Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.080
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39096307

RESUMO

INTRODUCTION: Cancer vaccines (protein and peptide, DNA, mRNA, and tumor cell) have achieved remarkable success in the treatment of cancer. In particular, advances in the design and manufacture of biomaterials have made it possible to control the presentation and delivery of vaccine components to immune cells. AREAS COVERED: This review summarizes findings from major databases, including PubMed, Scopus, and Web of Science, focusing on articles published between 2005 and 2024 that discuss biomaterials in cancer vaccine delivery. EXPERT OPINION: The development of cancer vaccines is hindered by several bottlenecks, including low immunogenicity, instability of vaccine components, and challenges in evaluating their clinical efficacy. To transform preclinical successes into viable treatments, it is essential to pursue continued innovation, collaborative research, and address issues related to scalability, regulatory pathways, and clinical validation, ultimately improving outcomes against cancer.

2.
MethodsX ; 13: 102822, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39105089

RESUMO

This work describes protocols for preparing specific forms of human platelet lysates from pooled platelet concentrates (PCs) and the isolation of platelet-derived extracellular vesicles (p-EVs). Clinical-grade PCs can be sourced from blood establishments immediately following expiration for transfusion use. Here, we describe methods to process PCs into specific lysates from which p-EVs can be isolated. Each lysate type is prepared using platelet activation and processing methods which produce distinct products that may be useful in different applications. For example, serum-converted platelet lysate (SCPL)-EVs were recently shown to have powerful therapeutic properties following myocardial infarction in mice. EVs can be isolated from all products using size exclusion chromatography, producing pure and consistent p-EVs from multiple batches. Together, these methods allow isolation of p-EVs with excellent potential for clinical and preclinical applications.•Platelet concentrates (PCs) obtained from local blood establishments are reliable and sustainable sources to generate biomaterials.•We outline five distinct methods of platelet lysate generation and one method for extracellular vesicle isolation.•Each platelet lysate form has different biological properties which may be suitable for certain applications.

3.
Adv Mater ; : e2406080, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148179

RESUMO

Advanced-stage liver cancers are associated with poor prognosis and have limited treatment options, often leading the patient to hospice care. Percutaneous intratumoral injection of anticancer agents has emerged as a potential alternative to systemic therapy to overcome tumor barriers, increase bioavailability, potentiate immunotherapy, and avoid systemic toxicity, which advanced-stage cancer patients cannot tolerate. Here, an injectable OncoGel (OG) comprising of a nanocomposite hydrogel loaded with an ionic liquid (IL) is developed for achieving a predictable and uniform tumor ablation and long-term slow release of anticancer agents into the ablation zone. Rigorous mechanical, physiochemical, drug release, cytotoxicity experiments, and ex vivo human tissue testing identify an injectable version of the OG with bactericidal properties against highly resistant bacteria. Intratumoral injection of OG loaded with Nivolumab (Nivo) and doxorubicin (Dox) into highly malignant tumor models in mice, rats, and rabbits demonstrates enhanced survival and tumor regression associated with robust tissue ablation and drug distribution throughout the tumor. Mass cytometry and proteomic studies in a mouse model of colorectal cancer that often metastasizes to the liver indicate an enhanced anticancer immune response following the intratumoral injection of OG. OG may augment immunotherapy and potentially improve outcomes in liver cancer patients.

4.
Fungal Biol Biotechnol ; 11(1): 11, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127744

RESUMO

BACKGROUND: Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last. RESULTS: This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field. CONCLUSION: Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.

5.
Neurosci Res ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134225

RESUMO

Environmental factors have well-documented impacts on brain development and mental health. Therefore, it is crucial to employ a reliable assay system to assess the spatial preference of model animals. In this study, we introduced an unbiased quadrant chamber assay system and discovered that parental pup-gathering behavior takes place in a very efficient manner. Furthermore, we found that test mice exhibited preferences for specific environments in both spontaneous and parental pup-gathering behavior contexts. Notably, the spatial preferences of autism spectrum disorder model animals were initially suppressed but later equalized during the spontaneous behavior assay, accompanied by increased time spent in the preferred chamber. In conclusion, our novel quadrant chamber assay system provides an ideal platform for investigating the spatial preference of mice, offering potential applications in studying environmental impacts and exploring neurodevelopmental and psychiatric disorder models.

7.
Biomaterials ; 312: 122716, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39121731

RESUMO

Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.

8.
Materials (Basel) ; 17(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124423

RESUMO

Human hair, composed primarily of keratin, represents a sustainable waste material suitable for various applications. Synthesizing keratin nanoparticles (KNPs) from human hair for biomedical uses is particularly attractive due to their biocompatibility. In this study, keratin was extracted from human hair using concentrated sulfuric acid as the hydrolysis agent for the first time. This process yielded KNPs in both the supernatant (KNPs-S) and precipitate (KNPs-P) phases. Characterization involved scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Zeta potential analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TG). KNPs-S and KNPs-P exhibited average diameters of 72 ± 5 nm and 27 ± 5 nm, respectively. The hydrolysis process induced a structural rearrangement favoring ß-sheet structures over α-helices in the KNPs. These nanoparticles demonstrated negative Zeta potentials across the pH spectrum. KNPs-S showed higher cytotoxicity (CC50 = 176.67 µg/mL) and hemolytic activity, likely due to their smaller size compared to KNPs-P (CC50 = 246.21 µg/mL), particularly at concentrations of 500 and 1000 µg/mL. In contrast, KNPs-P did not exhibit hemolytic activity within the tested concentration range of 32.5 to 1000 µg/mL. Both KNPs demonstrated cytocompatibility with fibroblast cells in a dose-dependent manner. Compared to other methods reported in the literature and despite requiring careful washing and neutralization steps, sulfuric acid hydrolysis proved effective, rapid, and feasible for producing cytocompatible KNPs (biomaterials) in single-step synthesis.

9.
Materials (Basel) ; 17(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124546

RESUMO

The treatment of bone defects caused by disease or accidents through the use of implants presents significant clinical challenges. After clinical implantation, these materials attract and accumulate bacteria and hinder the integration of the implant with bone tissue due to the lack of osteoinductive properties, both of which can cause postoperative infection and even lead to the eventual failure of the operation. This work successfully prepared a novel biomaterial coating with multiple antibacterial mechanisms for potent and durable and osteoinductive biological tissue replacement by pulsed PED (electrochemical deposition). By effectively regulating PPy (polypyrrole), the uniform composite coating achieved sound physiological stability. Furthermore, the photothermal analysis showcased exceptional potent photothermal antibacterial activity. The antibacterial assessments revealed a bacterial eradication rate of 100% for the PPy@Cu/PD composite coating following a 24 h incubation. Upon the introduction of NIR (near-infrared) irradiation, the combined effects of multiple antibacterial mechanisms led to bacterial reduction rates of 99% for E. coli and 98% for S. aureus after a 6 h incubation. Additionally, the successful promotion of osteoblast proliferation was confirmed through the application of the osteoinductive drug PD (pamidronate disodium) on the composite coating's surface. Therefore, the antimicrobial Ti-based coatings with osteoinductive properties and potent and durable antibacterial properties could serve as ideal bone implants.

10.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125958

RESUMO

Diabetic foot ulceration is one of the most common complications in patients treated for diabetes mellitus. The presented pilot study describes the successful treatment of diabetic ulceration of the heel with ongoing osteomyelitis in a 39-year-old patient after using a combination of modified chitosan-based biomaterial in combination with autologous mesenchymal stem cells isolated from bone marrow and dermal fibroblasts. The isolated population of bone marrow mesenchymal stem cells fulfilled all of the attributes given by the International Society for Stem Cell Research, such as fibroblast-like morphology, the high expression of positive surface markers (CD29: 99.1 ± 0.4%; CD44: 99.8 ± 0.2% and CD90: 98.0 ± 0.6%) and the ability to undergo multilineage differentiation. Likewise, the population of dermal fibroblasts showed high positivity for the widely accepted markers collagen I, collagen III and vimentin, which was confirmed by immunocytochemical staining. Moreover, we were able to describe newly formed blood vessels shown by angio CT and almost complete closure of the skin defect after 8 months of the treatment.


Assuntos
Materiais Biocompatíveis , Quitosana , Pé Diabético , Pé Diabético/terapia , Pé Diabético/patologia , Humanos , Quitosana/química , Projetos Piloto , Adulto , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Diferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos
11.
Altern Lab Anim ; : 2611929241269004, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121342

RESUMO

The likelihood that potential new drugs will successfully navigate the current translational pipeline is poor, with fewer than 10% of drug candidates making this transition successfully, even after their entry into clinical trials. Prior to this stage, candidate drugs are typically evaluated by using models of increasing complexity, beginning with basic in vitro cell culture studies and progressing through to animal studies, where many of these candidates are lost due to lack of efficacy or toxicology concerns. There are many reasons for this poor translation, but interspecies differences in functional and physiological parameters undoubtedly contribute to the problem. Improving the human-relevance of early preclinical in vitro models may help translatability, especially when targeting more nuanced species-specific cell processes. The aim of the current study was to define a set of guidelines for the effective transition of human primary cells of multiple lineages to more physiologically relevant, translatable, animal-free in vitro culture conditions. Animal-derived biomaterials (ADBs) were systematically replaced with non-animal-derived alternatives in the in vitro cell culture systems, and the impact of the substitutions subsequently assessed by comparing the kinetics and phenotypes of the cultured cells. ADBs were successfully eliminated from primary human dermal fibroblast, uterine fibroblast, pulmonary fibroblast, retinal endothelial cell and peripheral blood mononuclear cell culture systems, and the individual requirements of each cell subtype were defined to ensure the successful transition toward growth under animal-free culture conditions. We demonstrate that it is possible to transition ('humanise') a diverse set of human primary cell types by following a set of simple overarching principles that inform the selection, and guide the evaluation of new, improved, human-relevant in vitro culture conditions.

12.
Water Sci Technol ; 89(12): 3325-3343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39150427

RESUMO

In this current investigation, the experimental performance of a solar still basin was significantly enhanced by incorporating snail shell biomaterials. The outcomes of the snail shell-augmented solar still basin (SSSS) are compared with those of a conventional solar still (CSS). The utilization of snail shells proved to facilitate the reduction of saline water and enhance its temperature, thereby improving the productivity of the SSSS. Cumulatively, the SSSS productivity was improved by 4.3% over CSS. Furthermore, the SSSS outperformed in energy and exergy efficiency of CSS by 4.5 and 3.5%, respectively. Economically, the cost per liter of distillate (CPL) for the CSS was 3.4% higher than SSSS. Moreover, the SSSS showed a shorter estimated payback period (PBP) of 141 days which was 6 days less than CSS. Considering the environmental impact, the observed CO2 emissions from the SSSS were approximately 14.6% higher than CSS over its 10-year lifespan. Notably, the SSSS exhibited a substantial increase in the estimated carbon credit earned (CCE) compared to the CSS. Ultimately, the research underscores the efficacy of incorporating snail shells into solar still basins as a commendable approach to organic waste management, offering economic benefits without compromising environmental considerations.


Assuntos
Caramujos , Animais , Exoesqueleto/química , Materiais Biocompatíveis/química , Luz Solar , Conservação dos Recursos Naturais/métodos , Purificação da Água/métodos
13.
Acta Biomater ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142531

RESUMO

Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1ß and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.

14.
Adv Healthc Mater ; : e2400668, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135411

RESUMO

This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38990261

RESUMO

Food waste is produced for intended human consumption and is normally lost, discharged, contaminated, or finally degraded. The rising problem of food waste is increasing rapidly, so every sector is involved in minimizing food waste generation as well as waste management from collection to disposal, and scientists are developing the best eco-friendly and sustainable solutions for all sectors in the food supply chain, from the agricultural sector to the industrial sector and even up to the retailer to human consumption. Sustainable management is needed for the food wastes in the agricultural and industrial sectors, which are a major burning headache for environmentalists, health departments, and the government all over the earth. Various strategies can be employed to effectively control food waste, and these strategies can be ranked in a manner similar to the waste management hierarchy. The most desirable options involve the act of avoiding and donating edible portions to social agencies. Food waste is utilized in industrial operations to produce biofuels or biopolymers. The next stages involve the retrieval of nutrients and the sequestration of carbon through composting. The government implements appropriate management practices, laws, and orders to minimize food waste generation. Different contemporary methods are utilized to produce biofuel utilizing various types of food waste. In order for composting techniques to recover nutrients and fix carbon, food waste must be processed. Both the management of food waste and the creation of outgrowths utilizing biomaterials require additional study. This review aims to present a comprehensive analysis of the ongoing discourse surrounding the definitions of food waste, the production and implementation of methods to reduce it, the emergence of conversion technologies, and the most recent trends.

16.
Biomater Biosyst ; 14: 100096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974419

RESUMO

The nucleus serves as the central hub for cellular activity, driving cell identity and behavior. Despite its crucial role, understanding how biomaterials influence the nucleus remains an underexplored area of research. In our opinion, this is an overlooked opportunity, particularly in regenerative medicine - a field where cellular control is not just beneficial, but essential. As such, we emphasize the need to recognize nuclear characteristics as a key metric for evaluating material functionality. In this leading opinion article, we discuss how state-of-the-art technologies can help reveal biomaterial-driven nuclear alterations, offering crucial insights that will advance the field of regenerative medicine.

17.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000751

RESUMO

The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In this regard, tissue engineers are searching for biomaterials to produce hydrogels with specified properties both in terms of their physical, mechanical and chemical properties and in terms of local biological effects following implantation into an organism. One of such effects is the provision of the optimal conditions for physiological reparative regeneration by the structural components that form the basis of the biomaterial. Therefore, qualitative assessment of the composition of the protein component of a biomaterial is a significant task in tissue engineering and bioprinting. It is important for predicting the behaviour of printed constructs in terms of their gradual resorption followed by tissue regeneration due to the formation of a new extracellular matrix. One of the most promising natural biomaterials with significant potential in the production of hydrogels and the bioinks based on them is the polymer collagen of allogeneic origin, which plays an important role in maintaining the structural and biological integrity of the extracellular matrix, as well as in the morphogenesis and cellular metabolism of tissues, giving them the required mechanical and biochemical properties. In tissue engineering, collagen is widely used as a basic biomaterial because of its availability, biocompatibility and facile combination with other materials. This manuscript presents the main results of a mass spectrometry analysis (proteomic assay) of the lyophilized hydrogel produced from the registered Lyoplast® bioimplant (allogeneic human bone tissue), which is promising in the field of biotechnology. Proteomic assays of the investigated lyophilized hydrogel sample showed the presence of structural proteins (six major collagen fibers of types I, II, IV, IX, XXVII, XXVIII were identified), extracellular matrix proteins, and mRNA-stabilizing proteins, which participate in the regulation of transcription, as well as inducer proteins that mediate the activation of regeneration, including the level of circadian rhythm. The research results offer a new perspective and indicate the significant potential of the lyophilized hydrogels as an effective alternative to synthetic and xenogeneic materials in regenerative medicine, particularly in the field of biotechnology, acting as a matrix and cell-containing component of bioinks for 3D bioprinting.

18.
Methods Mol Biol ; 2805: 113-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008177

RESUMO

The extracellular matrix (ECM) provides dynamic structural and molecular signals that affect the form and function of developing tissues. In order to parse how the individual features of the ECM impact cell- and tissue-level behavior during development, engineered culture models should reproduce key structural and molecular features of native ECM. Here, we describe a protocol for bioprinting epithelial cell aggregates embedded within a collagen-Matrigel ink in order to study the dynamic interplay between epithelial tissues and aligned networks of type I collagen fibers. Collagen fiber alignment and geometry can be spatially controlled by modulating the printing speed, nozzle geometry, surface chemistry, and degree of molecular crowding in the printing ink. We provide detailed procedures for generating epithelial cell aggregates, microextrusion printing collagen-Matrigel bioinks, culturing the three-dimensional (3D)-printed tissues, and imaging 3D-printed collagen-Matrigel constructs.


Assuntos
Bioimpressão , Colágeno , Células Epiteliais , Matriz Extracelular , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Bioimpressão/métodos , Hidrogéis/química , Colágeno/química , Colágeno/metabolismo , Engenharia Tecidual/métodos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Animais , Morfogênese , Humanos , Proteoglicanas/química , Proteoglicanas/metabolismo , Alicerces Teciduais/química , Laminina/química , Combinação de Medicamentos , Cães , Epitélio/metabolismo , Epitélio/crescimento & desenvolvimento
19.
Cureus ; 16(6): e61574, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962642

RESUMO

Cryotherapy in vital pulp treatment is a procedure that involves the use of extreme cold temperatures to manage inflammation and promote healing in the dental pulp tissue. It has shown potential in preserving pulp vitality and reducing post-operative discomfort in procedures such as partial and full pulpotomy. Vital pulp therapy (VPT) aims to preserve the vitality and function of the dental pulp. With the proper diagnosis, technique, and materials, it can effectively treat moderately inflamed pulp and minimize the need for more invasive procedures. This article presents a case of vital pulp cryotherapy in a patient having moderately inflamed pulp.

20.
Burns Trauma ; 12: tkae030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015252

RESUMO

Diabetic wounds are among the most common complications of diabetes mellitus and their healing process can be delayed due to persistent inflammatory reactions, bacterial infections, damaged vascularization and impaired cell proliferation, which casts a blight on patients'health and quality of life. Therefore, new strategies to accelerate diabetic wound healing are being positively explored. Exosomes derived from mesenchymal stem cells (MSC-Exos) can inherit the therapeutic and reparative abilities of stem cells and play a crucial role in diabetic wound healing. However, poor targeting, low concentrations of therapeutic molecules, easy removal from wounds and limited yield of MSC-Exos are challenging for clinical applications. Bioengineering techniques have recently gained attention for their ability to enhance the efficacy and yield of MSC-Exos. In this review, we summarise the role of MSC-Exos in diabetic wound healing and focus on three bioengineering strategies, namely, parental MSC-Exos engineering, direct MSC-Exos engineering and MSC-Exos combined with biomaterials. Furthermore, the application of bioengineered MSC-Exos in diabetic wound healing is reviewed. Finally, we discuss the future prospects of bioengineered MSC-Exos, providing new insights into the exploration of therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...