Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Heliyon ; 10(16): e35828, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39220943

RESUMO

Zinc Oxide (ZnO) nanoparticles (NPs) were synthesized using an environmentally benign biogenic approach employing an extract of kernels of Nigella Sativa (kalonji). The presence of primary and secondary metabolites in Nigella Sativa extract acted as the capping and reducing agent. The as-synthesized ZnO NPs were characterized using various advanced techniques i.e., UV, SEM, XRD, EDS, TGA, DSC, and FTIR spectra. UV characterization of ZnO NPs revealed a peak within the 350-400 cm-1 range, confirming their successful formation. XRD spectra revealed that the particles possess a nano-rods and platelets structure, with an average size of 65 nm. XRD analysis revealed that the particles possess a size of 65 nm with a nano-rods and platelets structure. FTIR spectra of the ZnO NPs exhibited a peak at a wavenumber range of 500-600 cm-1. The newly fabricated ZnO NPs were utilized in a pyrolysis reaction for the production of high-yield bio-oil, resulting in a maximum yield of 65.6 % at 350 °C. The spectra of the bio-oil display distinct peaks at 1340 cm-1, 2923.6 cm-1, and 1617 cm-1, which suggest the existence of phenolic and carbonyl chemicals. After incubating for 24 h under UV light, they also demonstrated significant catalytic degradation of methylene blue dye. The highest degradation was recorded to be an average of 71 % in 60 min of UV exposure. Taken together, ZnO NPs developed by eco-benign methods have the potential to be implemented as a novel catalytic system in the production of bio-oil as well as the remediation of dye-harboring industrial wastewater.

2.
Heliyon ; 10(15): e35464, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170347

RESUMO

The solar pyrolysis of materials has emerged as a promising technology for their efficient conversion into solid char, syngas and oil. The technology has its challenges, however, as constraints such as solar intermittence and scalability must be overcame for solar pyrolysis to thrive. The present work presents a review of the developments in solar pyrolysis considering a such as development by country, solar technology employed, etcetera. Moreover, details on the challenges and potential future developments are presented. It was found that most of the development in solar pyrolysis has been focused on waste-handling, and that a particular challenge exists in an adequate control system to achieve the desired end products.

3.
Small Methods ; : e2401072, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108046

RESUMO

Biomass-based hard carbon has the advantages of a balanced cost and electrochemical performance, making it the most promising anode material for sodium-ion batteries. However, due to the structural limitations of biomass (such as macropores and impurities), it still faces the problems of low specific capacity and initial Coulombic efficiency (ICE). Herein, an integrated strategy of biomass liquefaction and oxidation treatment is proposed to fabricate hard carbon with low ash content and sp2-rich closed pores. Specifically, liquefaction treatment can break through the inherent constraints of biomass, while oxidation treatment with O-targeted effect can directionally convert C─C/C─O bonds into C═O/O═C─O bonds, which would promote the formation of closed pores and the rearrangement into sp2-carbon within the graphene layer. Moreover, it is well demonstrated that the hard carbon interface rich in sp2 hybridization can induce the generation of an inorganic-rich solid electrolyte interface, contributing to fast ion migration and excellent interfacial stability. As a result, the optimized hard carbon with maximum closed pore volume and sp2/sp3 ratio can exhibit a high capacity of 347.3 mAh g-1 at 20 mA g-1 with the ICE of 90.5%, and a capacity of 110.4 mAh g-1 at 5.0 A g-1 after 10 000 cycles.

4.
Bioresour Technol ; 410: 131310, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163948

RESUMO

CaO modified with acetic acid solution or sodium hydroxide (H-CaO/OH-CaO) was used to explore the relationship between the physical and chemical properties of CaO and the components of bio-oil during the pyrolysis of rice straw (RS) and model compounds via experiment and density functional theory(DFT) simulation. The results showed that the modification changed the properties of CaO, and thus the catalytic performance on production of bio-oil components. H-CaO with the larger number of strong basic sites (1.10 âˆ¼ 2 times than commercial CaO) and the longer Ca-O bond length showed the better selectivity and performance on formation of ketones (the maximum relative content in bio-oil reached 43 %). The conversion pathway of cellulose/hemicellulose was changed by H-CaO, which promoted the formation of ketones. The easier combining of H-CaO with the pyrolysis primary products due to the longer Ca-O bond was the key to its better performance.


Assuntos
Biomassa , Compostos de Cálcio , Teoria da Densidade Funcional , Cetonas , Óxidos , Pirólise , Cetonas/química , Óxidos/química , Compostos de Cálcio/química , Catálise , Oryza/química , Biocombustíveis , Simulação por Computador
5.
Molecules ; 29(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39202914

RESUMO

Asphalt binder is the most common material used in road construction. However, the need for more durable and safer pavements requires a better understanding of asphalt's aging mechanisms and how its characteristics can be improved. The current challenge for the road industry is to use renewable materials (i.e., biomaterials not subjected to depletion) as a partial replacement for petroleum-based asphalt, which leads to reducing the carbon footprint. The most promising is to utilize biomaterials following the principles of sustainability in the modification of the asphalt binder. However, to understand whether the application of renewable materials represents a reliable and viable solution or just a research idea, this review covers various techniques for extracting bio-oil and preparing bio-modified asphalt binders, technical aspects including physical properties of different bio-oils, the impact of bio-oil addition on asphalt binder performance, and the compatibility of bio-oils with conventional binders. Key findings indicate that bio-oil can enhance modified asphalt binders' low-temperature performance and aging resistance. However, the effect on high-temperature performance varies based on the bio-oil source and preparation method. The paper concludes that while bio-oils show promise as renewable modifiers for asphalt binders, further research is needed to optimize their use and fully understand their long-term performance implications.

6.
Environ Sci Pollut Res Int ; 31(39): 52086-52104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136925

RESUMO

Catalytic co-pyrolysis of two different refinery oily sludge (ROS) samples was conducted to facilitate resource recovery. Non-catalytic pyrolysis in temperatures ranging from 500 to 600°C was performed to determine high oil yields. Higher temperatures enhanced the oil yields up to ~ 24 wt%, while char formation remained unchanged (~ 45%) for S1. Conversely, S2 exhibited a notably lower oil yield (~ 4 wt%) than S1. Pyrolysis oil of S1 consisted of phenolics (~ 50% at 600 °C) whereas hydrocarbons were predominant in S2 oil (~ 80% at 600 °C). Catalytic pyrolysis of S1 did not exhibit a substantial impact on oil yields but the oil composition varied significantly. High hydrocarbons, phenolics, and aromatics were obtained with molecular sieve (MS), metal slag, and ZSM-5, respectively. Catalytic co-pyrolysis of S2 with sawdust (SD) in the presence of MS enhanced the oil yield, and the resulting oil consisted of high hydrocarbons (~ 54%) and aromatics (~ 44%).


Assuntos
Biomassa , Pirólise , Esgotos , Catálise , Esgotos/química , Petróleo , Hidrocarbonetos/química
7.
J Environ Manage ; 368: 122091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116814

RESUMO

Third-generation biofuels from microalgae are becoming necessary for sustainable energy. In this context, this study explores the hydrothermal liquefaction (HTL) of microalgae biomass grown in wastewater, consisting of 30% Chlorella vulgaris, 69% Tetradesmus obliquus, and 1% cyanobacteria Limnothrix planctonica, and the subsequent upgrading of the produced bio-oil. The novelty of the work lies in integrating microalgae cultivation in wastewater with HTL in a biorefinery approach, enhanced using a catalyst to upgrade the bio-oil. Different temperatures (300, 325, and 350 °C) and reaction times (15, 30, and 45 min) were tested. The bio-oil upgrading occurred with a Cobalt-Molybdenum (CoMo) catalyst for 1 h at 375 °C. Post-HTL, although the hydrogen-to-carbon (H/C) ratio decreased from 1.70 to 1.38-1.60, the oxygen-to-carbon (O/C) ratio also decreased from 0.39 to 0.079-0.104, and the higher heating value increased from 20.6 to 36.4-38.3 MJ kg-1. Palmitic acid was the main component in all bio-oil samples. The highest bio-oil yield was at 300 °C for 30 min (23.4%). Upgrading increased long-chain hydrocarbons like heptadecane (5%), indicating biofuel potential, though nitrogenous compounds such as hexadecanenitrile suggest a need for further hydrodenitrogenation. Aqueous phase, solid residues, and gas from HTL can be used for applications such as biomass cultivation, bio-hydrogen, valuable chemicals, and materials like carbon composites and cement additives, promoting a circular economy. The study underscores the potential of microalgae-derived bio-oil as sustainable biofuel, although further refinement is needed to meet current fuel standards.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Águas Residuárias , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Catálise , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo
8.
Chem Asian J ; : e202400764, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136385

RESUMO

The creation of hydrogen using the lower-cost feedstock, waste organics (WOs), e.g. kitchen waste bio-oil, is a win-win solution, because it can both solve energy problems and reduce environmental pollution. Ultrasound has received considerable interest in organic decomposition; however, the application of ultrasound alone is not a good choice for the hydrogen production from WOs, because of the energy consumption and efficiency. To boost the hydrogen production based on ultrasonic cavitation cracking of bio-oil, photothermal materials are introduced into the hydrogen production system to form localized hot spots. Materials carbon black (CB), carbon nanotubes (CNT), and silicon dioxide (SiO2) all exhibit significant enhancing effects on the hydrogen production from bio-oil, and the CB exhibits the most significant strengthening effect among these materials. When the dosage of CB is 5 mg, hydrogen production rate is 180.1 µmol · h-1, representing a notable 1.7-fold increase compared to the production rate without CB. In the presence of light and ultrasound, the hydrogen production rate can be increased by 66.7-fold compared to the situation where only light is present without ultrasound.

9.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000784

RESUMO

To enhance the properties of SBS and crumb rubber-modified asphalts, four different amounts (5%, 10%, 15%, and 20%) of castor oil were added to crumb rubber-modified asphalts to mitigate the adverse effects of high levels of fine crumb rubber particles on the aging resistance of SBS and crumb rubber-modified asphalt. Initially, a conventional test was conducted to assess the preliminary effects of bio-oil on the high-temperature and anti-aging properties of SBS and crumb rubber-modified asphalt. Subsequently, dynamic shear rheometer and bending beam rheometer tests were employed to evaluate the impact of bio-oil on the high- and low-temperature and anti-fatigue properties of SBS and crumb rubber-modified asphalt. Finally, fluorescence microscopy and Fourier transform infrared spectroscopy were used to examine the micro-dispersion state of the modifier and functional groups in bio-oil, SBS and crumb rubber composite-modified asphalts. The experimental results indicated that bio-oil increased the penetration of SBS and crumb rubber-modified asphalt, decreased the softening point and viscosity, and significantly improved its aging resistance. The addition of bio-oil enhanced the anti-fatigue properties of SBS and crumb rubber-modified asphalt. The optimal amount of added bio-oil was identified. Bio-oil also positively influenced the low-temperature properties of SBS and crumb rubber-modified asphalt. Although the addition of bio-oil had some adverse effects on the asphalt's high-temperature properties, the asphalt mixture modified with bio-oil, SBS, and crumb rubber still exhibited superior high-temperature properties compared to unmodified asphalt. Furthermore, fluorescence microscopy and Fourier transform infrared spectroscopy results demonstrated that bio-oil can be uniformly dispersed in asphalt, forming a more uniform cross-linked structure and thereby enhancing the aging resistance of SBS and crumb rubber-modified asphalt. The modification process involved the physical blending of bio-oil, SBS, and crumb rubber within the asphalt. Comprehensive research confirmed that the addition of bio-oil has a significant and positive role in enhancing the properties of SBS and crumb rubber-modified asphalt with different composite crumb rubber particle size ratios.

10.
Chemosphere ; 363: 142824, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996980

RESUMO

The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.


Assuntos
Carvão Vegetal , Clorofenóis , Pirólise , Esgotos , Sulfatos , Carvão Vegetal/química , Esgotos/química , Clorofenóis/química , Sulfatos/química , Biocombustíveis/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Catálise , Ferro/química , Óleos de Plantas , Polifenóis
11.
Artigo em Inglês | MEDLINE | ID: mdl-38888826

RESUMO

Biomass pyrolysis is the most effective process to convert abundant organic matter into value-added products that could be an alternative to depleting fossil fuels. A comprehensive understanding of the biomass pyrolysis is essential in designing the experiments. However, pyrolysis is a complex process dependent on multiple feedstock characteristics, such as biomass consisting of volatile matter, moisture content, fixed carbon, and ash content, all of which can influence yield formation. On top of that, product composition can also be affected by the particle size, shape, susceptors used, and pre-treatment conditions of the feedstock. Compared to conventional pyrolysis, microwave-assisted pyrolysis (MAP) is a novel thermochemical process that improves internal heat transfer. MAP experiments complicate the operation due to additional governing factors (i.e. operating parameters) such as heating rate, temperature, and microwave power. In most instances, a single parameter or the interaction of parameters, i.e. the influence of other parameter integration, plays a crucial role in pyrolysis. Although various studies on a few operating parameters or feedstock characteristics have been discussed in the literature, a comprehensive review still needs to be provided. Consequently, this review paper deconstructed biomass and its sources, including microwave-assisted pyrolysis, and discussed the impact of operating parameters and biomass properties on pyrolysis products. This paper addresses the challenge of handling multivariate problems in MAP and delivers solutions by application of the machine learning technique to minimise experimental effort. Techno-economic analysis of the biomass pyrolysis process and suggestions for future research are also discussed.

12.
Environ Sci Pollut Res Int ; 31(27): 39760-39773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833053

RESUMO

The hydrothermal liquefaction (HTL) of composite household waste (CHW) was investigated at different temperatures in the range of 240-360 °C, residence times in the range of 30-90 min, and co-solvent ratios of 2-8 ml/g, by utilising ethanol, glycerol, and produced aqueous phase as liquefaction solvents. Maximum biocrude yield of 46.19% was obtained at 340 °C and 75 min, with aqueous phase recirculation ratio (RR) of 5 ml/g. The chemical solvents such as glycerol and ethanol yielded a biocrude percentage of 45.18% and 42.16% at a ratio of 6 ml/g and 8 ml/g, respectively, for 340 °C and 75 min. The usage of co-solvents as hydrothermal medium increased the biocrude yield by 35.30% and decreased the formation of solid residue and gaseous products by 19.82% and 18.74% respectively. Also, the solid residue and biocrude obtained from co-solvent HTL possessed higher carbon and hydrogen content, thus having a H/C ratio and HHV that is 1.01 and 1.23 times higher than that of water as hydrothermal medium. Among the co-solvents, HTL with aqueous phase recirculation resulted in higher carbon and energy recovery percentages of 9.36% and 9.78% for solid residue and 52.09% and 56.75% for biocrude respectively. Further qualitatively, co-solvent HTL in the presence of obtained aqueous phase yielded 33.43% higher fraction of hydrocarbons than the pure water HTL and 7.70-17.01% higher hydrocarbons when compared with ethanol and glycerol HTL respectively. Nitrogen containing compounds, such as phenols and furfurals, for biocrudes obtained from all HTL processes, were found to be present in the range of 8.30-14.40%.


Assuntos
Solventes , Solventes/química , Glicerol/química
13.
Sci Rep ; 14(1): 13519, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866903

RESUMO

Scientists and engineers encounter considerable environmental and economic obstacles stemming from the depletion of crude oil or petroleum fossil fuel reservoirs. To mitigate this challenge, alternative solutions like bio-oil-modified binder derived from biomass have been innovated. This research aims to examine the feasibility of using bio-oil-modified binder obtained from cotton stalk waste as a modifier. Various mechanical and physical tests, including penetration, softening point, ductility, and dynamic shear rheometer tests, were conducted on asphalt binder incorporating 5% and 10% bio-oil-modified binder. Wheel tracker, four-point beam fatigue, and dynamic modulus tests were used to evaluate asphalt mixture performance, including rutting, fatigue, and dynamic stiffness. A rolling bottle test (RBT) and asphalt binder bond strength (BBS) were used to assess moisture susceptibility. A bio-oil-modified binder enhanced ductility and penetration characteristics while reducing the softening point. With the addition of a bio-oil-modified binder, stiffness was reduced in parameters such as complex shear modulus and phase angle. In fact, for both specimens containing 5% and 10% bio-oil-modified binder, statistically significant differences were observed among the measured samples. As a result of this reduced stiffness, the modified asphalt binder is more suitable for low-temperature applications. Additionally, 5.8% increased at 10% and 3.1% at 5% CS. Bio-oil-modified binder, compared to virgin mixtures, supports equal rut resistance. However, the RBT and BBS tests revealed that the addition of bio-oil-modified binder increased the susceptibility of conventional asphalt binder to moisture. The findings suggest that bio-oil-modified binder can enhance asphalt binder properties in low-temperature regions, but further research is needed to improve moisture resistance.

14.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893844

RESUMO

The research impact of catalysts on the hydrothermal carbonization (HTC) process remains an ongoing debate, especially regarding the quest to enhance biomass conversion into fuels and chemicals, which requires diverse catalysts to optimize bio-oil utilization. Comprehensive insights and standardized analytical methodologies are crucial for understanding HTC's potential benefits in terms of biomass conversion stages. This review seeks to understand how catalysts enhance the HTC of biomass for liquid fuel and hydrochar production, drawing from the following key sections: (a) catalyst types applied in HTC processes; (b) biochar functionality as a potential catalyst; (c) catalysts increasing the success of HTC process; and (d) catalyst's effect on the morphological and textural character of hydrochar. The performance of activated carbon would greatly increase via catalyst action, which would progress the degree of carbonization and surface modification, alongside key heteroatoms. As catalytic HTC technology advances, producing carbon materials for thermochemical activities will become more cost-effective, considering the ever-growing demands for high-performance thermochemical technologies.

15.
Curr Res Microb Sci ; 6: 100237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706494

RESUMO

Due to an increase in industrialization and urbanization, massive amounts of solid waste biomass are speedily accumulating in our environment, which poses several adverse effects on habitat and human health thus becoming a matter of discussion in the environmental community. With reference to the circular economy, continuous efforts have been put forward for setting up an organised management approach in combination with an efficient treatment technique for increasing the profitable utilization of solid waste. This review aims to provide a systematic discussion on the recent thermochemical technologies employed for converting waste biomass generated from different sources into valuable products like biochar, bio-oil, heat, energy and syngas. The article further focuses on a few important aspects of thermochemical conversion of waste biomass to useful products like technical factors affecting thermochemical processes, applications of by-products of thermochemical conversion, and biological pretreatment of waste biomass. The review assists interesting recent and scientific trends for boosting up the systematic management and valorization of solid waste through low-cost, efficient, environment-friendly and sustainable technologies.

16.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730897

RESUMO

The objective of this research is to enhance the high-temperature antirutting and antiaging characteristics of bioasphalt. In this study, silica fume (SF) was selected to modify bioasphalt. The dosage of bio-oil in bioasphalt was 5%, and the dosage of SF was 2%, 4%, 6%, 8%, and 10% of bioasphalt. The high- and low-temperature characteristics, aging resistance, and temperature sensitivity of Bio + SF were evaluated by temperature sweep (TS), the multiple stress creep recovery (MSCR) test, the bending beam rheology (BBR) test, and the viscosity test. Meanwhile, the road behavior of the Bio + SF mixture was evaluated using the rutting test, low-temperature bending beam test, freeze-thaw splitting test, and fatigue test. The experimental results showed that the dosage of SF could enhance the high-temperature rutting resistance, aging resistance, and temperature stability of bioasphalt. The higher the dosage of SF, the more significant the enhancement effect. However, incorporating SF weakened bioasphalt's low-temperature cracking resistance properties. When the SF dosage was less than 8%, the low-temperature cracking resistance of Bio + SF was still superior to that of matrix asphalt. Compared with matrix asphalt mixtures, the dynamic stability, destructive strain, freeze-thaw splitting strength ratio, and fatigue life of 5%Bio + 8%SF mixtures increased by 38.4%, 49.1%, 5.9%, and 68.9%, respectively. This study demonstrates that the development of SF-modified bioasphalt could meet the technical requirements of highway engineering. Using SF and bio-oil could decrease the consumption of natural resources and positively reduce environmental pollution.

17.
Bioresour Technol ; 404: 130908, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821422

RESUMO

Catalytic esterification of acid-rich coffee waste-derived bio-oil was performed using sulfonated metal oxide catalysts (Al2O3, MgO, ZrO2, and TiO2) and ethanol to produce fatty acid alkyl esters. The potential of the sulfonated catalysts for esterification decreased in the following order: Ti-SO4 > Zr-SO4 > Al-SO4 > Mg-SO4. Particularly, Ti-SO4 and Zr-SO4 resulted in 91.2 % (peak area %) and 85.2 % esters, respectively. This is attributed to the contributions of well-dispersed Brønsted acid sites created by -SO3H functional groups, additional Lewis acid sites formed by Ti and Zr oxides, and their appropriate pore size. Compared with HCl and H3PO4, the use of H2SO4 for TiO2 treatment significantly enhanced ester formation. When using Ti-SO4, increasing the catalyst-to-feedstock ratio (1/2 âˆ¼ 1/10) significantly increased the esters' selectivity (38.7 %∼94.7 %). Ethanol utilization caused a superior selectivity for esters than methanol, while the increasing temperature favored ester production. This study proposes an eco-friendly and practical method for biodiesel generation.


Assuntos
Biocombustíveis , Café , Esterificação , Catálise , Café/química , Ácidos Sulfônicos/química , Resíduos , Ésteres/química , Óleos de Plantas/química , Polifenóis
18.
J Environ Manage ; 360: 121164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768524

RESUMO

The present paper compared, through life cycle assessment (LCA), the production of aviation biofuel from two hydrothermal routes of microalgae cultivated in wastewater. Hydrothermal liquefaction (HTL) and gasification followed by Fischer-Tropsch synthesis (G + FT) were compared. Both routes included biomass production, hydrotreatment for biofuel upgrading, and product fractionation. Secondary data obtained from the literature were used for the cradle-to-gate LCA. G + FT had a higher impact than HTL in the 18 impact categories assessed, with human carcinogenic toxicity exerting the most harmful pressure on the environment. The catalysts were the inputs that caused the most adverse emissions. The solvent used for bio-oil separation also stood out in terms of impacts. In HTL, emissions for global warming were -51.6 g CO2 eq/MJ, while in G + FT, they were 250 g CO2 eq/MJ. At the Endpoint level, HTL resulted in benefits to human health and ecosystems, while G + FT caused environmental damage in these two categories, as well as in the resources category. In the improvement scenarios, besides considering solid, aqueous, and gaseous products as co-products rather than just as waste/emissions, a 20% reduction in catalyst consumption and 90% recovery were applied. Thus, in HTL, 39.47 kg CO2 eq was avoided, compared to 35.44 kg CO2 eq in the base scenario. In G + FT, emissions decreased from 147.55 kg CO2 eq to the capture of 8.60 kg CO2 eq.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Águas Residuárias , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Aviação
19.
Heliyon ; 10(7): e28310, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596006

RESUMO

The current paper presents research on bio-oil production from Tung seed residues fed at 500 g/h via fast pyrolysis in a fluidized-bed. The objective was to investigate the influence of temperature on bio-oil production in a pyrolysis process. Three portions Tung residues were studied, Tung seed outer shells (TO), Tung seed inner shells (TI), and pressed residues of oil seeds (RS), all having particle sizes of 0.150-0.500 mm. The process temperatures were 350-500 °C. The physical and chemical properties of pressed residue particles were characterized by ASTM standard methods. Bio-oil component identification was done using GC-MS. Experimentally derived data showed an optimal pyrolysis temperatures for all three types of Tung residues (TO, TI and RS) of 400 °C, yielding respective maximum bio-oil yields of 53.46, 52.81, and 62.85 wt% on a dry basis (db). Apart from having highest bio-oil yield, RS produced bio-oil with the highest carbon content, leading to its greatest lower heating value (LHV), 28.05 MJ/kg (db). The main bio-oil components were acids, nitrogen compounds, and hydrocarbons. Char yield was reduced with increased temperature. Tung seed outer shells produced the highest char level (39.26 wt%) while RS gave highest char quality in term of density and heating value.

20.
Polymers (Basel) ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611213

RESUMO

In this work, the potential of biomass-derived date palm bio-oil as a partial substitute for phenol in the phenolic resin was evaluated. Date palm bio-oils derived from date palm were used for the partial substitution of phenol in the preparation of phenolic foam (PF) insulation materials. Date palm waste material was processed using pyrolysis at 525 °C to produce bio-oil rich in phenolic compounds. The bio-oil was used to partially replace phenol in the synthesis of phenolic resin, which was subsequently used to prepare foams. The resulting changes in the physical, mechanical, and thermal properties of the foams were studied. The substituted foams exhibited 93%, 181%, and 40% improvement in compressive strength with 10%, 15%, and 20% bio-oil substitution, respectively. Due to the incorporation of biomass waste material, the partial reduction in phenol uses, and the favorable properties, the date palm bio-oil substituted phenolic foams are considered more environmentally benign alternatives to traditional phenolic foams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...