Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 267: 116853, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39432989

RESUMO

Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.

2.
Adv Healthc Mater ; : e2402991, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39463131

RESUMO

Engineering biointerfaces with nanoscale clustering of integrin-binding cell adhesive peptides is critical for promoting receptor redistribution into signaling complexes. Skeletal muscle cells are exquisitely sensitive to integrin-mediated signaling, yet biomaterials supporting myogenesis through control of the density and nanodistribution of ligands have not been developed. Here, materials are developed with tailorable cell adhesive ligands distribution at the interface by independently controlling their global and local density to enhance myogenesis, by promoting myoblast growth and myotube formation. To this end, RGD-functionalized low-fouling polymer surfaces with global ligand densities (G) from 0-7 µg peptide/mg polymer and average local ligand densities (L) from 1-6.3 ligands/cluster, are generated and characterized. Cell studies demonstrate improvements in cell adhesion, spreading, growth, and myotube formation up to a density of 7 µg peptide/mg polymer with 4 ligands/cluster. Optimizing ligand density and distribution also promotes early myofiber maturation, identified by increased MF20 marker protein expression and sarcomere-forming myotubes. At higher ligand densities, these cell properties are decreased, indicating that ligand multivalency is a critical parameter for tailoring cell-material interactions, to a certain threshold. The findings provide new insights for designing next-generation biomaterials and hold promise for improved engineering of skeletal muscle.

3.
Small ; : e2408557, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420697

RESUMO

Flexible bioelectronic devices seamlessly interface with organs and tissues, offering unprecedented opportunity for timely prevention, early diagnosis, and medical therapies. However, the majority of flexible substrates utilized in bioelectronics still encounter significant challenges in terms of recyclability and reprocessing, leading to the accumulation of environmentally and biologically hazardous toxic waste. Here, the study reports the design of recyclable polyurethane (PU) vitrimers engineered with internal boron-nitrogen coordination bonds that can reversibly dissociate to boronic acids and hydroxyl, or undergo metathesis reaction following an associative pathway. The study demonstrates the capacity of these recyclable PU vitrimers as flexible substrates in various wearable and implantable bioelectronic applications, achieving high-quality electrophysiological recordings and stimulation. Furthermore, the study establishes a sustainable recycling process by reconstructing a range of bioelectronic devices from the recycled PU vitrimers without compromising the mechanical performance. This closed-loop approach not only addresses the critical challenge of the reclaiming medical electronic waste but also paves the way for the development of sustainable flexible bioelectronics for healthcare applications.

4.
ACS Nano ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453716

RESUMO

Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.

5.
Small Methods ; : e2400844, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300852

RESUMO

Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.

6.
Molecules ; 29(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339434

RESUMO

A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, ßIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices.


Assuntos
Diferenciação Celular , Gálio , Células-Tronco Neurais , Semicondutores , Raios Ultravioleta , Gálio/química , Gálio/farmacologia , Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos da radiação , Células-Tronco Neurais/metabolismo , Diferenciação Celular/efeitos da radiação , Ratos , Células Cultivadas , Proliferação de Células , Neurônios/citologia , Neurônios/efeitos da radiação , Neurônios/metabolismo
7.
ACS Appl Mater Interfaces ; 16(36): 47110-47123, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39189050

RESUMO

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Research indicates that circulating histones, as pathogenic factors, may represent a therapeutic target for sepsis. However, effectively clearing circulating histones poses a challenge due to their structural similarity to normal blood proteins, their low abundance in the bloodstream, and serious interference from other blood biomacromolecules. Here we design a dodecapeptide-based functional polymer that can selectively adsorb circulating histones from the blood. The peptide, named P1 (HNHHQLALVESY), was discovered through phage display screening and demonstrated a strong affinity for circulating histones while exhibiting negligible affinities for common proteins in the blood, such as human serum albumin (HSA), immunoglobulin G (IgG), and transferrin (TRF). Furthermore, the P1 peptide was incorporated into a functional polymer design, poly(PEGMA-co-P1), which was immobilized onto a silica gel surface through reversible addition-fragmentation chain transfer polymerization. The resulting material was characterized using solid nuclear magnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy. This material demonstrated the ability to selectively and efficiently capture circulating histones from both model solutions and whole blood samples while also exhibiting satisfactory blood compatibility, good antifouling properties, and resistance to interference. Satisfactory binding affinity and efficient capture capacity toward histone were also observed for the other screened peptide P2 (QMSMDLFGSNFV)-grafted polymer, validating phage display as a reliable ligand screening strategy. These findings present an approach for the specific clearance of circulating histones and hold promise for future clinical applications in blood purification toward sepsis.


Assuntos
Histonas , Sepse , Sepse/sangue , Humanos , Histonas/química , Histonas/sangue , Peptídeos/química , Adsorção , Polímeros/química , Albumina Sérica Humana/química
8.
Adv Healthc Mater ; 13(27): e2400335, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38935920

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.


Assuntos
Materiais Biomiméticos , Prótese Vascular , Humanos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Propriedades de Superfície , Biomimética/métodos
9.
Small ; 20(37): e2311402, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757547

RESUMO

The native extracellular matrix (ECM) undergoes constant remodeling, where adhesive ligand presentation changes over time and in space to control stem cell function. As such, it is of interest to develop 2D biointerfaces able to study these complex ligand stem-cell interactions. In this study, a novel dynamic bio interface based on DNA hybridization is developed, which can be employed to control ligand display kinetics and used to study dynamic cell-ligand interaction. In this approach, mesoporous silica nanoparticles (MSN) are functionalized with single-strand DNA (MSN-ssDNA) and spin-coated on a glass substrate to create the 2D bio interface. Cell adhesive tripeptide RGD is conjugated to complementary DNA strands (csDNA) of 9, 11, or 20 nucleotides in length, to form csDNA-RGD. The resulting 3 csDNA-RGD conjugates can hybridize with the ssDNA on the MSN surface, presenting RGD with increased ligand dissociation rates as DNA length is shortened. Slow RGD dissociation rates led to enhanced stem cell adhesion and spreading, resulting in elongated cell morphology. Cells on surfaces with slow RGD dissociation rates also exhibited higher motility, migrating in multiple directions compared to cells on surfaces with fast RGD dissociation rates. This study contributes to the existing body of knowledge on dynamic ligand-stem cell interactions.


Assuntos
Adesão Celular , Movimento Celular , DNA , Nanopartículas , Oligopeptídeos , Oligopeptídeos/química , Nanopartículas/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , DNA/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Humanos , Dióxido de Silício/química , DNA de Cadeia Simples/química
10.
Folia Microbiol (Praha) ; 69(3): 549-565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532057

RESUMO

Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.


Assuntos
Bactérias , Probióticos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Humanos , Bactérias/efeitos dos fármacos , Animais , Metabolismo Secundário , Imunomodulação , Fatores Imunológicos/uso terapêutico , Gastroenteropatias/terapia , Gastroenteropatias/imunologia , Gastroenteropatias/microbiologia , Gerenciamento Clínico , Microbioma Gastrointestinal
11.
ACS Appl Mater Interfaces ; 16(14): 17109-17119, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530402

RESUMO

The analysis of low-abundance protein molecules in human serum is reported based on counting of the individual affinity-captured analyte on a solid sensor surface, yielding a readout format similar to digital assays. In this approach, a sandwich immunoassay with rolling circle amplification (RCA) is used for single molecule detection (SMD) through associating the target analyte with spatially distinct bright spots observed by fluorescence microscopy. The unspecific interaction of the target analyte and other immunoassay constituents with the sensor surface is of particular interest in this work, as it ultimately limits the performance of this assay. It is minimized by the design of the respective biointerface and thiol self-assembled monolayer with oligoethylene (OEG) head groups, and a poly[oligo(ethylene glycol) methacrylate] (pHOEGMA) antifouling polymer brush was used for the immobilization of the capture antibody (cAb) on the sensor surface. The assay relying on fluorescent postlabeling of long single-stranded DNA that are grafted from the detection antibody (dAb) by RCA was established with the help of combined surface plasmon resonance and surface plasmon-enhanced fluorescence monitoring of reaction kinetics. These techniques were employed for in situ measurements of conjugating of cAb to the sensor surface, tagging of short single-stranded DNA to dAb, affinity capture of the target analyte from the analyzed liquid sample, and the fluorescence readout of the RCA product. Through mitigation of adsorption of nontarget molecules on the sensor surface by tailoring of the antifouling biointerface, optimizing conjugation chemistry, and by implementing weak Coulombic repelling between dAb and the sensor surface, the limit of detection (LOD) of the assay was substantially improved. For the chosen interleukin-6 biomarker, SMD assay with LOD at a concentration of 4.3 fM was achieved for model (spiked) samples, and validation of the ability of detection of standard human serum samples is demonstrated.


Assuntos
DNA de Cadeia Simples , Ressonância de Plasmônio de Superfície , Humanos , Ressonância de Plasmônio de Superfície/métodos
12.
Nano Lett ; 24(13): 3914-3921, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513214

RESUMO

Establishing a multivalent interface between the biointerface of a living system and electronic device is vital to building intelligent bioelectronic systems. How to achieve multivalent binding with spatial tolerance at the nanoscale remains challenging. Here, we report an antibody nanotweezer that is a self-adaptive bivalent nanobody enabling strong and resilient binding between transistor and envelope proteins at biointerfaces. The antibody nanotweezer is constructed by a DNA framework, where the nanoscale patterning of nanobodies along with their local spatial adaptivity enables simultaneous recognition of target epitopes without binding stress. As such, effective binding affinity increases by 1 order of magnitude compared with monovalent antibody. The antibody nanotweezer operating on transistor offers enhanced signal transduction, which is implemented to detect clinical pathogens, showing ∼100% overall agreement with PCR results. This work provides a perspective of engineering multivalent interfaces between biosystems with solid-state devices, holding great potential for organoid intelligence on a chip.


Assuntos
Anticorpos de Domínio Único , Epitopos , Transdução de Sinais
13.
Small ; 20(29): e2310251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362704

RESUMO

Dental adhesives are widely used in daily practice for minimally invasive restorative dentistry but suffer from bond degradation and biofilm attack. Bio-inspired by marine mussels having excellent surface-adhesion capability and high chemical affinity of polydopamine (PDA) to metal ions, herein, experimental zinc (Zn)-containing polydopamine-based adhesive formulation, further being referred to as "Zn-PDA@SiO2"-incorporated adhesive is proposed as a novel dental adhesive. Different Zn contents (5 and 10 mm) of Zn-PDA@SiO2 are prepared. Considering the synergistic effect of Zn and PDA, Zn-PDA@SiO2 not only presents excellent antibacterial potential and notably inhibits enzymatic activity (soluble and matrix-bound proteases), but also exhibits superior biocompatibility and biosafety in vitro/vivo. The long-term bond stability is substantially improved by adding 5 wt% 5 mm Zn-PDA@SiO2 to the primer. The aged bond strength of the experimentally formulated dental adhesives applied in self-etch (SE) bonding mode is 1.9 times higher than that of the SE gold-standard adhesive. Molecular dynamics calculations indicate the stable formation of covalent bonds, Zn-assisted coordinative bonds, and hydrogen bonds between PDA and collagen. Overall, this bioinspired dental adhesive provides an avenue technology for innovative biomedical applications and has already revealed promising perspectives for dental restorative dentistry.


Assuntos
Microesferas , Dióxido de Silício , Animais , Dióxido de Silício/química , Indóis/química , Zinco/química , Polímeros/química , Cimentos Dentários/química , Antibacterianos/química , Antibacterianos/farmacologia , Simulação de Dinâmica Molecular
14.
Nanomaterials (Basel) ; 14(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38392750

RESUMO

Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.

15.
ACS Appl Mater Interfaces ; 16(6): 6789-6798, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38297999

RESUMO

Magnetic biomolecule-based bionic magnetic field sensors are anticipated to open up novel pathways for magnetic field detection. The detection range and accuracy of current bionic magnetic field sensors are limited, and little work is based on the capacitive response principle. We successfully developed a biochemical interface with an extralarge target-receptor size ratio, which can be manufactured in a single step for weak magnetic field detection across a wide frequency range, and we used electrochemical capacitance as a magnetic field change conduction strategy. The thickness-controllable nanoscale bovine serum albumin/graphene layer on an indium tin oxide working electrode combines with the one-step preparation method to immobilize the MagR/Cry4 complex. This capacitive bionic magnetic sensor can achieve the detection range of 0-120 mT. This biointerface design strategy obtains the further improvement of the performance of this bionic magnetic field sensor. Furthermore, the biointerface construction and optimization methodology in this proposal has potential applications in the design of other medical biosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Biônica , Capacitância Elétrica , Eletrodos
16.
Angew Chem Int Ed Engl ; 63(1): e202314804, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955346

RESUMO

Reversible biointerfaces are essential for on-demand molecular recognition to regulate stimuli-responsive bioactivity such as specific interactions with cell membranes. The reversibility on a single platform allows the smart material to kill pathogens or attach/detach cells. Herein, we introduce a 2D-MoS2 functionalized with cationic azobenzene that interacts selectively with either Gram-positive or Gram-negative bacteria in a light-gated fashion. The trans conformation (trans-Azo-MoS2 ) selectively kills Gram-negative bacteria, whereas the cis form (cis-Azo-MoS2 ), under UV light, exhibits antibacterial activity against Gram-positive strains. The mechanistic investigation indicates that the cis-Azo-MoS2 exhibits higher affinity towards the membrane of Gram-positive bacteria compared to trans-Azo-MoS2 . In case of Gram-negative bacteria, trans-Azo-MoS2 internalizes more efficiently than cis-Azo-MoS2 and generates intracellular ROS to kill the bacteria. While the trans-Azo-MoS2 exhibits strong electrostatic interactions and internalizes faster into Gram-negative bacterial cells, cis-Azo-MoS2 primarily interacts with Gram-positive bacteria through hydrophobic and H-bonding interactions. The difference in molecular mechanism leads to photo-controlled Gram-selectivity and enhanced antibacterial activity. We found strain-specific and high bactericidal activity (minimal bactericidal concentration, 0.65 µg/ml) with low cytotoxicity, which we extended to wound healing applications. This methodology provides a single platform for efficiently switching between conformers to reversibly control the strain-selective bactericidal activity regulated by light.


Assuntos
Antibacterianos , Molibdênio , Molibdênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Raios Ultravioleta , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização
17.
Adv Mater ; 36(9): e2309046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38011581

RESUMO

Developing a robust strategy for profiling heterogeneous circular tumor cells specifically, distinguishing the phenotypes of which in blood sample of cancer patient precisely, and releasing them sequentially, is significant for cancer management by liquid biopsy. Herein, a bio-inspired free-standing and flexible film composed of TiO2 nanotube and silk fibroin, fabricated with multiply dynamic bioactive surface (TSF/MDBS) by a simple and eco-friendly way including using polydopamine chemistry and dual dynamic covalent chemistry, is reported. The as-prepared TSF/MDBS binds specific peptides toward cells with epithelial biomarker and human epithelial growth factor receptor 2 (HER2) biomarker, and antifouling agents bovine serum albumin for obviating platelets and proteins adhering of blood, can capture heterogeneous CTCs with enhanced capability due to the cytocompatible soft film and exquisite surface design, and further release the captured cells as program, by specifically breaking down the covalent bonds in sequence via the action of adding biocompatible molecules fructose and glutathione. By applying the TSF/MDBS, it can be tailored into desired pieces for identifying CTCs with different phenotypes (HER2-high and HER2-low) from the unprocessed blood samples of breast cancer patients, and finally profiling these heterogeneous CTCs, to discriminate HER2 positive or negative of breast cancer patients in clinical applications.


Assuntos
Neoplasias da Mama , Fibroínas , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Plaquetas , Tipagem Molecular , Biomarcadores
18.
ACS Appl Mater Interfaces ; 15(48): 56433-56441, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37975828

RESUMO

Tethered-liquid perfluorocarbons (TLPs) are a class of liquid-infused surfaces with the ability to reduce blood clot formation (thrombosis) on blood-contacting medical devices. TLP comprises a tethered perfluorocarbon (TP) infused with a liquid perfluorocarbon (LP); this LP must be retained to maintain the antithrombotic properties of the layer. However, the stability of the LP layer remains in question, particularly for medical devices under blood flow. In this study, the lubricant thickness is spatially mapped and quantified in situ through confocal dual-wavelength reflection interference contrast microscopy. TLP coatings prepared on glass substrates are exposed to the flow of 37% glycerol/water mixtures (v/v) or whole blood at a shear strain rate of around 2900 s-1 to mimic physiological conditions (similar to flow conditions found in coronary arteries). Excess lubricant (>2 µm film thickness) is removed upon commencement of flow. For untreated glass, the lubricant is completely depleted after 1 min of shear flow. However, on optimized TLP surfaces, nanoscale films of lubricants (thickness between 100 nm and 2 µm) are retained over many tens of minutes of flow. The nanoscale films conform to the underlying structure of the TP layer and are sufficient to prevent the adhesion of red blood cells and platelets.


Assuntos
Fluorocarbonos , Lubrificantes , Lubrificantes/farmacologia , Lubrificantes/química , Excipientes
19.
Colloids Surf B Biointerfaces ; 231: 113575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832175

RESUMO

Novel soft materials based on hydrogel are proposed to enhance the selection of high-quality stallion sperm based on their adhesion capacity. The hydrogel surfaces are derived from polyacrylamide (PAAm), which is copolymerized with neutral and ionic co-monomers to modify the interfacial properties. The hydrogels undergo characterization through FTIR spectroscopy, assessment of swelling capacity, and wettability under various experimental conditions. Sperm adhesion capacity on the hydrogels is examined through several parameters including the percentage of bound sperm (%Sp) to hydrogels, tail oscillation intensity and flagellar movement. The biointerfacial properties of sperm-hydrogel systems vary based on the chemical composition of hydrogel as well as the components present in the culture medium. High %Sp and excellent metabolic activity of the spermatozoa are observed on hydrogel surfaces that possess moderate hydrophilicity. Specifically, a cationic hydrogel in BGM3 culture medium and a neutral surface in BGM3 medium supplemented with BSA exhibit favorable outcomes. Scanning Electron Microscopy (SEM) reveals the normal morphology of the head and tail in spermatozoa adhered to the hydrogel. Therefore, these hydrogel surfaces are potential materials for selecting stallion sperm with high quality, and their application could be extended to the study of other mammalian reproductive cells.


Assuntos
Hidrogéis , Sêmen , Masculino , Cavalos , Animais , Hidrogéis/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Molhabilidade , Mamíferos
20.
ACS Appl Mater Interfaces ; 15(41): 48754-48763, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37793161

RESUMO

The superhydrophobic properties of material surfaces have attracted significant research and practical development in a wide range of applications. In the present study, a superhydrophobic coating was fabricated using a vapor-phase sublimation and deposition process. This process offers several advantages, including a controllable and tunable superhydrophobic property, a dry and solvent-free process that uses well-defined water/ice templates during fabrication, and a coating technology that is applicable to various substrates, regardless of their dimensions or complex geometric configurations. The fabrication process exploits time-dependent condensation to produce ice templates with a controlled surface morphology and roughness. The templates are sacrificed via vapor sublimation, which results in mass transfer of water vapor out of the system. A second vapor source of a polymer precursor is then introduced to the system, and deposition occurs upon polymerization on the iced templates, replicating the same topologies from the iced templates. The continuation of the co-current sublimation and deposition processes finally renders permanent hierarchical structures of the polymer coatings that combine the native hydrophobic property of the polymer and the structured property by the sacrificed ice templates, achieving a level of superhydrophobicity that is tunable from 90° to 164°. The experiments demonstrated the use of [2,2]paracyclophanes as the starting materials for forming the superhydrophobic coatings of poly(p-xylylenes) on substrate surfaces. In comparison to conventional vapor deposition of poly(p-xylylenes), which resulted in dense thin-film coatings with only a moderate water contact angle of approximately 90°, the reported superhydrophobic coatings and fabrication process can achieve a high water contact angle of 164°. Demonstrations furthermore revealed that the proposed coatings are durable while maintaining superhydrophobicity on various substrates, including an intraocular lens and a cardiovascular stent, even against harsh treatment conditions and varied solution compositions used on the substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...