Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.355
Filtrar
1.
J Environ Sci (China) ; 149: 177-187, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181632

RESUMO

In the context of peaking carbon dioxide emissions and carbon neutrality, development of feasible methods for converting CO2 into high value-added chemicals stands out as a hot subject. In this study, P[D+COO-][Br-][DBUH+], a series of novel heterogeneous dual-ionic poly(ionic liquid)s (PILs) were synthesized readily from 2-(dimethylamino) ethyl methacrylate (DMAEMA), bromo-substituted aliphatic acids, organic bases and divinylbenzene (DVB). The structures, compositions and morphologies were characterized or determined by nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), infrared spectroscopy (IR), scanning electron microscopes (SEM), and Brunauer-Emmett-Teller analysis (BET), etc. Application of the P[D+COO-][Br-][DBUH+] series as catalysts in converting CO2 into cyclic carbonates showed that P[D+COO-][Br-][DBUH+]-2/1/0.6 was able to catalyze epiclorohydrin-CO2 cycloaddition the most efficiently. This afforded chloropropylene carbonate (CPC) in 98.4% yield with ≥ 99% selectivity in 24 hr under solvent- and additive-free conditions at atmospheric pressure. Reusability experiments showed that recycling of the catalyst 6 times only resulted in a slight decline in the catalytic performance. In addition, it could be used for the synthesis of a variety of differently substituted cyclic carbonates in good to excellent yields. Finally, key catalytic active sites were probed, and a reasonable mechanism was proposed accordingly. In summary, this work poses an efficient strategy for heterogenization of dual-ionic PILs and provides a mild and environmentally benign approach to the fixation and utilization of carbon dioxide.


Assuntos
Dióxido de Carbono , Carbonatos , Líquidos Iônicos , Líquidos Iônicos/química , Dióxido de Carbono/química , Carbonatos/química , Catálise , Modelos Químicos
2.
J Environ Sci (China) ; 149: 598-615, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181671

RESUMO

Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.


Assuntos
Dióxido de Carbono , Cobalto , Etanol , Dióxido de Carbono/química , Etanol/química , Hidrogenação , Cobalto/química , Catálise , Nanopartículas/química , Modelos Químicos
3.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306408

RESUMO

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Assuntos
Amônia , Cério , Titânio , Compostos de Vanádio , Catálise , Cério/química , Titânio/química , Amônia/química , Compostos de Vanádio/química , Poluentes Atmosféricos/química , Oxirredução , Poluição do Ar/prevenção & controle
4.
J Environ Sci (China) ; 150: 54-65, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306427

RESUMO

In this study, supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate (PMS) which successfully degrade bisphenol F (BPF). Among the supported catalysts (i.e., Pd/SiO2, Pd/CeO2, Pd/TiO2 and Pd/Al2O3), Pd/TiO2 exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content. Pd/TiO2 prepared by the deposition method leads to high Pd dispersion, which are the key factors for efficient BPF degradation. The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed. Density functional theory (DFT) calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles. The catalytic activities are strongly dependent on the structural features of the catalysts. Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.


Assuntos
Compostos Benzidrílicos , Paládio , Peróxidos , Fenóis , Paládio/química , Fenóis/química , Catálise , Compostos Benzidrílicos/química , Peróxidos/química , Modelos Químicos , Poluentes Químicos da Água/química , Adsorção
5.
Small ; : e2405952, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377360

RESUMO

Enhancement of an alkaline water splitting reaction in Pt-based single-atom catalysts (SACs) relies on effective metal-support interactions. A Pt single atom (PtSA)-immobilized three-phased PtSA@VP-Ni3P-MoP heterostructure on nickel foam is presented, demonstrating high catalytic performance. The existence of PtSA on triphasic metal phosphides gives an outstanding performance toward overall water splitting. The PtSA@VP-Ni3P-MoP performs a low overpotential of 28 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at a current density of 10 and 25 mA cm-2, respectively. The PtSA@VP-Ni3P-MoP (+,-) alkaline electrolyzer achieves a minimum cell voltage of 1.48 V at a current density of 10 mA cm-2 for overall water splitting. Additionally, the electrocatalyst exhibits a substantial Faradaic yield of ≈98.12% for H2 and 98.47% for O2 at a current density of 50 mA cm-2. Consequently, this study establishes a connection for understanding the active role of single metal atoms in substrate configuration for catalytic performance. It also facilitates the successful synthesis of SACs, with a substantial loading on transition metal phosphides and maximal atomic utilization, providing more active sites and, thereby enhancing electrocatalytic activity.

6.
Angew Chem Int Ed Engl ; : e202415800, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377644

RESUMO

Two-dimensional (2D) polymeric semiconductors are a class of promising photocatalysts; however, it remains challenging to facilitate their interlayer charge transfer for suppressed in-plane charge recombination and thus improved quantum efficiency. Although some strategies, such as π-π stacking and van der Waals interaction, have been developed so far, directed interlayer charge transfer still cannot be achieved. Herein, we report a strategy of forming asymmetric Zn-N3 units that can bridge nitrogen (N)-doped carbon layers with polymeric carbon nitride nanosheets (C3N4-Zn-N(C)) to address this challenge. The symmetry-breaking Zn-N3 moiety, which has an asymmetric local charge distribution, enables directed interfacial charge transfer between the C3N4 photocatalyst and the N-doped carbon co-catalyst. As evidenced by femtosecond transient absorption spectroscopy, charge separation can be significantly enhanced by the interfacial asymmetric Zn-N3 bonding bridges. As a result, the designed C3N4-Zn-N(C) catalyst exhibits dramatically enhanced H2O2 photosynthesis activity, outperforming most of the reported C3N4-based catalysts. This work highlights the importance of tailoring interfacial chemical bonding channels in polymeric photocatalysts at the molecular level to achieve effective spatial charge separation.

7.
Angew Chem Int Ed Engl ; : e202413749, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363752

RESUMO

Diatomic catalysts, especially those with heteronuclear active sites, have recently attracted significant attention for their advantages over single-atom catalysts in reactions with relatively high energy barrier, e.g. oxygen evolution reaction. Rational design and synthesis of heteronuclear diatomic catalysts are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report macrocyclic precursor constrained strategy to fabricate series of transition metal (MT, Ni, Co, Fe, Mn, or Cu)-noble (MN, Ir or Ru) centers in carbon material. One notable performance trend is observed in the order of Cu-MN < Mn-MN < Fe-MN < MN < Co-MN < Ni-MN. However, the pathway has been not altered, still following the traditional adsorption reaction mechanism. The effect of the MT atoms on the performances could possibly originate from the distinct adsorption/desorption behaviors of key intermediates (i.e. *OH, *O and/or *OOH), strongly implying that ΔG*OOH-ΔG*OH could be used as the performance descriptor. We believe that our work provides useful strategy for synthesis of diatomic active sites with sole coordination configuration and varied composition, and in-depth insight to their catalytic mechanism, which could be used for further optimization of diatomic catalysts towards oxygen electrocatalysis.

8.
Small ; : e2406776, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363812

RESUMO

Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.

9.
Angew Chem Int Ed Engl ; : e202413298, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364573

RESUMO

Using biomass oxidation reactions instead of water oxidation reactions is optimal for accomplishing biomass conversion and effective hydrogen generation. Here, we report that Fe2O3 photoanodes with a NiOOH cocatalyst exhibit excellent performance for photoelectrochemical oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The conversion efficiency for HMF reaches 98.5%, while the selectivity for FDCA is 94.2%. We revealed that HMF is oxidized through a spontaneous proton-coupled electron transfer (PCET) process with the high-valent phase of the Ni-based catalyst. The dangling oxygen and bridging oxygen of the high-valent phase species serve as proton-accepting sites. Furthermore, we pointed out that the deprotonated bond dissociation free energy difference between the catalysts and alcohols is the thermodynamic trigger for the PCET process. This study provides a reasonable explanation for the alcohol oxidation reaction, which is beneficial for designing biomass conversion systems.

10.
ACS Nano ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365283

RESUMO

The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.

11.
Nanomicro Lett ; 17(1): 32, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363132

RESUMO

The current single-atom catalysts (SACs) for medicine still suffer from the limited active site density. Here, we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron. The constructed iron SACs (h3-FNC) with a high metal loading of 6.27 wt% and an optimized adjacent Fe distance of ~ 4 Å exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects. Attractively, a "density effect" has been found at a high-enough metal doping amount, at which individual active sites become close enough to interact with each other and alter the electronic structure, resulting in significantly boosted intrinsic activity of single-atomic iron sites in h3-FNCs by 2.3 times compared to low- and medium-loading SACs. Consequently, the overall catalytic activity of h3-FNC is highly improved, with mass activity and metal mass-specific activity that are, respectively, 66 and 315 times higher than those of commercial Pt/C. In addition, h3-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion (O2·-) and glutathione (GSH) depletion. Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h3-FNCs in promoting wound healing. This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.

12.
Sci Rep ; 14(1): 22897, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358462

RESUMO

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.


Assuntos
Titânio , Titânio/química , Titânio/farmacologia , Catálise , Águas Residuárias/microbiologia , Águas Residuárias/química , Antibacterianos/farmacologia , Antibacterianos/química , Purificação da Água/métodos , Ozônio/química , Ozônio/farmacologia , Resistência Microbiana a Medicamentos/genética , Compostos de Nitrogênio/química , Luz , Nitrilas/química , Nitrilas/farmacologia , Cobre/química , Cobre/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Oxirredução , Grafite
13.
Small ; : e2406657, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370563

RESUMO

Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application.

14.
Small ; : e2406829, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370665

RESUMO

The nickel hydroxide-based (Ni(OH)2) methanol-to-formate electrooxidation reaction (MOR) performance is greatly related to the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Hence, optimizing the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states to achieve enhanced MOR activities are highly desired. Here, cobalt (Co) and iron (Fe) doping are used to modify the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Although both dopants can broaden the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital; however, Co doping leads to an elevation in the energy level of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ highest occupied crystal orbital (HOCO), whereas Fe doping results in its reduction. Such a discrepancy in the regulation of d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states stems from the disparate partial electron transfer mechanisms amongst these transition metal ions, which possess distinct energy level and occupancy of d orbitals. Motivated by this finding, the NiCoFe hydroxide is prepared and exhibited an excellent MOR performance. The results showed that the Co dopants effectively suppress the partial electron transfer from Ni to Fe, combined with the d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital broadening induced by NiO6 octahedra distortion, endowing NiCoFe hydroxide with high d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ HOCO and broad d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital. It is believed that the work gives an in-depth understanding on d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states regulation in Ni(OH)2, which is beneficial for designing Ni(OH)2-based catalysts with high MOR performance.

15.
Adv Mater ; : e2411307, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370771

RESUMO

Dynamic covalent polymer networks exhibit a cross-linked structure like conventional thermosets and elastomers, although their topology can be reorganized through externally triggered bond exchange reactions. This characteristic enables a unique combination of repairability, recyclability and dimensional stability, crucial for a sustainable industrial economy. Herein the application of a photoswitchable nitrogen superbase is reported for the spatially resolved and reversible control over dynamic bond exchange within a thiol-ene photopolymer. By the exposure to UV or visible light, the associative exchange between thioester links and thiol groups is successfully gained control over, and thereby the macroscopic mechanical material properties, in a locally controlled manner. Consequently, the resulting reorganization of the global network topology enables to utilize this material for previously unrealizable advanced applications such as spatially resolved, reversible reshaping as well as micro-imprinting over multiple steps. Finally, the presented concept contributes fundamentally to the evolution of dynamic polymers and provides universal applicability in covalent adaptable networks relying on a base-catalyzed exchange mechanism.

16.
Angew Chem Int Ed Engl ; : e202411765, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350744

RESUMO

Single-atom iron embedded in N-doped carbon (Fe-N-C) is among the most representative single-atomic catalysts (SACs) for electrochemical CO2 reduction reaction (CO2RR). Despite the simplicity of the active site, the CO2-to-CO mechanism on Fe-N-C remains controversial. Firstly, there is a long debate regarding the rate-determining step (RDS) of the reactions. Secondly, recent computational and experimental studies are puzzled by the fact that the CO-poisoned Fe centers still remain highly active at high potentials. Thirdly, there are ongoing challenges in elucidating the high selectivity of hydrogen evolution reaction (HER) over CO2RR at high potentials. In this work, we introduce a novel CO2RR mechanism on Fe-N-C, which was inspired by the dynamic of active sites in biological systems. By employing grand-canonical density functional theory and kinetic Monte-Carlo, we found that the RDS is not fixed but changes with the applied potential. We demonstrated that our proposed dual-side mechanisms could clarify the reason behind the high catalytic activity of CO-poisoned metal centers, as well as the high selectivity of HER over CO2RR at high potential. This study provides a fundamental explanation for long-standing puzzles of an important catalyst and calls for the importance of considering the dynamic of active sites in reaction mechanisms.

17.
J Colloid Interface Sci ; 679(Pt A): 119-131, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39357222

RESUMO

Rechargeable zinc-air batteries (ZABs) are viewed as a promising solution for electric vehicles due to their potential to provide a clean, cost-effective, and sustainable energy storage system for the next generation. Nevertheless, sluggish kinetics of the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR) at the air electrode, and low power density are significant challenges that hinder the practical application of ZABs. The key to resolving the development of ZABs is developing an affordable, efficient, and stable catalyst with bifunctional catalytic. In this study, we present a series of bifunctional catalysts composed of Co/Zn nanoparticles uniformly embedded in nitrogen-doped carbon (NC) and multi-walled carbon nanotubes (MWCNTs) denoted as Co/Zn@NC@MWCNTs. The incorporation of MWCNTs using a facile and non-toxic method significantly decreased the overpotential of the OER from 570 to 430 mV at 10 mA cm-2 and the peak power density from 226 to 263 mW cm-2. Besides, the electrochemical surface area measurements and electrochemical impedance spectroscopy indicate that the three-dimensional (3D) network structure of MWCNTs facilitates mass transport for ORR and reduces electron transfer resistance during OER, leading to a small potential gap of 0.86 V between OER and ORR, high electron transfer number (3.92-3.98) of the ORR, and lowest Tafel slope (47.8 mV dec-1) of the OER in aqueous ZABs. In addition, in-situ Raman spectroscopy revealed a notable decrease in the ID/IG ratio for the optimally configured Co/Zn@NC@MWCNTs (75:25), indicating a reduction in defect density and improved structural ordering during the electrochemical process, which directly contributes to enhanced ORR activity. Hence, this study provides an excellent strategy for constructing a bifunctional catalyst material with a 3D MWCNTs conductive network for the development of advanced ZAB systems for sustainable energy applications.

18.
Angew Chem Int Ed Engl ; : e202411123, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370396

RESUMO

Advancing the design of cathode catalysts to significantly maximize platinum utilization and augment the longevity has emerged as a formidable challenge in the field of fuel cells. Herein, we rationally design a high entropy intermetallic compound (HEIC, Pt(FeCoNiCu)3) for catalyzing oxygen reduction reaction (ORR) by an efficient machine learning stategy, where crystal graph convolutional neural networks are employed to expedite the multicomponent design. Based on a dataset generated from first-principles calculations, the model can achieve a high prediction accuracy with mean absolute errors of 0.003 for surface strain and 0.011 eV atom-1 for formation energy. In addition, we identify two chemical features (atomic size difference and mixing enthalpy) as new descriptors to explore advanced ORR catalysts. The carbon supported Pt(FeCoNiCu)3 catalyst with small particle size is successfully synthesized by a freeze-drying-annealing technology, and exhibits ultrahigh mass activity (4.09 A mgPt-1) and specific activity (7.92 mA cm-2). Meanwhile, The catalyst also shows significantly enhanced electrochemical stability which can be ascribed to the sluggish difussion effect in the HEIC structure. Beyond offering a promising low-Pt electrocatalysts for fuel cell cathode, this work offers a new paradigm to rationally design advanced catalysts for energy storage and conversion devices.

19.
ChemSusChem ; : e202401115, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370395

RESUMO

The transformation of renewable bio-oil into platform chemicals and bio-oil through catalytic processes embodies an efficient approach within the realm of advancing sustainable energy. Spinel-based catalysts have garnered significant attention owing to their ability to precisely tune metals within the framework, facilitating adjustments to structural, physical, and electronic properties, coupled with their remarkable thermal stability. This review aims to provide a comprehensive overview of recent advancements in spinel-based catalysts for upgrading bio-oil. Its objective is to shed light on their potential to address the limitations of conventional catalysts. Initially, a comprehensive analysis is conducted on different metal oxide composites in terms of their similarity and dissimilarity on properties. Subsequently, the synthesis methodologies are scrutinised and potential avenues for their modification are explored. Following this, an in-depth discussion ensues regarding the spinels as catalysts or catalyst precursors for catalytic cracking, ketonisation, catalytic hydrodeoxygenation, steam and aqueous-phase reforming, and electrocatalytic upgrading of bio-oil. Finally, the challenges and potential prospects are addressed, with a specific focus on the machine learning - based approaches to optimise the structure and activity of spinel catalysts. This review aims to provide specific directions for further exploration and maximisation of the spinel catalysts in the bio-oil upgrading field.

20.
ChemSusChem ; : e202401694, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370406

RESUMO

Hydrogen has received enormous attention as a clean fuel with its high specific energy (142 MJ/kg). To apply hydrogen as a practically available energy vector, the direct production of high-pressure hydrogen with high purity is pivotal, as it allows for circumventing the mechanical compression process. Recently, the concept of utilizing sodium borohydride (SBH) dehydrogenation as a chemical compressor that can generate high-pressure hydrogen gas was demonstrated by adopting formic acid as an acid catalyst. However, the presence of impurities (e.g., CO, CO2) in the final gas product requires an alternative method to enhance the use of SBH as a chemical compressor. Here, we highlighted the feasibility of producing high-purity, high-pressure hydrogen gas from the SBH dehydrogenation with and without Co-based catalysts. The scrutiny behind the thermodynamics and kinetics of the SBH dehydrogenation was conducted under the elevated pressure condition. As a result, the dual roles of the catalysts as proton collectors and heat sources were revealed, both of which are essential for improving hydrogen production efficiency. We hope that our research stimulates subsequent research that pave the way to exploit hydrogen as an energy vector and achieve a more sustainable future society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...