 16S rRNA gene sequences was inferred, adding to the already available data both the sequence of the novel bacterium and those of other Holospora and HLB species recently characterized. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and placed the new endosymbiont as the sister genus of Holospora. Additionally, the host ciliate F. salmastra, recorded in Europe for the first time, was concurrently described through a multidisciplinary study. Frontonia salmastra's phylogenetic position in the subclass Peniculia and the genus Frontonia was assessed according to 18S rRNA gene sequencing. Comments on the biodiversity of this genus were added according to past and recent literature.


Assuntos
Holosporaceae/fisiologia , Peniculina/microbiologia , Simbiose , Holosporaceae/classificação , Holosporaceae/genética , Holosporaceae/ultraestrutura , Itália , Macronúcleo/microbiologia , Microscopia Eletrônica de Transmissão , Peniculina/fisiologia , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , RNA Ribossômico 18S/análise , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...