Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(20): e2300327, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595144

RESUMO

The intelligent response actuators based on bilayer polymer can deform under the stimulation of temperature, humidity, light, and other external environment, which is the focus of research. However, achieving multiple responses, high deformation, and programmability is still one of the challenges for these actuators. Herein, a nondetachable bilayer structure, polylactic acid-polypropylene carbonate/polyvinyl alcohol-polydopamine (PLA-PPC/PVA-PDA) multiresponse programmable actuator is prepared by a simple scraping film method. Using PLA-PPC as the solvent-driven response layer, the effects of length, thickness, shape, and solvent vapor on the deformation of PLA-PPC/PVA-PDA actuators are studied. Among them, the high curvature of the film stimulated by ethyl acetate (EA) solution is 29.85 cm-1 . Using PVA-PDA as the response layer to water molecules and infrared (IR) light, the bilayer film shows excellent curling performance. Moreover, the dynamic processes of human clothing and biomimetic squid under solvent stimulation, the picture rolling motion under water molecule stimulation, the biomimetic flower blooming and merging under the synergistic of water molecules and IR light, and the deformation process of biomimetic mimosa under the competition between water molecules and IR light are simulated, which broadens the road for the development of intelligent driving materials.


Assuntos
Poliésteres , Álcool de Polivinil , Humanos , Álcool de Polivinil/química , Temperatura , Água , Solventes
2.
Cells ; 11(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741057

RESUMO

Alcohols are a part of cellular metabolism, but their physiological roles are not well understood. We investigated the effects of short-chain alcohols on Daphnia pulex and model membranes mimicking the lipid composition of eukaryotic inner mitochondrial membranes. We also studied the synergistic effects of alcohols with the bee venom membrane-active peptide, melittin, which is structurally similar to endogenous membrane-active peptides. The alcohols, from ethanol to octanol, gradually decreased the heart rate and the mitochondrial ATP synthesis of daphnia; in contrast, in combination with melittin, which exerted no sizeable effect, they gradually increased both the heart rate and the ATP synthesis. Lipid packing and the order parameter of oriented films, monitored by EPR spectroscopy of the spin-labeled probe 5-doxylstrearic acid, revealed gradual alcohol-assisted bilayer to non-bilayer transitions in the presence of melittin; further, while the alcohols decreased, in combination with melittin they increased the order parameter of the film, which is attributed to the alcohol-facilitated association of melittin with the membrane. A 1H-NMR spectroscopy of the liposomes confirmed the enhanced induction of a non-bilayer lipid phase that formed around the melittin, without the permeabilization of the liposomal membrane. Our data suggest that short-chain alcohols, in combination with endogenous peptides, regulate protein functions via modulating the lipid polymorphism of membranes.


Assuntos
Venenos de Abelha , Meliteno , Trifosfato de Adenosina , Álcoois/farmacologia , Venenos de Abelha/farmacologia , Lipídeos , Lipossomos , Meliteno/química , Meliteno/metabolismo , Meliteno/farmacologia
3.
Small ; 18(9): e2105044, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914176

RESUMO

The persistent double layer structure whereby two layers with different properties form at the front and rear of absorbers is a critical challenge in the field of kesterite thin-film solar cells, which imposes additional nonradiative recombination in the quasi-neutral region and potential limitation to the transport of hole carriers. Herein, an effective model for growing monolayer CZTSe thin-films based on metal precursors with large grains spanning the whole film is developed. Voids and fine grain layer are avoided successfully by suppressing the formation of a Sn-rich liquid metal phase near Mo back contact during alloying, while grain coarsening is greatly promoted by enhancing mass transfer during grain growth. The desired morphology exhibits several encouraging features, including significantly reduced recombination in the quasi-neutral region that contributes to the large increase of short-circuit current, and a quasi-Ohmic back contact which is a prerequisite for high fill factor. Though this growth mode may introduce more interfacial defects which require further modification, the strategies demonstrated remove a primary obstacle toward higher efficiency kesterite solar cells, and can be applicable to morphology control with other emerging chalcogenide thin films.

4.
J Mol Model ; 27(12): 364, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842972

RESUMO

The successive experimental observations of planar, cage-like, seashell-like, and bilayer Bn-/0 clusters in the size range between n = 3-48 well demonstrate the structural diversity and rich chemistry of boron nanoclusters. Based on extensive global minimum search and density functional theory calculations, we predict herein the bilayer C1 B50 (I), C2h B52 (II), C1 B56 (IV), and C2v B58 (V) as the global minima of the systems to fill in the missing gap in the bilayer B2n series between B48-B72. These highly stable species all contain a B38 bilayer hexagonal prism at the center, with 2, 2, 3, and 3 effective interlayer B-B σ-bonds formed between inward-buckled atoms on the top and bottom layers, respectively. Our bilayer C1 B50 (I) and C1 B56 (IV) prove to be obviously more stable than the previously reported quasi-planar C2v B50 and C2v B56 with two adjacent B6 hexagonal holes. Detailed bonding analyses indicate that these bilayer clusters follow the universal bonding pattern of σ + π double delocalization, making them three-dimensionally aromatic in nature. The bilayer B2n species in the size range between B48-B72 evolve gradually on the waist around the B38 or elongated B46 bilayer hexagonal prism at the center.

5.
Cells ; 10(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359891

RESUMO

The present review is an attempt to conceptualize a contemporary understanding about the roles that cardiolipin, a mitochondrial specific conical phospholipid, and non-bilayer structures, predominantly found in the inner mitochondrial membrane (IMM), play in mitochondrial bioenergetics. This review outlines the link between changes in mitochondrial cardiolipin concentration and changes in mitochondrial bioenergetics, including changes in the IMM curvature and surface area, cristae density and architecture, efficiency of electron transport chain (ETC), interaction of ETC proteins, oligomerization of respiratory complexes, and mitochondrial ATP production. A relationship between cardiolipin decline in IMM and mitochondrial dysfunction leading to various diseases, including cardiovascular diseases, is thoroughly presented. Particular attention is paid to the targeting of cardiolipin by Szeto-Schiller tetrapeptides, which leads to rejuvenation of important mitochondrial activities in dysfunctional and aging mitochondria. The role of cardiolipin in triggering non-bilayer structures and the functional roles of non-bilayer structures in energy-converting membranes are reviewed. The latest studies on non-bilayer structures induced by cobra venom peptides are examined in model and mitochondrial membranes, including studies on how non-bilayer structures modulate mitochondrial activities. A mechanism by which non-bilayer compartments are formed in the apex of cristae and by which non-bilayer compartments facilitate ATP synthase dimerization and ATP production is also presented.


Assuntos
Cardiolipinas/metabolismo , Doenças Cardiovasculares/metabolismo , Metabolismo Energético , Bicamadas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Animais , Cardiolipinas/química , Humanos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo
6.
Angew Chem Int Ed Engl ; 59(24): 9460-9469, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32237185

RESUMO

Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.

7.
Macromol Rapid Commun ; 40(7): e1800896, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30811751

RESUMO

Inspired by the motions of plant tissues in response to external stimuli, significant attention has been devoted to the development of actuating polymeric materials. In particular, polymeric actuators driven by organic molecules have been designed due to their combined superiorities of tunable functional monomers, designable chemical structures, and variable structural anisotropy. Here, the recent progress is summarized in terms of material synthesis, structure design, polymer-solvent interaction, and actuating performance. In addition, various possibilities for practical applications, including the ability to sense chemical vapors and solvent isomers, and future directions to satisfy the requirement of sensing and smart systems are also highlighted.


Assuntos
Compostos Orgânicos/química , Polímeros/síntese química , Estrutura Molecular , Polímeros/química
8.
Macromol Rapid Commun ; 39(9): e1800039, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29517176

RESUMO

Shape-memory polymers (SMPs) possess the capability to change shapes upon stimulation; however, the programming process that determines the temporary shape cannot proceed without external manipulation, which may greatly affect the shape complexity, accuracy, and reproducibility. Here, an automatically programmable SMP (AP-SMP) based on asymmetric swelling of bilayer SMP structures is demonstrated without external manipulation. In the automatic programming process, the AP-SMP can be deformed by the swelling of its hydrophilic hinge film in warm water to a temporary shape, which could be fixed by the glass transition of the two SMP films through cooling and drying in air. Owing to the unique ability, many complex shapes can be easily customized through diverse design strategies. Moreover, the AP-SMPs can reversibly transform between the permanent and temporary shapes, and both shapes are free-standing in normal conditions. The automatic programming of AP-SMPs may greatly expand the potential application range of SMPs.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Temperatura
9.
ACS Appl Mater Interfaces ; 8(48): 32918-32924, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934194

RESUMO

Programmable memory characteristics of electrodeposited CuOx-based resistive random access memory (ReRAM) can be significantly improved by adopting a bilayer structure with a built-in current limiter. To control the on-current and enhance the device uniformity, the bilayer structure of Pt/CuOx (switching layer)/CuOx (current limiter)/Pt is proposed. This structure is synthesized by controlling solution pH during electrochemical deposition (ECD). The bilayer structure of Pt/CuOx (synthesized at pH 9)/CuOx (synthesized at pH 11.5)/Pt exhibits reliable and uniform self-compliant resistive switching behavior. The origin of resistive switching is attributed to formation and rupture of conductive filaments in the CuOx (pH 9) layer. However, the CuOx (pH 11.5) layer acts as the resistor without resistive switching to control the overall resistance in ReRAM. Reversible "on" and "off" switching occurs with a switching time of 100 ns. Devices based on the bilayer structure showed long data retention and good endurance. This simple use of ECD to improve the memory characteristics of electrodeposited ReRAM offers the opportunity to realize reliable and self-compliant memory devices with low-cost solution processes.

10.
J Mol Model ; 22(1): 33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768159

RESUMO

Coarse-grained dynamical simulations have been performed to investigate the behavior of a surfactant micelle in the presence of six different alcohols: hexanol, octanol, decanol, dodecanol, tetradecanol, and hexadecanol. The self-assembly of sodium dodecyl sulfate (SDS) is modified by the alcohol molecules into cylindrical and bilayer micelles as a function of the alcohol/SDS mass ratio. Therefore, in order to understand, from a molecular point of view, how SDS and alcohol molecules self-organize to form the new micelles, different studies were carried out. Analysis of micelle structures, density profiles, and parameters of order were conducted to characterize the shape and size of those micelles. The density profiles revealed that the alcohol molecules were located at the water-micelle interface next to the SDS molecules at low alcohol/SDS mass ratio. At high alcohol/SDS mass ratios, alcohol molecules moved to the middle of the micelle by increasing their size and by producing a structural change. Moreover, micelle structures and sizes were influenced not only by the alcohol/SDS mass ratio but also by the order of the SDS and alcohol tails. Finally, the size of the micelles and enthalpy calculations were used as order parameters to determine a structural phase diagram of alcohol/SDS mixtures in water. Graphical Abstract Structural transition of SDS/alcohol mixtures.

11.
Adv Mater ; 27(2): 332-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25327686

RESUMO

A facile and cost-effective preparation of moisture-responsive graphene bilayer paper by focused sunlight irradiation is reported. The smart graphene paper shows moisture-responsive properties due to selective adsorption of water molecules, leading to controllable actuation under humid conditions. In this way, graphene-based moisture-responsive actuators including a smart claw, an orientable transporter, and a crawler paper robot are successfully developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...