Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 214: 108968, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074436

RESUMO

Cadmium (Cd) is a hazardous heavy metal known for its detrimental effects on plants, human health, and the environment. This review article delves into the dynamics of Cd uptake, long-distance transport, and its impact on plant performance, with a specific focus on tomato plants. The process of Cd uptake by roots and its subsequent long-distance transport in the xylem and phloem are explored to understand how Cd influences plants operation. The toxic effects of Cd on tomato plants are discussed, highlighting on the challenges it poses to plant growth and development. Furthermore, the review investigates various Cd tolerance mechanisms in plants, including avoidance or exclusion by the root cell wall, root-to-shoot translocation, detoxification pathways, and antioxidative defence systems against Cd-induced stress. In addition, the transcriptomic analyses of tomato plants under Cd stress provide insights into the molecular responses and adaptations of plants to Cd toxicity. Overall, this comprehensive review enhances our understanding of Cd-plant interactions and reveal promising genes for tomato genetic improvement to increase its tolerance to cadmium.


Assuntos
Cádmio , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/toxicidade , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Transporte Biológico , Inativação Metabólica/genética
2.
Environ Pollut ; 327: 121516, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972810

RESUMO

Efficient remedies for living organisms including bacteria to counteract cadmium (Cd2+) toxicity are still highly needed. Plant toxicity studies have showed that exogenous S(-II) (including hydrogen sulfide and its ionic forms, i.e., H2S, HS-, and S2-) application can effectively alleviate adverse effects of Cd stress, but whether S(-II) could mitigate bacterial Cd toxicity remains unclear. In this study, S(-II) was applied exogenously to Cd-stressed Shewanella oneidensis MR-1 and the results showed that S(-II) can significantly reactivate impaired physiological processes including growth arrest and enzymatic ferric (Fe(III) reduction inhibition. The efficacy of S(-II) treatment is negatively correlated with the concentration and time length of Cd exposure. Energy-dispersive X-ray (EDX) analysis suggested the presence of cadmium sulfide inside cells treated with S(-II). Both compared proteomic analysis and RT-qPCR showed that enzymes associated with sulfate transport, sulfur assimilation, methionine, and glutathione biosynthesis were up-regulated in both mRNA and protein levels after the treatment, indicating S(-II) may induce the biosynthesis of functional low-molecular-weight (LMW) thiols to counteract Cd toxicity. Meanwhile, the antioxidant enzymes were positively modulated by S(-II) and thus the activity of intracellular reactive oxygen species was attenuated. The study demonstrated that exogenous S(-II) can effectively alleviate Cd stress for S. oneidensis likely through inducing intracellular trapping mechanisms and modulating cellular redox status. It suggested that S(-II) may be a highly effective remedy for bacteria such as S. oneidensis under Cd-polluted environments.


Assuntos
Antioxidantes , Compostos Férricos , Antioxidantes/metabolismo , Compostos Férricos/metabolismo , Cádmio/toxicidade , Proteômica , Oxirredução
3.
Environ Pollut ; 316(Pt 2): 120641, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372365

RESUMO

Cadmium (Cd) toxicity can significantly limit plant growth and development. To eliminate the toxic effects of Cd stress, we intended to evaluate the biochemical mediated physiological responses in maize treated with biostimulant and zinc oxide nanoparticles (ZnPs). In silico analysis exhibited that the maize treated with Cd stress (200 µM) had an adverse impact on CAT1, CAT2, CAT3 and gor1 proteins, which are influential in managing the machinery of redox homeostasis. While maize inoculated with bacteria-based biostimulant and ZnPs (10 ppm) showed prominently improved biomass, chlorophyll a, b and carotenoid content. We found a significant increase in the total sugar, protein, proline content and antioxidants under the effect of Cd stress. However, these parameters are further enhanced by applying biostimulants and ZnPs. Declined lipid peroxidation and membrane solubilization index under the effect of biostimulant and ZnPs was observed. Furthermore, these treatments improved maize's zinc, copper, sodium, magnesium, iron, potassium and calcium content. Based on these results, an antagonistic relationship between Zn and Cd uptake that triggered efficient Cd detoxification in maize shoot was found. Scanning electron micrography showed distorted leaf structure of the Cd stressed plants while the biostimulant and ZnPs reduced the structural cell damage of maize leaves. In silico study showed that ZnO positively regulates all protein interactors, including GRMZM2G317386_P01 (Metallo endo proteinase 1-MMP), GRMZM2G110220_P01 (Metallo endo proteinase 5-MMP), GRMZM2G103055_P01 (Alpha-amylase) and GRMZM2G006069_P01 (Zn-dependent exo peptidase superfamily) proteins which are involved in energy generating processes, channels formation, matrix re-localization and stress response. This suggests that ZnO offers an ideal role with protein interactors in maize. Our findings depict that these treatments, i.e., biostimulant and ZnPs alone, are efficient enough to exhibit Cd remediation potential in maize; however, their combination showed synergistic effects.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Cádmio/análise , Zea mays/metabolismo , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Poluentes do Solo/análise , Clorofila A/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Peptídeo Hidrolases/metabolismo
4.
Imeta ; 1(1): e7, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38867726

RESUMO

Mass cadmium (Cd) poisoning is a serious health problem in many parts of the world. We propose that dietary intervention can be a practical solution to this problem. This study aimed to identify effective dietary products from traditional Chinese herbs that can detoxify Cd. Five candidate herbal foods with detoxifying potential were selected and subjected to mouse toxicological tests. The chemical composition and dose-response effects of licorice on mouse hepatocytes were determined. Licorice was selected for further tests to examine its effects on growth, tissue Cd accumulation, and gut and liver fitness of mice. The expression of hepatic metallothionein (Mt) genes was quantified in vitro in hepatocytes and in vivo in liver tissues of mice. The results showed that licorice dietary intervention was effective in reducing blood Cd by >50% within 1 month. Cd was also substantially reduced in the heart and lung tissues, but increased 2.1-fold in the liver. The liver of Cd poisoned mice improved with licorice intervention. Licorice treatment significantly induced Cd accumulation and expression of the Mt1 gene in hepatic cells both in vitro and in vivo. Licorice intake substantially altered gut microbial structure and enriched Parabacteroides distasonis. Omics results showed that licorice improved gut metabolism, particularly the metabolic pathways for glycyrrhizin, bile acids, and amino acids. Dietary licorice effectively reduced mouse blood Cd and had a profound impact on liver and gut fitness. We conclude that herbal licorice can be used as a dietary intervention for mass Cd poisoning.

5.
Sci Total Environ ; 796: 149039, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328900

RESUMO

Cadmium (Cd) is one of the most harmful heavy metals due to its persistence and bioaccumulation through the food chains, posing health risks to human. Oysters can bioaccumulate and tolerate high concentrations of Cd, providing a great model for studying molecular mechanism of Cd detoxification. In a previous study, we identified two CYP genes, CYP17A1-like and CYP2C50, that were potentially involved in Cd detoxification in the Pacific oyster, Crassostrea gigas. In this work, we performed further investigations on their physiological roles in Cd detoxification through RNA interference (RNAi). After injection of double-stranded RNA (dsRNA) into the adductor muscle of oysters followed by Cd exposure for 7 days, we observed that the expressions of CYP17A1-like and CYP2C50 in interference group were significantly suppressed on day 3 compared with control group injected with PBS. Moreover, the mortality rate and Cd content in the CYP17A1-like dsRNA interference group (dsCYP17A1-like) was significantly higher than those of the control on day 3. Furthermore, the activities of antioxidant enzymes, including SOD, CAT, GST, were significantly increased in dsCYP17A1-like group, while were not changed in dsCYP2C50 group. More significant tissue damage was observed in gill and digestive gland of oysters in RNAi group than control group, demonstrating the critical role of CYP17A1-like in Cd detoxification. Dual luciferase reporter assay revealed three core regulatory elements of MTF-1 within promoter region of CYP17A1-like, suggesting the potential transcriptional regulation of CYP17A1-like by MTF-1 in oysters. This work demonstrated a critical role of CYP17A1-like in Cd detoxification in C. gigas and provided a new perspective toward unravelling detoxification mechanisms of bivalves under heavy metal stress.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Cádmio/toxicidade , Crassostrea/genética , Crassostrea/metabolismo , Regulação da Expressão Gênica , Brânquias/metabolismo , Poluentes Químicos da Água/toxicidade
6.
Sci Total Environ ; 648: 561-571, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121534

RESUMO

Through evolution, marine snails have adapted several times independently to terrestrial life. A prime example for such transitions is the adaptation to terrestrial conditions in members of the gastropod clade of Littorinoidea (Caenogastropoda). Some species of this lineage like the periwinkle (Littorina littorea), live in intertidal habitats, where they are intermittently exposed to semi-terrestrial conditions. Pomatias elegans is a close relative of Littorina littorea that has successfully colonized terrestrial habitats. Evolutionary transitions from marine to terrestrial conditions have often been fostered in marine ancestors by acquisition of physiological pre-adaptations to terrestrial life. Such pre-adaptations are based, among others, on the optimization of a wide repertoire of stress resistance mechanisms, such as the expression of metal inactivating metallothioneins (MTs). The objective of our study was to explore the Cd handling strategy in the terrestrial snail Pomatias elegans in comparison to that observed previously in Littorina littorea. After Cd exposure, the metal is accumulated mainly in the midgut gland of Pomatias elegans, in a similar way as in its marine relative. Upon Cd exposure, Pomatias elegans expresses Cd-specific MTs, as also described from Littorina littorea. In contrast to the latter species, however, the detoxification of Cd in Pomatias elegans is mediated by two different MT isoforms, one two-domain and one three-domain MT. Although the MT proteins of both species are homologous and clearly originate from one common ancestor, the three-domain MT isoform of Pomatias elegans has evolved independently from the three-domain MT of its marine counterpart, probably by addition of a third domain to the pre-existing two-domain MT. Obviously, the occurrence of homologous MT structures in both species is a hereditary character, whereas the differentiation into two distinct MT isoforms with different upregulation capacities in Pomatias elegans is an adaptive feature that probably emerged upon transition to life on land.


Assuntos
Adaptação Biológica , Cádmio/metabolismo , Metalotioneína/metabolismo , Poluentes do Solo/metabolismo , Animais , Croácia , Isoformas de Proteínas , Caramujos , Distribuição Tecidual , Regulação para Cima
7.
Environ Technol ; 37(22): 2945-52, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27020171

RESUMO

The DvCRP1 gene obtained from Dunaliella viridis is a cadmium-resistance gene that induces cadmium accumulation in microbial and plant cells. In the present study, Saccharomyces cerevisiae was used as a model system to investigate the effect of DvCRP1 on both cadmium detoxification and ethanol production. Inhibitory effects of cadmium (50-300 µmol/L) on growth (29-92%), glucose consumption (23-89%), and ethanol production (17-92%) were observed at 24 h by S. cerevisiae. DvCRP1 alleviated the inhibitory effect of cadmium, with increase in the ethanol production. The established mathematical model showed that the initial inoculation concentration, cadmium concentration, and transformation of DvCRP1 were the most important factors for cell growth, glucose consumption, and ethanol production. Cadmium detoxification of yeast was also enhanced by increasing the initial concentration of yeast cells. Transforming with DvCRP1 further enhanced detoxification, especially at high cadmium concentrations. Transforming with DvCRP1 further enhanced detoxification, especially at high cadmium concentrations (200 µmol/L). The present results evidenced the potential of the insertion of the DvCRP1 gene into yeast for use in bio-refineries during fermentation of heavy metals-contaminated substrates. In addition, this is a promising method for phytoremediation of agricultural soils highly contaminated by heavy metals.


Assuntos
Cádmio/farmacologia , Etanol/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Algas/genética , Clorófitas/genética , Resistência a Medicamentos/genética , Glucose/metabolismo , Glutationa/metabolismo , Plasmídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...