Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39409447

RESUMO

Minimally invasive interventional surgery is commonly used for diagnosing and treating breast cancer, but the high fluidity and deformability of breast tissue reduce intervention accuracy. This study proposes a bionic breast interventional robot that mimics the scorpion's predation process, actively manipulating tissue deformation to control target displacement and enhance accuracy. The robot's structure is designed using a modular method, and its kinematics and workspace are analyzed and solved. To address the nonlinear breast tissue deformation problem, a hierarchical tissue method is proposed to simplify the three-dimensional problem into a two-dimensional one. A two-dimensional tissue deformation solver is established based on the minimum energy method for quick resolution. The problem is treated as quasi-static, deriving the displacement relationship between external manipulation points and internal tissue targets. The method of active manipulation of tissue deformation is simulated using MATLAB (2019-b) software to verify the feasibility of the method. Results show maximum errors of 1.7 mm for prostheses and 2.5 mm for in vitro tissues in the X and Y directions. This method improves intervention accuracy in breast surgery and offers a new solution for breast cancer diagnosis and treatment.


Assuntos
Biônica , Neoplasias da Mama , Mama , Humanos , Feminino , Mama/cirurgia , Robótica/métodos , Fenômenos Biomecânicos , Procedimentos Cirúrgicos Robóticos/métodos , Desenho de Equipamento
2.
Biomimetics (Basel) ; 9(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39329529

RESUMO

The research objective of this paper is to examine the role of bionic design in advancing sustainable development within industrial design by outlining its theoretical framework; analyzing its applications in morphological, functional, and material aspects; identifying current challenges; and projecting future trends toward eco-integration, resource efficiency, and technological innovation. First, the definition, development history, and theoretical basis of the sustainable development of bionic design are outlined. Secondly, the application of bionic design in sustainable industrial design is analyzed in depth, including the application of morphological bionic design in exploring the combination of nature and innovation, the role of functional bionic design in integrating biological function and product innovation, and the harmonious unification of material bionic and environmental friendliness. Finally, it points out the current challenges faced by bionic design, such as barriers in design practice and market acceptance issues, and looks forward to the sustainable development trend of bionic design, including eco-integration, resource efficiency enhancement, technological innovation, integrated application, etc., to provide new ideas and impetus for the sustainable development of the industrial design field in the future.

3.
Acta Biomater ; 186: 342-353, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39097125

RESUMO

Macrostructural control of stress distribution and microstructural influence on crack propagation is one of the strategies for obtaining high mechanical properties in stag beetle upper jaws. The maximum bending fracture force of the stag beetle upper jaw is approximately 154, 000 times the weight of the upper jaw. Here, we explore the macro and micro-structural characteristics of two stag beetle upper jaws and reveal the resulting differences in mechanical properties and enhancement mechanisms. At the macroscopic level, the elliptic and triangular cross-sections of the upper jaw of the two species of stag beetles have significant effects on the formation of cracks. The crack generated by the upper jaws with a triangular section grows slowly and deflects easily. At the microscopic level, the upper jaw of the two species is a chitin cross-layered structure, but the difference between the two adjacent fiber layers at 45° and 50° leads to different deflection paths of the cracks on the exoskeleton. The mechanical properties of the upper jaw of the two species of stag beetle were significantly different due to the interaction of macro-structure and micro-structure. In addition, a series of bionic samples with different cross-section geometries and different fiber cross angles were designed, and mechanical tests were carried out according to the macro-structure and micro-structure characteristics of the stag beetle upper jaw. The effects of cross-section geometry and fiber cross angle on the mechanical properties of bionic samples are compared and analyzed. This study provides new ideas for designing and optimizing highly loaded components in engineering. STATEMENT OF SIGNIFICANCE: The upper jaw of the stag beetle is composed of a complex arrangement of chitin and protein fibers, providing both rigidity and flexibility. This structure is designed to withstand various mechanical stresses, including impacts and bending forces, encountered during its burrowing activities and interactions with its environment. The study of the upper jaw of the stag beetle can provide an efficient structural design for engineering components that are subjected to high loads. Understanding the relationship between structure and mechanical properties in the stag beetle upper jaw holds significant implications for biomimetic design and engineering.


Assuntos
Besouros , Arcada Osseodentária , Animais , Besouros/fisiologia , Arcada Osseodentária/fisiologia , Arcada Osseodentária/anatomia & histologia , Estresse Mecânico , Fenômenos Biomecânicos
4.
Biomimetics (Basel) ; 9(8)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194458

RESUMO

A soil removal device for the root-soil complex of Gentian imitating the percussion function of a woodpecker was designed to improve the soil removal efficiency of harvesting devices for rhizome-type traditional Chinese herbal medicines. Based on the physical parameters of roots and the root-soil complex of Gentian, the structure parameters of the striking arm and the actual profile of the cam are determined according to the physical parameters when the woodpecker knocks on the tree. The key parameters that affect the working performance of the soil removal device and their suitable value ranges have been identified through the impact test and analysis of the root-soil complex of Gentian. The mass of the striking hammer, the swing angle of the striking arm, and the rotation speed of the cam were taken as the experimental factors and the soil removal rate and the energy consumption per hammer percussion were taken as the experimental indicators. The ternary quadratic orthogonal regression combination experiment was carried out using Design-Expert. The regression model of the influence factors and evaluation indicators was established through the analysis of variance. The interaction effects of the influence factors on the indicators were analyzed using the response surface method. Using multiobjective optimization method, the optimal parameter combination was obtained as that of the mass of the striking hammer of 0.9 kg, the swing angle of the striking arm of 47°, and the rotation speed of the cam of 100 r/min, then the soil removal rate was the maximum and the energy consumption of single-hammer knocking was the minimum, with the values of 89.12% and 31.21 J, respectively. This study can provide a reference for the design and optimization of soil removal devices for rhizome-type traditional Chinese herbal medicines.

5.
Biomimetics (Basel) ; 9(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39056844

RESUMO

Aerodynamic investigation of a bionic coaxial-rotors unmanned aerial vehicle (UAV) is performed. According to Chinese parasol seed features and flight requirements, the bionic conceptual design of a coaxial-rotors UAV is described. A solution procedure for the numerical simulation method, based on a multi-reference frame (MRF) model, is expressed, and a verification study is presented using the typical case. The aerodynamic design is conducted for airfoil, blade, and coaxial-rotors interference. The aerodynamic performance of the coaxial rotors is investigated by numerical simulation analysis. The rotor/motor integrated experiment verification is conducted to assess the performance of the coaxial-rotors UAV. The results indicate that the UAV has excellent aerodynamic performance and bionic configuration, allowing it to adapt to task requirements. The bionic UAV has a good cruise power load reach of 8.36 kg/kw, and the cruise flying thrust force is not less than 78 N at coaxial-rotor and rotor-balloon distance ratios of 0.39 and 1.12, respectively. It has the "blocks stability phenomenon" formed by the rotor downwash speed decreases and the balloon's additional negative pressure. The present method and the bionic configuration provide a feasible design and analysis strategy for coaxial-rotors UAVs.

6.
Heliyon ; 10(11): e32169, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912478

RESUMO

Multistage flexible heat pipe has been proved to offer advantage of large flexibility as well as low thermal resistance. However, the effects of structural parameters on the comprehensive performances of such multistage thermal control device are still unclear, particularly regarding their mechanical properties. In this paper, effect of structural parameters on the mechanical and thermal performances of bionic multistage heat pipe is investigated. Results show that the stiffness of polymer tubes primarily determines the flexibility of multistage flexible heat pipe. The heat pipe with 4 metal tubes in the adiabatic section can achieve relative large flexibility and maximum bending angle as well as the short start-up time. The bending rigidity of multistage flexible heat pipe increases from 97624.4 N mm2 to 293152.9 N mm2 when its metal ratio raises from 0 % to 80 %. The thermal resistance of multistage flexible heat pipe decreases more than 32.9 % compared to the traditional flexible heat pipe. When the flexible heat pipe remains straight, the heat transfer performance will slightly increase as the shell metal ratio increases. However, its thermal resistance will also have an additional increase when bending. These results can serve as a guide for the design of the multistage flexible thermal control device.

7.
ACS Appl Mater Interfaces ; 16(21): 27650-27656, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747462

RESUMO

Soft actuators possessing notable mechanical deformations, high sensitivity, and fast response speed play a crucial role in various applications, such as artificial muscles, soft robots, and intelligent devices. In this study, a smart humidity-driven actuator was successfully fabricated by utilizing MXene/cellulose nanofiber (CNF)/LiCl (MCL) through vacuum-assisted filtration with fast response speed and high sensitivity. Utilizing the excellent humidity responsiveness of MXene/CNF and the robust hygroscopicity of LiCl, the synergistic effect of these materials enhances the hygroscopic properties and response speed of the actuator. The MCL actuator demonstrates excellent actuation performance, fast deformation, and reliable cyclic stability. To illustrate the extensive potential of the soft actuator, a range of applications, from bionic devices to soft grippers and crawling actuators, are showcased. Remarkably, the crawling actuator demonstrates sustained crawling motion without necessitating a humidity switch, relying on the humidity gradient from water droplets, and exhibits spontaneous directional motions within a certain range, which makes it a promising prospect in the field of soft robotics.

8.
ChemSusChem ; : e202400448, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797704

RESUMO

The catalytic system of biological nitrogen fixation in nature primarily relies on the "FeMo cofactor" within nitrogenase enzymes. Inspired by this natural structure, we have designed a bionic inorganic counterpart, iron-doped MoSe2, for the efficient electroreduction of dinitrogen to ammonia. The introduced Fe dopant significantly enhances nitrogen fixation activity of MoSe2. Furthermore, we constructed a heterostructure catalyst, the Fe-MoSe2/Mo2C with more versatile Mo valence states. The heterostructured electrocatalyst achieves an ammonia production rate of 3.38 µg cm-2 h-1, and a Faradaic efficiency of 30.8 %, which is ~5 fold higher than that of pristine MoSe2. This study presents a novel approach for designing bionic nitrogen fixation electrocatalysts.

10.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592087

RESUMO

Electroactive artificial muscles with deformability have attracted widespread interest in the field of soft robotics. However, the design of artificial muscles with low-driven voltage and operational durability remains challenging. Herein, novel biomass porous carbon (BPC) electrodes are proposed. The nanoporous BPC enables the electrode to provide exposed active surfaces for charge transfer and unimpeded channels for ion migration, thus decreasing the driving voltage, enhancing time durability, and maintaining the actuation performances simultaneously. The proposed actuator exhibits a high displacement of 13.6 mm (bending strain of 0.54%) under 0.5 V and long-term durability of 99.3% retention after 550,000 cycles (∼13 days) without breaks. Further, the actuators are integrated to perform soft touch on a smartphone and demonstrated as bioinspired robots, including a bionic butterfly and a crawling robot (moving speed = 0.08 BL s-1). This strategy provides new insight into the design and fabrication of high-performance electroactive soft actuators with great application potential.

11.
Biomimetics (Basel) ; 9(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534866

RESUMO

An aerodynamic/hydrodynamic investigation of water cross-over is performed for a bionic unmanned aquatic-aerial amphibious vehicle (bionic UAAV). According to flying fish features and UAAV flight requirements of water cross-over, the bionic conceptual design of crossing over water is described and planned in multiple stages and modes of motion. A solution procedure for the numerical simulation method, based on a modified SST turbulence model and the VOF model, is expressed, and a verification study is presented using a typical case. Longitudinal-lateral numerical simulation analysis investigates the cruise performance underwater and in the air. The numerical simulation and principal experiment verification are conducted for crossing over water and water surface acceleration. The results indicate that the bionic UAAV has an excellent aerodynamic/hydrodynamic performance and variant configuration to adapt to water cross-over. The bionic UAAV has good water and air navigation stability, and the cruise flying lift-drag ratio is greater than 15 at a low Reynolds number. Its pitching moment has the phenomenon of a "water mound" forming and breaking at the water cross-over process. The present method and the bionic variant configuration provide a feasible water cross-over design and analysis strategy for bionic UAAVs.

12.
Micromachines (Basel) ; 15(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38542611

RESUMO

Efforts to enhance the speed and reduce the energy consumption of underwater vehicles have led to the proposal of a novel mucus release structure inspired by the secretion of mucus cells on fish skin. This structure features interconnected microgrooves with excellent flexibility for adjusting to different states, effectively reducing drag through mucus release. Numerical analysis of the drag reduction performance of the mucous-releasing micro-pore structure was conducted using ANSYS Fluent 19.2 software. This structure is capable of reducing the velocity gradient near the wall and, owing to the presence of micro-pore structures, decreasing the overall compressed area, thereby achieving drag reduction effects. The experimental results revealed a drag reduction effect of 20.56% when the structure was bent at an angle of 120°. The drag reduction varied under different attitudes such as tension and compression. This mucus release structure achieves reusability through a direct mucous injection process. This research provides valuable insights for the drag reduction study of underwater vehicles, such as ships and submarines, laying a foundation for advancing the development and applications of this field in the future.

13.
Biomimetics (Basel) ; 9(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275457

RESUMO

In this paper, sorghum and reed, which possess light stem structures in nature, were selected as biomimetic prototypes. Based on their mechanical stability characteristics-the porous structure at the node feature and the porous feature in the outer skin- biomimetic optimization design, simulation, and experimental research on both the traditional hexagonal structure and a hexagonal honeycomb structure were carried out. According to the two types of straw microcell and chamber structure characteristics, as well as the cellular energy absorption structure for the bionic optimization design, 22 honeycomb structures in 6 categories were considered, including a corrugated cell wall bionic design, a modular cell design, a reinforcement plate structure, and a self-similar structure, as well as a porous cell wall structure and gradient structures of variable wall thickness. Among them, HTPC-3 (a combined honeycomb structure), HSHT (a self-similar honeycomb structure), and HBCT-257 (a radial gradient variable wall thickness honeycomb structure) had the best performance: their energy absorption was 41.06%, 17.84%, and 83.59% higher than that of HHT (the traditional hexagonal honeycomb decoupling unit), respectively. Compared with HHT (a traditional hexagon honeycomb decoupling unit), the specific energy absorption was increased by 39.98%, 17.24%, and 26.61%, respectively. Verification test analysis revealed that the combined honeycomb structure performed the best and that its specific energy absorption was 22.82% higher than that of the traditional hexagonal structure.

14.
Talanta ; 271: 125657, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218056

RESUMO

Nanozymes have made remarkable progress in the field of sensing assays by replacing native enzyme functions. However, it is still a challenge to rationally design active centers from molecular structure to enhance the catalytic performance and develop low-cost nanozymes. In this work, guided by the catalytic site of horseradish peroxidase (HRP), iron source and histidine were coupled to the main chain of aminated sodium lignosulfonate (SL) through the self-assembly biomimetic strategy to construct His-SL-Fe with peroxidase activity. The inherent functional groups and basic framework of aminated SL provide a robust environment and promote the formation of active sites. His-SL-Fe shows excellent robustness over multiple test cycles and has a strong affinity for the substrate compared to HRP. His-SL-Fe had been effectively integrated in the sensing system for catalytic detection of uric acid (UA) to achieve accurate recognition of UA in the range of 0.5-100 µM with the limit of detection as low as 0.18 µM. The recovery of human urine samples is in the range of 96.8%-106.1 % and the error is within 4 %. This work not only provides a new approach for the directed design of high-performance nanozymes, but also demonstrates promising ideas for the refined application of biomass resources.


Assuntos
Carbono , Ácido Úrico , Humanos , Carbono/química , Lignina , Biomimética , Peroxidase do Rábano Silvestre , Colorimetria , Peroxidase/química , Peróxido de Hidrogênio
15.
Bioinspir Biomim ; 19(1)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37976540

RESUMO

Inspired by the capillary transport function of plant leaf veins, this study proposes three typical leaf vein features by observing a large number of leaves, including wedge shape, branch asymmetry, as well as hierarchical arrangement, and investigates their capillary transport mechanism. Not only a preliminary theoretical analysis of capillary flow in the bio-inspired channels was carried out, but the COMSOL Multiphysics simulation software was also used to simulate gas-liquid two-phase flow in biomimetic channels. The results reveal the efficient transport mechanism of the leaf vein inspired structure and provide insight into the design of capillary transmission channels.


Assuntos
Folhas de Planta , Software , Folhas de Planta/anatomia & histologia , Simulação por Computador
16.
Biomimetics (Basel) ; 8(7)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37999196

RESUMO

Under the conditions of conservation tillage, the existence of the root-soil complex greatly increases the resistance and energy consumption of stubble-cutting blades, especially in Northeast China. In this research, the corn root-soil complex in Northeast China was selected as the research object. Based on the multi-toothed structure of the leaf-cutting ant's mandibles and the unique bite mode of its mandibles on leaves, a gear-tooth, double-disk, bionic stubble-cutting device (BSCD) was developed by using a combination of power cutting and passive cutting. The effects of rotary speed, tillage depth, and forward speed on the torque and power of the BSCD were analyzed using orthogonal tests, and the results showed that all of the factors had a large influence on the torque and power, in the order of tillage depth > rotary speed > forward speed. The performance of the BSCD and the traditional power straight blade (TPSB) was explored using comparative tests. It was found that the optimal stubble-cutting rate of the BSCD was 97.4%. Compared with the TPSB, the torque of the BSCD was reduced by 15.2-16.4%, and the power was reduced by 9.2-11.3%. The excellent performance of the BSCD was due to the multi-toothed structure of the cutting edge and the cutting mode.

17.
Materials (Basel) ; 16(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048839

RESUMO

Metallic additive manufacturing process parameters, such as inclination angle and minimum radius, impose constraints on the printable lattice cell configurations in complex components. As a result, their mechanical properties are usually lower than their design values. Meanwhile, due to unavoidable process constraints (e.g., additional support structure), engineering structures filled with various lattice cells usually fail to be printed or cannot achieve the designed mechanical performances. Optimizing the cell configuration and printing process are effective ways to solve these problems, but this is becoming more and more difficult and costly with the increasing demand for properties. Therefore, it is very important to redesign the existing printable lattice structures to improve their mechanical properties. In this paper, inspired by the macro- and meso-structures of bamboo, a bionic lattice structure was partitioned, and the cell rod had a radius gradient, similar to the macro-scale bamboo joint and meso-scale bamboo tube, respectively. Experimental and simulated results showed that this design can significantly enhance the mechanical properties without adding mass and changing the printable cell configuration. Finally, the compression and shear properties of the Bambusa-lattice structure were analyzed. Compared with the original scheme, the bamboo lattice structure design can improve the strength by 1.51 times (ß=1.5). This proposed strategy offers an effective pathway to manipulate the mechanical properties of lattice structures simultaneously, which is useful for practical applications.

18.
Adv Mater ; 35(26): e2300659, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942913

RESUMO

Traditional honeycomb-like structural electromagnetic (EM)-wave-absorbing materials have been widely used in various equipment as multifunctional materials. However, current EM-wave-absorbing materials are limited by narrow absorption bandwidths and incidence angles because of their anisotropic structural morphology. The work presented here proposes a novel EM-wave-absorbing metastructure with an isotropic morphology inspired by the gyroid microstructures seen in Parides sesostris butterfly wings. A matching redesign methodology between the material and subwavelength scale properties of the gyroid microstructure is proposed, inspired by the interaction mechanism between the microstructure and the material properties on the EM-wave-absorption performance of the prepared metastructure. The bioinspired metastructure is fabricated by additive manufacturing (AM) and subsequent coating through dipping processes, filled with dielectric lossy materials. Based on simulations and experiments, the metastructure designed in this work exhibits an ultrawide absorption bandwidth covering the frequency range of 2-40 GHz with a fractional bandwidth of 180% at normal incidence. Moreover, the metastructure has a stable frequency response when the incident angle is 60° under transverse electric (TE) and transverse magnetic (TM) polarization. Finally, the synergistic mechanism between the microstructure and the material is elucidated, which provides a new paradigm for the design of novel ultra-broadband EM-absorbing materials.

19.
Biomimetics (Basel) ; 8(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648804

RESUMO

The human tibiofibular complex has undergone a long evolutionary process, giving its structure a high bearing-capacity. The distinct tibiofibular shape can be used in engineering to acquire excellent mechanical properties. In this paper, four types of bionic tubes were designed by extracting the dimensions of different cross-sections of human tibia-fibula. They had the same outer profiles, but different inner shapes. The concept of specific stiffness was introduced to evaluate the mechanical properties of the four tubes. Finite-element simulations and physical bending-tests using a universal testing machine were conducted, to compare their mechanical properties. The simulations showed that the type 2 bionic tube, i.e., the one closest to the human counterpart, obtained the largest specific-stiffness (ε = 6.46 × 104), followed by the type 4 (ε = 6.40 × 104) and the type 1 (ε = 6.39 × 104). The type 3 had the largest mass but the least stiffness (ε = 6.07 × 104). The specific stiffness of the type 2 bionic tube increased by approximately 25.8%, compared with that of the type 3. The physical tests depicted similar findings. This demonstrates that the bionic tube inspired by the human tibiofibular shape has excellent effectiveness and bending properties, and could be used in the fields of healthcare engineering, such as robotics and prosthetics.

20.
Heliyon ; 9(1): e12890, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36686609

RESUMO

Coronavirus Disease 2019 (COVID-19), has already posed serious threats and impacts on the health of the population and the country's economy. Therefore, it is of great theoretical significance and practical application value to better understand the process of COVID-19 infection and develop effective therapeutic drugs. It is known that the receptor-binding structural domain (SARS-CoV-2 RBD) on the spike protein of the novel coronavirus directly mediates its interaction with the host receptor angiotensin-converting enzyme 2 (ACE2), and thus blocking SARS-CoV-2 RBD-ACE2 interaction is capable of inhibiting SARS-CoV-2 infection. Firstly, the interaction mechanism between SARS-CoV-2RBD-ACE2 was explored using molecular dynamics simulation (MD) coupled with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation method. The results of energy analysis showed that the key residues R403, R408, K417, and Y505 of SARS-CoV-2 RBD and the key residues D30, E37, D38, and Y41 of ACE2 were identified. Therefore, according to the hotspot residues of ACE2 and their distribution, a short peptide library of high-affinity SARS-CoV-2 RBD was constructed. And by using molecular docking virtual screening, six short peptides including DDFEDY, DEFEDY, DEYEDY, DFVEDY, DFHEDY, and DSFEDY with high affinity for SARS-CoV-2 RBD were identified. The results of MD simulation further confirmed that DDFEDY, DEYEDY, and DFVEDY are expected to be effective inhibitors. Finally, the allergenicity, toxicity and solubility properties of the three peptide inhibitors were validated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...