Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1206187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465023

RESUMO

Corynebacterium pseudotuberculosis is a zoonotic pathogen that causes lymphadenitis in humans, livestock, and wildlife. In this study, C. pseudotuberculosis biovar equi strains were isolated from three alpacas. Antibiotic susceptibility tests and pathogenicity tests were also conducted. Moreover, one strain was sequenced using DNBSEQ and Oxford Nanopore technology. The three strains exhibited resistance to aztreonam, fosfomycin, and nitrofurantoin. The median lethal doses (LD50) of strains G1, S2 and BA3 in experimentally infected mice was 1.66 × 105 CFU, 3.78 × 105 CFU and 3.78 × 105 CFU, respectively. The sequencing of strain G1 resulted in the assembly of a chromosomal scaffold comprising 2,379,166 bp with a G + C content of 52.06%. Genome analysis of strain G1 revealed the presence of 48 virulence genes and 5 antibiotic resistance genes (ARGs). Comparative genomic analysis demonstrates a high degree of genetic similarity among C. pseudotuberculosis strains, in contrast to other Corynebacterium species, with a clear delineation between strains belonging to the two biovars (ovis and equi). The data of the present study contribute to a better understanding of the properties of C. pseudotuberculosis biovar equi strains and the potential risk they pose to alpacas and other livestock, as well as the necessity of ongoing surveillance and monitoring of infectious diseases in animals.

2.
J Biomol Struct Dyn ; 39(18): 6974-6986, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779519

RESUMO

Corynebacterium pseudotuberculosis is a pathogenic bacterium with great veterinary and economic importance. It is classified into two biovars: ovis, nitrate-negative, that causes lymphadenitis in small ruminants and equi, nitrate-positive, causing ulcerative lymphangitis in equines. With the explosive growth of available genomes of several strains, pan-genome analysis has opened new opportunities for understanding the dynamics and evolution of C. pseudotuberculosis. However, few pan-genomic studies have compared biovars equi and ovis. Such studies have considered a reduced number of strains and compared entire genomes. Here we conducted an original pan-genome analysis based on protein sequences and their functional domains. We considered 53 C. pseudotuberculosis strains from both biovars isolated from different hosts and countries. We have analysed conserved domains, common domains more frequently found in each biovar and biovar-specific (unique) domains. Our results demonstrated that biovar equi is more variable; there is a significant difference in the number of proteins per strains, probably indicating the occurrence of more gene loss/gain events. Moreover, strains of biovar equi presented a higher number of biovar-specific domains, 77 against only eight in biovar ovis, most of them are associated with virulence mechanisms. With this domain analysis, we have identified functional differences among strains of biovars ovis and equi that could be related to niche-adaptation and probably help to better understanding mechanisms of virulence and pathogenesis. The distribution patterns of functional domains identified in this work might have impacts on bacterial physiology and lifestyle, encouraging the development of new diagnoses, vaccines, and treatments for C. pseudotuberculosis diseases.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecções por Corynebacterium , Corynebacterium pseudotuberculosis , Animais , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano/genética , Genômica , Cavalos , Ovinos , Virulência/genética
3.
Gene ; 677: 349-360, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30098432

RESUMO

Corynebacterium pseudotuberculosis has been widely studied in an effort to understand its biological evolution. Transcriptomics has revealed possible candidates for virulence and pathogenicity factors of strain 1002 (biovar Ovis). Because C. pseudotuberculosis is classified into two biovars, Ovis and Equi, it was interesting to assess the transcriptional profile of biovar Equi strain 258, the causative agent of ulcerative lymphangitis. The genome of this strain was re-sequenced; the reassembly was completed using optical mapping technology, and the sequence was subsequently re-annotated. Two growth conditions that occur during the host infection process were simulated for the transcriptome: the osmotic and acid medium. Genes that may be associated with the microorganism's resilience under unfavorable conditions were identified through RNAseq, including genes present in pathogenicity islands. The RT-qPCR was performed to confirm the results in biological triplicate for each condition for some genes. The results extend our knowledge of the factors associated with the spread and persistence of C. pseudotuberculosis during the infection process and suggest possible avenues for studies related to the development of vaccines, diagnosis, and therapies that might help minimize damage to agribusinesses.


Assuntos
Corynebacterium pseudotuberculosis/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Animais , Proteínas de Bactérias/genética , Infecções por Corynebacterium/microbiologia , Perfilação da Expressão Gênica/métodos , Genoma Bacteriano/genética , Ovinos , Virulência/genética , Fatores de Virulência/genética
4.
Gene ; 645: 124-130, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246537

RESUMO

Transcriptome studies on Corynebacterium pseudotuberculosis have recently contributed to the understanding about this microorganism's survival mechanisms in various hostile conditions. The gene expression profile of the C. pseudotuberculosis strain 1002 (Ovis biovar), has revealed genes that are possible candidates responsible for its maintenance in adverse environments, such as those found in the host. In another strain of this bacterium, 258 (Equi biovar), a high temperature condition was simulated, in order to verify which genes are responsible for promoting the persistence of the bacterium in these conditions, since it tolerates temperatures higher than 40°C, despite being a mesophilic bacterium. It was possible to generate a list of genes using RNAseq technology that possibly contribute to the survival of the bacteria in this hostile environment. A total of 562 genes were considered as differentially expressed, then, after the fold-change cutoff, 113 were considered induced and 114 repressed, resulting in a total of 227 genes. Therefore, hypothetical proteins presented a fold change above 6, and genes characteristically in control for this type of stress, such as hspR, grpE, and dnaK, presented a fold change above 3. The clpB gene, a chaperone, drew attention due to presenting a fold change above 3 and located in a pathogenicity island. These genes may contribute towards efficient solutions to the effects caused by ulcerative lymphangitis in equines, thus attenuating the damage it causes to agribusiness.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium pseudotuberculosis/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Cavalos/microbiologia , Temperatura Alta , Estresse Fisiológico
5.
Stand Genomic Sci ; 12: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163825

RESUMO

The genomes of four strains (MB11, MB14, MB30, and MB66) of the species Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, completely assembled, and their gene content and structure were analyzed. The strains were isolated from horses with distinct signs of infection, including ulcerative lymphangitis, external abscesses on the chest, or internal abscesses on the liver, kidneys, and lungs. The average size of the genomes was 2.3 Mbp, with 2169 (Strain MB11) to 2235 (Strain MB14) predicted coding sequences (CDSs). An optical map of the MB11 strain generated using the KpnI restriction enzyme showed that the approach used to assemble the genome was satisfactory, producing good alignment between the sequence observed in vitro and that obtained in silico. In the resulting Neighbor-Joining dendrogram, the C. pseudotuberculosis strains sequenced in this study were clustered into a single clade supported by a high bootstrap value. The structural analysis showed that the genomes of the MB11 and MB14 strains were very similar, while the MB30 and MB66 strains had several inverted regions. The observed genomic characteristics were similar to those described for other strains of the same species, despite the number of inversions found. These genomes will serve as a basis for determining the relationship between the genotype of the pathogen and the type of infection that it causes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...