Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139268, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663247

RESUMO

Calcium-chelating peptides were found in Pacific cod bone, but their binding structure and properties have not been elucidated. Novel calcium-binding peptides were isolated by hydroxyapatite affinity chromatography (HAC), and their binding structure and properties were investigated by isothermal titration calorimetry (ITC), multispectral techniques, and mass spectrometry. Based on multiple purifications, the calcium binding capacity (CBC) of Pacific cod bone peptides (PBPs) was increased from 1.71 ± 0.15 µg/mg to 7.94 ± 1.56 µg/mg. Peptides with a molecular weight of 1-2 kDa are closely correlated with CBC. After binding to calcium, the secondary structure of peptides transitioned from random coil to ß-sheet, resulting in a loose and porous microstructure. Hydrogen bonds, electrostatic interaction, and hydrophobic interaction contribute to the formation of peptide­calcium complexes. The F21 contained 42 peptides, with repeated "GE" motif. Differential structure analysis provides a theoretical basis for the targeted preparation of high CBC peptides.


Assuntos
Osso e Ossos , Cálcio , Durapatita , Proteínas de Peixes , Peptídeos , Animais , Durapatita/química , Osso e Ossos/química , Cálcio/química , Proteínas de Peixes/química , Peptídeos/química , Peptídeos/isolamento & purificação , Cromatografia de Afinidade , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/isolamento & purificação , Ligação Proteica , Sequência de Aminoácidos , Gadiformes , Estrutura Secundária de Proteína
2.
J Sci Food Agric ; 103(14): 6884-6894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37286475

RESUMO

BACKGROUND: Porcine nasal cartilage type II collagen-derived peptides (PNCPs) may be complexed with calcium to provide a highly bioavailable, low-cost, and effective calcium food supplement. However, the calcium-binding characteristics of PNCPs have not yet been investigated. In the present study, calcium-binding peptides were derived from porcine nasal cartilage type II collagen and the resulting PNCPs-Ca complex was characterized. RESULTS: The study reveals that the calcium-binding capacity of PNCPs is closely related to enzymatic hydrolysis conditions. The highest calcium-binding capacity of PNCPs was observed at a hydrolysis time of 4 h, temperature of 40 °C, enzyme dosage of 1%, and solid-to-liquid ratio of 1:10. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the PNCPs had a pronounced capacity for calcium binding, with the PNCPs-Ca complex exhibiting a clustered structure consisting of aggregated spherical particles. Fourier-transform infrared spectroscopy, fluorescence spectroscopy, X-ray diffraction, dynamic light scattering, amino acid composition, and molecular weight distribution analyses all indicated that the PNCPs and calcium complexed via the carboxyl oxygen and amino nitrogen atoms, leading to the formation of a ß-sheet structure during the chelation process. In addition, the stability of the PNCPs-Ca complex was maintained over a range of pH values consistent with those found in the human gastrointestinal tract, facilitating calcium absorption. CONCLUSION: These research findings suggest the feasibility of converting by-products from livestock processing into calcium-binding peptides, providing a scientific basis for the development of novel calcium supplements and the potential reduction of resource waste. © 2023 Society of Chemical Industry.


Assuntos
Cálcio , Cartilagens Nasais , Humanos , Animais , Suínos , Cálcio/metabolismo , Colágeno Tipo II , Cartilagens Nasais/química , Cartilagens Nasais/metabolismo , Peptídeos/química , Cálcio da Dieta/análise
3.
Food Res Int ; 164: 112415, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737996

RESUMO

Calcium bioaccessibility depends on the amount of soluble calcium under intestinal digestion. The changes in calcium during in vitro static digestion of α-lactalbumin and ß-lactoglobulin in presence of calcium chloride (0 mM, 20 mM and 50 mM) were followed by combining electrochemical determination of free calcium with the determination of soluble calcium by inductively coupled plasma optical emission spectroscopy. α-Lactalbumin and, more evident, ß-lactoglobulin were found to increase calcium bioaccessibility with increasing intestinal digestion time by around 5% and 10%, respectively, due to the complex binding of calcium to peptides formed from protein hydrolysis by gastrointestinal enzymes. In vitro digested samples of ß-lactoglobulin in presence of CaCl2 had nearly twice as much complex bound calcium as α-lactalbumin samples. The calcium bioaccessibility decreased significantly with the increasing concentration of added calcium chloride, although the amount of calcium chloride had little effect on the extension of digestion of α-lactalbumin and ß-lactoglobulin. Simulated digestion fluids were found to have a negative effect on calcium bioaccessibility, especially the presence of hydrogen phosphate, and the amount of precipitated calcium increased significantly with increasing amount of added calcium chloride. Based on analysis and visualization by sequences of the peptides formed during digestion of α-lactalbumin and ß-lactoglobulin, it was observed that peptides containing aspartic acid and glutamic acid acting as calcium chelators, may prevent precipitation of calcium in the intestines and increase calcium bioaccessibility. These results provide knowledge for the design of new dairy based functional foods to prevent calcium deficiency.


Assuntos
Lactalbumina , Lactoglobulinas , Lactalbumina/química , Lactoglobulinas/química , Cálcio , Cloreto de Cálcio , Cálcio da Dieta , Peptídeos , Digestão
4.
Food Res Int ; 162(Pt A): 111993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461299

RESUMO

On the basis of our previous study that 133 peptides were identified from the tilapia scale peptide-calcium chelate, the potential osteogenic peptide monomers through the calcium-binding properties of peptides and molecular docking were screened, and the osteogenic activity and active mechanism of the peptides were further researched in this study. Three highly osteogenic peptides GPAGPHGPVG (844.4191 Da), APDPFRMY (995.4534 Da), and TPERYY (827.3813 Da) were screened. Molecular docking showed that the three osteogenic peptides had the same interaction sites in the epidermal growth factor receptor (EGFR), namely ARG 285, GLN 8, GLY 317, THR 406, and HIS 409. Compared to the blank control group, within 50 µg/mL of GPAGPHGPVG, APDPFRMY, and TPERYY increased the proliferation of MC3T3-E1 cells by changing the cell proportion in the S and G2/M phases, and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells treated with 50 µg/mL of the three active peptides increased by 25%, 37%, and 56%, respectively. The three active peptides at 10 µg/mL concentration significantly promoted the mineralization of osteoblasts, and the mineralized calcium nodules increased by 166%, 161%, and 111%, respectively. TPERYY significantly increased the expression of osteogenic genes (osteocalcin (OCN), type I collagen (Col I α) and transcription factor (OSX)). Moreover, TPERYY significantly increased the mRNA and protein expression of ß-catenin to 1.39 and 2.6 times of the blank control group, respectively, while decreased the mRNA and protein expression of glycogen synthesis kinase (GSK3ß) to 1.6 and 2.3 times of the blank control group, respectively. This study provides a theoretical basis for using GPAGPHGPVG, APDPFRMY, and TPERYY peptides as functional foods to prevent osteoporosis.


Assuntos
Tilápia , Animais , Simulação de Acoplamento Molecular , Cálcio , Colágeno , Peptídeos/farmacologia , RNA Mensageiro
5.
Adv Healthc Mater ; 10(21): e2101195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34350724

RESUMO

An ideal periosteum substitute should be able to mimic the periosteum microenvironment that continuously provides growth factors, recruits osteoblasts, and subsequent extracellular matrix (ECM) mineralization to accelerate bone regeneration. Here, a calcium-binding peptide-loaded poly(ε-caprolactone) (PCL) electrospun membrane modified by the shish-kebab structure that can mimic the periosteum microenvironment was developed as a bionic periosteum. The calcium-binding peptide formed by the negatively charged heptaglutamate domain (E7) in the E7-BMP-2 with calcium ion in the tricalcium phosphate sol (TCP sol) through electrostatic chelation not only extended the release cycle of E7-BMP-2 but also promoted the biomineralization of the bionic periosteum. Cell experiments showed that the bionic periosteum could significantly improve the osteogenic differentiation of the rat-bone marrow-derived mesenchymal stem cells (rBMSCs) through both chemical composition and physical structure. The in vivo evaluation of the bionic periosteum confirmed the inherent osteogenesis of this periosteum microenvironment, which could promote the regeneration of vascularized bone tissue. Therefore, the hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment is a promising periosteum substitute for the treatment of bone defects.


Assuntos
Células-Tronco Mesenquimais , Periósteo , Animais , Regeneração Óssea , Diferenciação Celular , Osteogênese , Ratos , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...