Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.008
Filtrar
1.
Biophys J ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39306671

RESUMO

Caveolins are lipid-binding proteins that can organize membrane remodeling and oligomerize into the 8S-complex. The CAV1 8S-complex comprises a disk-like structure, about 15nm in diameter, with a central beta barrel. Further oligomerization of 8S-complexes remodels the membrane into caveolae vessels, with a dependence on cholesterol concentration. However, the molecular mechanisms behind membrane remodeling and cholesterol filtering are still not understood. Performing atomistic Molecular Dynamics simulations in combination with advanced sampling techniques, we describe how the CAV1-8S complex bends the membrane and accumulates cholesterol. Here, our simulations show an enhancing effect by the palmitoylations of CAV1, and we predict that the CAV1-8S complex can extract cholesterol molecules from the lipid bilayer and accommodate them in its beta barrel. Through backmapping to the all-atom level we also conclude that the Martini v2 coarse-grained forcefield overestimates membrane bending, as the atomistic simulations exhibit only very localized bending.

2.
Phytomedicine ; 135: 156055, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39326140

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is defined as cardiac dysfunction involving changes in structure, function, and metabolism in the absence of coronary artery disease, which eventually developed into heart failure. There is still a lack of effective drugs for the treatment of DCM, while the ameliorative effects of traditional herbs on DCM have been commonly reported. Polydatin (PD) is a glucoside derivative of traditional herbs of resveratrol, which has been shown to ameliorate the pathological development of DCM. However, the cardioprotective effect and mechanism of PD in the improvement of myocardial injury are still unclear. AIM OF STUDY: This study aimed to investigate the cardio-protective role of PD on DCM and reveal the critical effect of Cav1 in PD' regulation of DCM. MATERIALS AND METHODS: The Cav1-/- and Cav1+/+mice and H9C2 cells were used to induce DCM models and then given PD treatment (150 mg/kg) or not. The cardiac functions of all mice were checked via echocardiography, and myocardial histological changes were measured by H&E, periodic acid-schiff (PAS) and Masson staining. The markers expression of heart fibrosis and inflammation, and hypertrophic factors were detected using western blotting. The NF-κB signaling activation was performed by confocal, immunohistochemical, Electrophoretic mobility shift assay (EMSA) and western blotting. RESULTS: Here, we found that PD significantly improved the cardiac function and injury of diabetic Cav1+/+ mice, and enhanced the expression of Cav1 in the cardiac tissues of diabetic Cav1+/+ mice and HG-induced H9C2 cells. Further investigation showed that when Cav1 was knocked down, PD no longer plays the cardioprotective effect and inhibits the NF-κB signaling pathway activation in HFD/stz-treated diabetic mice and HG-induced H9C2 cells. CONCLUSION: These results demonstrated that PD inhibited the hyperglycemia-induced myocardial injury and inflammatory fibrosis of DCM models in vivo and in vitro, and targeting Cav1 may provide a novel understanding the mechanism of the treatment of PD in DCM.

3.
FEBS J ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279038

RESUMO

Disrupted cholesterol homeostasis plays a critical role in the development of multiple diseases, such as cardiovascular disease and cancer. However, the role of cholesterol in inflammatory bowel disease (IBD) remains unclear. In the present study, we investigated whether and how high levels of cholesterol in the diet affect experimental colitis in mice. A normal diet supplemented with 1.25% cholesterol (high cholesterol diet) caused more severe colitis and aggravated the disruption of intestinal tight junction structure, accompanied by higher colonic tissue total cholesterol (TC) levels in a dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Cholesterol aggravated DSS-induced intestinal epithelial barrier impairment and nuclear sterol regulatory element-binding protein 2 (nSREBP2) inhibition both in vivo and in vitro. In addition, nSREBP2 overexpression ameliorated cholesterol-induced intestinal epithelial barrier disruption in Caco2 cells. Interestingly, inhibition of SREBP2 disrupted intestinal epithelial barrier in the absence of cholesterol. Furthermore, SREBP2 regulated the protein expression of tight junction proteins (occludin/Zo-1) via modulating caveolin-1-mediated endocytosis and lysosomal degradation. Analysis of UK Biobank data indicated that, in fully adjusted models, higher serum TC concentrations were an independent protective factor for IBD incidence. The sterol regulatory element-binding factor 2 (SREBF2) gene rs2228313 (G/C) genetic variant was associated with the incidence of IBD and the CC genotype of SREBF2 rs2228313 was associated with higher serum TC levels and decreased the risk of IBD. In summary, a high cholesterol diet aggravates DSS-induced colitis in mice by down-regulating nSREBP2 expression, thereby promoting the endocytic degradation of tight junction proteins. In humans, SREBF2 gene single nucleotide polymorphism rs2228313 and serum TC levels are associated with IBD incidence.

4.
Sci Rep ; 14(1): 20553, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232048

RESUMO

The plasma membrane protein caveolin-1 (CAV-1) regulates signaling by inhibiting a wide range of kinases and other enzymes. Our previous study demonstrated that the downregulation of CAV-1 in psoriatic epidermal cells contributes to inflammation by enhancing JAK/STAT signaling, cell proliferation, and chemokine production. Administration of the CAV-1 scaffolding domain (CSD) peptide suppressed imiquimod (IMQ)-induced psoriasis-like dermatitis. To identify an optimal therapeutic peptide derived from CAV-1, we have compared the efficacy of CSD and subregions of CSD that have been modified to make them water soluble. We refer to these modified peptides as sCSD, sA, sB, and sC. In IMQ-induced psoriasis-like dermatitis, while all four peptides showed major beneficial effects, sB caused the most significant improvements of skin phenotype and number of infiltrating cells, comparable or superior to the effects of sCSD. Phosphorylation of STAT3 was also inhibited by sB. Furthermore, sB suppressed angiogenesis both in vivo in the dermis of IMQ-induced psoriasis mice and in vitro by blocking the ability of conditioned media derived from CAV-1-silenced keratinocytes to inhibit tube formation by HUVEC. In conclusion, sB had similar or greater beneficial effects than sCSD not only by cytokine suppression but by angiogenesis inhibition adding to its ability to target psoriatic inflammation.


Assuntos
Caveolina 1 , Citocinas , Imiquimode , Neovascularização Patológica , Psoríase , Fator de Transcrição STAT3 , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Psoríase/patologia , Psoríase/metabolismo , Caveolina 1/metabolismo , Animais , Camundongos , Citocinas/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Modelos Animais de Doenças , Água/química , Solubilidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Angiogênese
5.
J Biol Chem ; 300(9): 107705, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178948

RESUMO

The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.

6.
Pathol Res Pract ; 262: 155552, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180803

RESUMO

Glaucoma is a degenerative disease characterized by retinal ganglion cell (RGC) death and visual impairment caused by elevated intraocular pressure (IOP). Elevated IOP can activate microglia, which participate in ganglion cell injury. Based on the study of caveolin-1 (Cav-1) in glaucoma, we aimed to explore the effect and mechanism of Cav-1 on RGC apoptosis in mice with acute ocular hypertension (AOH). AOH mice were established, and Cav-1 was intravitreally injected. Retinal microglia and RGCs were isolated from neonatal mice. TUNEL staining, hematoxylin-eosin staining, immunohistochemistry, flow cytometry, PCR and western blotting were used to observe the effect of Cav-1 on RGCs and mouse retinas. The thickness of the whole retina and the inner retinal sublayer decreased significantly, retinal cell apoptosis increased after AOH injury, and Cav-1 treatment reversed the effect of AOH injury. In addition, Cav-1 treatment promoted the conversion of proinflammatory M1 microglia to anti-inflammatory M2 microglia. Microglia and RGCs were isolated from neonatal mice. Cav-1 protects RGCs from OGD/R-induced injury by changing the polarization status of retinal microglia in vitro. Further studies revealed that Cav-1 activated the Akt/PTEN signaling pathway and inhibited TLR4. Our study provides evidence that Cav-1 may be a promising therapeutic target for glaucoma.


Assuntos
Caveolina 1 , Glaucoma , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Células Ganglionares da Retina , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Caveolina 1/metabolismo , Transdução de Sinais/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Glaucoma/metabolismo , Glaucoma/patologia , Receptor 4 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Modelos Animais de Doenças
7.
J Oral Maxillofac Pathol ; 28(2): 200-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157842

RESUMO

Context: Caveolin-1 is a surface protein that is a major structural component of caveolae, which are vesicles of the plasma membrane integral to a variety of signal transduction molecules and transport functions. Caveolin-1 is a biomarker undergoing research & studies have shown an increased expression of Cav-1 in the stepwise carcinogenesis from the normal oral mucosa, hyperplastic mucosa, dysplastic mucosa, precancerous lesions to Oral Squamous Cell Carcinoma. In the present study Correlation between Caveolin-1 expression and grade of tumor was established statistically. Aims: To study immunohistochemical expression of Caveolin-1 in Oral Squamous Cell Carcinoma. Settings and Design: Cross sectional study carried out in a tertiary care hospital. Materials and Methods: A total of 90 cases of histopathologically diagnosed oral squamous cell carcinoma was evaluated. Grading of the cases into well, moderate and poorly differentiated carcinomas was done as per WHO guidelines . Margin and lymph node status were evaluated. Anti- Caveolin-1 antibody (E249)- Caveolae marker ab32577 was used in the dilution of 1:100. Results were expressed taking reference of the methodology used by Hung et al 2003. Statistical Analysis Used: Statistical Package for the Social Sciences (SPSS 25.0). Results: Correlation of tumor grade and lymph node metastasis was statistically significant p=0.0006. There was a significant statistical correlation between tumor grade and immunohistochemical expression of Caveolin-1, p- value=0.00. Correlation between Lymph node metastasis and Caveolin-1 was statistically significant, p-value=0.008. Conclusions: Caveolin-1 expression correlates with aggressive tumor behavior and poor prognostic outcome.

8.
Biochem Biophys Res Commun ; 733: 150586, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39197200

RESUMO

The modified cell-penetrating peptide Pas2r12 can deliver antibodies (IgG, 150 kDa) and enhanced green fluorescent protein (EGFP1, 27 kDa) into the cytosol through caveolae-dependent endocytosis. In this study, we determined the effect of Caveolin-1 overexpression on the cytosolic delivery of EGFP by Pas2r12. Three types of Caveolin-1 overexpressing strains were isolated, including Cav1L (low), Cav1M (medium), and Cav1H (high), using HEK293 as the parent cell line. We found that the number of caveolae on the surface of the Caveolin-1-overexpressing strains was similar to that of HEK293. We examined the cytosolic delivery rate of EGFP by Pas2r12. In the Cav1L and Cav1M cells, there was little change compared with HEK293; however, in Cav1H, the rate was significantly decreased. Moreover, the amount of EGFP uptake into the cells (total intracellular EGFP) showed an increasing trend in Cav1H compared with HEK293. These results indicate that in Cav1H, the amount of EGFP uptake into the cells increases, whereas the cytosolic delivery rate of EGFP decreases. This suggests that high overexpression of Caveolin-1 inhibits the transition of EGFP from endosomes to the cytosol.

9.
Exp Eye Res ; 247: 110063, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216638

RESUMO

The main symptom of acute glaucoma is acute ocular hypertension (AOH), which leads to the death of retinal ganglion cells (RGCs) and permanent loss of vision. However, effective treatments for these conditions are lacking. This study aimed to identify major regulators and overall protein changes involved in AOH-induced RGC death. Proteomic patterns of the retinal protein extracts from the AOH and sham groups were analyzed using mass spectrometry (MS), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Proteomic analysis revealed 92 proteins in the AOH group compared to the control group; 58 proteins were upregulated and 34 were downregulated. Alterations in fatty acid-binding protein 7 (FABP7) and caveolin-1 (Cav-1), which are related to fatty acid metabolism and ocular inflammatory signaling, were detected using western blotting and biochemical assays. Variations in the expression of galectin-1 (Gal-1), S100 calcium-binding protein A6 (S100a6), and visinin-like protein-1 (VILIP) have been associated with neuronal ischemia. Our investigation demonstrates that neuroinflammation and fatty acid metabolism are involved in retinal impairment following AOH, suggesting a possible treatment approach for acute glaucoma.


Assuntos
Western Blotting , Modelos Animais de Doenças , Hipertensão Ocular , Proteômica , Células Ganglionares da Retina , Espectrometria de Massas em Tandem , Animais , Proteômica/métodos , Hipertensão Ocular/metabolismo , Doença Aguda , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Pressão Intraocular/fisiologia , Ratos , Masculino , Proteínas do Olho/metabolismo , Hipóxia/metabolismo , Ratos Sprague-Dawley , Isquemia/metabolismo
10.
J Agric Food Chem ; 72(36): 19786-19799, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39187786

RESUMO

Bioactive peptides, derived from short protein fragments, are recognized for their neuroprotective properties and potential therapeutic applications in treating central nervous system (CNS) diseases. However, a significant challenge for these peptides is their ability to penetrate the blood-brain barrier (BBB). EVSGPGYSPN (EV-10) peptide, a walnut-derived peptide, has demonstrated promising neuroprotective effects in vivo. This study aimed to investigate the transportability of EV-10 across the BBB, explore its capacity to penetrate this barrier, and elucidate the regulatory mechanisms underlying peptide-induced cellular internalization and transport pathways within the BBB. The results indicated that at a concentration of 100 µM and osmotic time of 4 h, the apparent permeability coefficient of EV-10 was Papp = 8.52166 ± 0.58 × 10-6 cm/s. The penetration efficiency of EV-10 was influenced by time, concentration, and temperature. Utilizing Western blot analysis, immunofluorescence, and flow cytometry, in conjunction with the caveolin (Cav)-specific inhibitor M-ß-CD, we confirmed that EV-10 undergoes transcellular transport through a Cav-dependent endocytosis pathway. Notably, the tight junction proteins ZO-1, occludin, and claudin-5 were not disrupted by EV-10. Throughout its transport, EV-10 was localized within the mitochondria, Golgi apparatus, endoplasmic reticulum, lysosomes, endosomes, and cell membranes. Moreover, Cav-1 overexpression facilitated the release of EV-10 from lysosomes. Evidence of EV-10 accumulation was observed in mouse brains using brain slice scans. This study is the first to demonstrate that Cav-1 can facilitate the targeted delivery of walnut-derived peptide to the brain, laying a foundation for the development of functional foods aimed at CNS disease intervention.


Assuntos
Barreira Hematoencefálica , Juglans , Peptídeos , Juglans/química , Juglans/metabolismo , Barreira Hematoencefálica/metabolismo , Animais , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Transporte Biológico , Caveolinas/metabolismo , Caveolinas/química , Humanos , Endocitose , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Nozes/química , Nozes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...