Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786807

RESUMO

Two-dimensional layered materials, characterized by their atomically thin thicknesses and surfaces that are free of dangling bonds, hold great promise for fabricating ultrathin, lightweight, and flexible bipolar junction transistors (BJTs). In this paper, a van der Waals (vdW) BJT was fabricated by vertically stacking MoS2, WSe2, and MoS2 flakes in sequence. The AC characteristics of the vdW BJT were studied for the first time, in which a maximum common emitter voltage gain of around 3.5 was observed. By investigating the time domain characteristics of the device under various operating frequencies, the frequency response of the device was summarized, which experimentally proved that the MoS2/WSe2/MoS2 BJT has voltage amplification capability in the 0-200 Hz region. In addition, the phase response of the device was also investigated. A phase inversion was observed in the low-frequency range. As the operating frequency increases, the relative phase between the input and output signals gradually shifts until it is in phase at frequencies exceeding 2.3 kHz. This work demonstrates the signal amplification applications of the vdW BJTs for neuromorphic computing and wearable healthcare devices.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38668212

RESUMO

Two-dimensional (2D) materials have attracted great attention in the past few years and offer new opportunities for the development of high-performance and multifunctional bipolar junction transistors (BJTs). Here, a van der Waals BJT based on vertically stacked n+-MoS2/WSe2/MoS2 was demonstrated. The electrical performance of the device was investigated under common-base and common-emitter configurations, which show relatively large current gains of α ≈ 0.98 and ß ≈ 225. In addition, the breakdown characteristics of the vertically stacked n+-MoS2/WSe2/MoS2 BJT were investigated. An open-emitter base-collector breakdown voltage (BVCBO) of 52.9 V and an open-base collector-emitter breakdown voltage (BVCEO) of 40.3 V were observed under a room-temperature condition. With the increase in the operating temperature, both BVCBO and BVCEO increased. This study demonstrates a promising way to obtain 2D-material-based BJT with high current gains and provides a deep insight into the breakdown characteristics of the device, which may promote the applications of van der Waals BJTs in the fields of integrated circuits.

3.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139671

RESUMO

This paper introduces a new design of silicon nanowire (Si NW) phototransistor (PT) arrays conceived explicitly for improved CMOS image sensor performance, and comprehensive numerical investigations clarify the characteristics of the proposed devices. Each unit within this array architecture features a top-layer vertical Si NW optimized for the maximal absorption of incoming light across the visible spectrum. This absorbed light generates carriers, efficiently injected into the emitter-base junction of an underlying npn bipolar junction transistor (BJT). This process induces proficient amplification of the output collector current. By meticulously adjusting the diameters of the NWs, the PTs are tailored to exhibit distinct absorption characteristics, thus delineating the visible spectrum's blue, green, and red regions. This specialization ensures enriched color fidelity, a sought-after trait in imaging devices. Notably, the synergetic combination of the Si NW and the BJT augments the electrical response under illumination, boasting a quantum efficiency exceeding 10. In addition, by refining parameters like the height of the NW and gradient doping depth, the proposed PTs deliver enhanced color purity and amplified output currents.

4.
Nano Lett ; 22(9): 3678-3684, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35442043

RESUMO

Inspired by electronic transistors, electric field gating has been adopted to manipulate ionic currents of smart nanofluidic devices. Here, we report a PNP nanofluidic bipolar junction transistor (nBJT) consisting of one polyaniline (PANI) layer sandwiched between two polyethylene terephthalate (PET) nanoporous membranes. The PNP nBJT exhibits three different responses of currents (quasi-linear, rectification, and sigmoid) due to the counterbalance between surface charge distribution and base voltage applied in the nanofluidic channels; thus, they can be switched by base voltage. Four operating modes (cutoff, active, saturation, and breakdown mode) occur in the collector response currents. Under optimal conditions, the PNP nBJT exhibits an average current gain of up to 95 in 100 mM KCl solution at a low base voltage of 0.2 V. The present nBJT is promising for fabrication of nanofluidic devices with logical-control functions for analysis of single molecules.


Assuntos
Nanoporos , Nanotecnologia , Transporte de Íons , Íons , Transistores Eletrônicos
5.
Sensors (Basel) ; 22(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271078

RESUMO

Although not manufactured to be used under X-ray photons, the commercial bipolar junction transistor (BJT) is an electronic device that can be used as an ionizing radiation sensor. In this article an overview on the BJT and its principle of operation were made for the purpose of better understanding how such a semiconductor device behaves when under diagnostic X-ray beam. Therefore, it addresses some topics such as the structure of the device, the bias configuration when operating in active mode, and so on. Even knowing that the most complete theory to describe the "transistor effect" is based on quantum theory (the energy band theory of solids), here it is preferable to take a simpler experimental approach to clearly understand the operation of the BJT. In electronics, the BJT is used as a current amplifier, and depending on the bias and point of view it also becomes a voltage amplifier. In the analysis of BJT under an X-ray beam, in addition to its operation as a sensor to measure the dose or some diagnostic X-ray tube parameter, it has also led to technological innovation in the technique of digital data storage based on the effect of radiation.


Assuntos
Diagnóstico por Imagem/instrumentação , Fótons , Semicondutores , Raios X , Amplificadores Eletrônicos , Humanos , Radiografia
6.
Small ; 16(50): e2003593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230902

RESUMO

Achieving multifunctional van der Waals nanoelectronic devices on one structure is essential for the integration of 2D materials; however, it involves complex architectural designs and manufacturing processes. Herein, a facile, fast, and versatile laser direct write micro/nanoprocessing to fabricate diode, NPN (PNP) bipolar junction transistor (BJT) simultaneously based on a pre-fabricated black phosphorus/molybdenum disulfide heterostructure is demonstrated. The PN junctions exhibit good diode rectification behavior. Due to different carrier concentrations of BP and MoS2 , the NPN BJT, with a narrower base width, renders better performance than the PNP BJT. Furthermore, the current gain can be modulated efficiently through laser writing tunable base width WB , which is consistent with the theoretical results. The maximum gain for NPN and PNP is found to be ≈41 (@WB ≈600 nm) and ≈12 (@WB ≈600 nm), respectively. In addition, this laser write processing technique also can be utilized to realize multifunctional WSe2 /MoS2 heterostructure device. The current work demonstrates a novel, cost-effective, and universal method to fabricate multifunctional nanoelectronic devices. The proposed approach exhibits promise for large-scale integrated circuits based on 2D heterostructures.

7.
Heliyon ; 5(10): e02715, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720465

RESUMO

A simple driven bipolar junction transistor (BJT) based two-component circuit is presented, to be used as didactic tool by Lecturers, seeking to introduce some elements of complex dynamics to undergraduate and graduate students, using familiar electronic components to avoid the traditional black-box consideration of active elements. Although the effect of the base-emitter (BE) junction is practically suppressed in the model, chaotic phenomena are detected in the circuit at high frequencies (HF), due to both the reactant behavior of the second component, a coil, and to the birth of parasitic capacitances as well as to the effect of the weak nonlinearity from the base-collector (BC) junction of the BJT, which is otherwise always neglected to the favor of the predominant but now suppressed base-emitter one. The behavior of the circuit is analyzed in terms of stability, phase space, time series and bifurcation diagrams, Lyapunov exponents, as well as frequency spectra and Poincaré map section. We find that a limit cycle attractor widens to chaotic attractors through the splitting and the inverse splitting of periods known as antimonotonicity. Coexisting bifurcations confirm the existence of multi-stability behaviors, marked by the simultaneous apparition of different attractors (periodic and chaotic ones) for the same values of system parameters and different initial conditions. This contribution provides an enriching complement in the dynamics of simple chaotic circuits functioning at high frequencies. Experimental lab results are completed with PSpice simulations and theoretical ones.

8.
Small ; 15(11): e1804885, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30730094

RESUMO

The finite energy band-offset that appears between band structures of employed materials in a broken-gap heterojunction exhibits several interesting phenomena. Here, by employing a black phosphorus (BP)/rhenium disulfide (ReS2 ) heterojunction, the tunability of the BP work function (Φ BP ) with variation in flake thickness is exploited in order to demonstrate that a BP-based broken-gap heterojunction can manifest diverse current-transport characteristics such as gate tunable rectifying p-n junction diodes, Esaki diodes, backward-rectifying diodes, and nonrectifying devices as a consequence of diverse band-bending at the heterojunction. Diversity in band-bending near heterojunction is attributed to change in the Fermi level difference (Δ) between BP and ReS2 sides as a consequence of Φ BP modulation. No change in the current transport characteristics in several devices with fixed Δ also provides further evidence that current-transport is substantially impacted by band-bending at the heterojunction. Optoelectronic experiments on the Esaki diode and the p-n junction diode provide experimental evidence of band-bending diversity. Additionally, the p+ -n-p junction comprising BP (38 nm)/ReS2 /BP(5.8 nm) demonstrates multifunctionality of binary and ternary inverters as well as exhibiting the behavior of a bipolar junction transistor with common-emitter current gain up to 50.

9.
Adv Sci (Weinh) ; 5(4): 1700830, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721428

RESUMO

2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (ß âˆ¼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.

10.
Nano Lett ; 16(7): 4355-60, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336742

RESUMO

In the development of semiconductor devices, the bipolar junction transistor (BJT) features prominently as being the first solid state transistor that helped to usher in the digital revolution. For any new semiconductor, therefore, the fabrication and characterization of the BJT are important for both technological importance and historical significance. Here, we demonstrate a BJT device in exfoliated TMD semiconductor WSe2. We use buried gates to electrostatically create doped regions with back-to-back p-n junctions. We demonstrate two central characteristics of a bipolar device: current gain when operated as a BJT and a photocurrent gain when operated as a phototransistor. We demonstrate a current gain of 1000 and photocurrent gain of 40 and describe features that enhance these properties due to the doping technique that we employ.

11.
Biomed Mater Eng ; 24(1): 21-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24211878

RESUMO

In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.


Assuntos
Técnicas Biossensoriais , Eletroquímica , Ureia/química , Engenharia Biomédica , Eletrônica , Enzimas Imobilizadas/química , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Teste de Materiais , Álcool de Polivinil , Compostos de Piridínio/química , Compostos de Estanho/química , Urease/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...