Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
1.
Nano Lett ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377302

RESUMO

Cells constantly encounter mechanical forces that regulate various cellular functions, such as migration, division, and differentiation. Understanding how cells respond to forces at the intracellular level is essential for elucidating the mechanical adaptability of living cells. This study investigates how the cytoplasm alters its mechanical properties in response to forces applied inside a cell. The mechanical properties were measured through in situ characterization using magnetic tweezers to apply mechanical forces on magnetic beads internalized into cells. The findings reveal that the cytoplasm stiffens within seconds when force is applied to the cytoplasm. Macromolecular crowding and cytoskeletal structures, particularly F-actin, were found to significantly contribute to cytoplasm stiffening. The stiffening response was also observed across multiple length scales by using magnetic beads of varying diameters. These results highlight the rapid adaptation of the cytoplasm to mechanical forces applied to the inside of a cell.

2.
Proc Natl Acad Sci U S A ; 121(43): e2405169121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39401351

RESUMO

Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (Nyctalus noctula), the nonhibernating Egyptian fruit bat (Rousettus aegyptiacus), and humans (Homo sapiens). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.


Assuntos
Quirópteros , Elasticidade , Eritrócitos , Hibernação , Quirópteros/fisiologia , Quirópteros/sangue , Hibernação/fisiologia , Humanos , Eritrócitos/fisiologia , Animais , Temperatura , Viscosidade , Membrana Eritrocítica/metabolismo , Viscosidade Sanguínea/fisiologia
3.
J Mol Cell Cardiol ; 196: 35-51, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251059

RESUMO

Metabolic syndrome (MetS) increases the risk of coronary artery disease, but effects of this condition on the working myocardium remain to be fully elucidated. In the present study we evaluated the consequences of diet-induced metabolic disorders on cardiac function and myocyte performance using female mice fed with Western diet. Animals maintained on regular chow were used as control (Ctrl). Mice on the Western diet (WesD) had increased body weight, impaired glucose metabolism, preserved diastolic and systolic function, but increased left ventricular (LV) mass, with respect to Ctrl animals. Moreover, WesD mice had reduced heart rate variability (HRV), indicative of altered cardiac sympathovagal balance. Myocytes from WesD mice had increased volume, enhanced cell mechanics, and faster kinetics of contraction and relaxation. Moreover, levels of cAMP and protein kinase A (PKA) activity were enhanced in WesD myocytes, and interventions aimed at stabilizing cAMP/PKA abrogated functional differences between Ctrl and WesD cells. Interestingly, in vivo ß-adrenergic receptor (ß-AR) blockade normalized the mechanical properties of WesD myocytes and revealed defective cardiac function in WesD mice, with respect to Ctrl. Collectively, these results indicate that metabolic disorders induced by Western diet enhance the cAMP/PKA signaling pathway, a possible adaptation required to maintain cardiac function.

4.
Cell Rep ; 43(8): 114553, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39150846

RESUMO

Collective cell migration is an emergent phenomenon, with long-range cell-cell communication influenced by various factors, including transmission of forces, viscoelasticity of individual cells, substrate interactions, and mechanotransduction. We investigate how alterations in cell-substrate distance fluctuations, cell-substrate adhesion, and traction forces impact the average velocity and temporal-spatial correlation of confluent monolayers formed by either wild-type (WT) MDCKII cells or zonula occludens (ZO)-1/2-depleted MDCKII cells (double knockdown [dKD]) representing highly contractile cells. The data indicate that confluent dKD monolayers exhibit decreased average velocity compared to less contractile WT cells concomitant with increased substrate adhesion, reduced traction forces, a more compact shape, diminished cell-cell interactions, and reduced cell-substrate distance fluctuations. Depletion of basal actin and myosin further supports the notion that short-range cell-substrate interactions, particularly fluctuations driven by basal actomyosin, significantly influence the migration speed of the monolayer on a larger length scale.


Assuntos
Adesão Celular , Movimento Celular , Cães , Animais , Células Madin Darby de Rim Canino , Adesão Celular/fisiologia , Comunicação Celular , Actinas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Actomiosina/metabolismo , Miosinas/metabolismo , Proteína da Zônula de Oclusão-2/metabolismo , Proteína da Zônula de Oclusão-2/genética
5.
Comput Biol Med ; 181: 109081, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208506

RESUMO

Numerical simulation of blood flow is a challenging topic due to the multiphase nature of this biological fluid. The choice of a specific method among the ones available in literature is often motivated by the physical scale of interest. Single-phase approximation allows for lower computational time, but does not consider this multiphase nature. Cell-level simulation, on the other hand, requires high computational resources and is limited to small scales. This work proposes a scale-up approach for cell-level simulation of blood flow, in the framework of unresolved CFD-DEM technique. This method offers the possibility to simulate hundreds of thousands of particles with limited computational effort, but requires specific models for fluid-particle interactions. Regarding blood flow, drag and lift force acting on the red blood cells (RBCs) are responsible for several macroscopic blood characteristics. Despite several correlations available for drag and lift force acting on rigid particles, specific force models for the simulation of deformable particles compatible with RBCs physics are missing. This study employs data obtained from cell-level simulations to derive equations then used in unresolved simulation of RBCs. The strategy followed during the modeling phase is presented, together with the model verification and validation. This approach returns satisfying results when used to simulate blood flow in large-scale channels. Up to half a million RBCs are considered, and computational effort is reported to allow a comparison with other existing methods. Future perspectives include further improvement of the model, such as a deeper understanding of particle-particle interactions.


Assuntos
Simulação por Computador , Deformação Eritrocítica , Eritrócitos , Modelos Cardiovasculares , Humanos , Eritrócitos/fisiologia , Eritrócitos/citologia , Deformação Eritrocítica/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
6.
J Mol Cell Cardiol ; 194: 105-117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019395

RESUMO

A better understanding of the underlying pathomechanisms of diastolic dysfunction is crucial for the development of targeted therapeutic options with the aim to increase the patients' quality of life. In order to shed light on the processes involved, suitable models are required. Here, effects of endothelin-1 (ET-1) treatment on cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were investigated. While it is well established, that ET-1 treatment induces hypertrophy in cardiomyocytes, resulting changes in cell mechanics and contractile behavior with focus on relaxation have not been examined before. Cardiomyocytes were treated with 10 nM of ET-1 for 24 h and 48 h, respectively. Hypertrophy was confirmed by real-time deformability cytometry (RT-DC) which was also used to assess the mechanical properties of cardiomyocytes. For investigation of the contractile behavior, 24 h phase contrast video microscopy was applied. To get a deeper insight into changes on the molecular biological level, gene expression analysis was performed using the NanoString nCounter® cardiovascular disease panel. Besides an increased cell size, ET-1 treated cardiomyocytes are stiffer and show an impaired relaxation. Gene expression patterns in ET-1 treated hiPSC derived cardiomyocytes showed that pathways associated with cardiovascular diseases, cardiac hypertrophy and extracellular matrix were upregulated while those associated with fatty acid metabolism were downregulated. We conclude that alterations in cardiomyocytes after ET-1 treatment go far beyond hypertrophy and represent a useful model for diastolic dysfunction.


Assuntos
Diástole , Endotelina-1 , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Contração Miocárdica/efeitos dos fármacos , Diástole/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fenômenos Biomecânicos , Diferenciação Celular/efeitos dos fármacos
7.
Biomater Adv ; 163: 213938, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38959650

RESUMO

Endothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations. The aged and senescent phenotypes were more fragile to stretch-induced damage. Prominent damage was detected by immunofluorescence and scanning electron microscopy as intercellular and intracellular void formation. Damage increased proportionally to the applied level of deformation and, for the aged and senescent phenotype, induced significant detachment of cells at lower levels of stretch compared to the young counterpart. Based on the phenotypic difference in cell-substrate adhesion of senescent cells indicating more mature focal adhesions, a discrete network model of endothelial cells being stretched was developed. The model showed that the more affine deformation of senescent cells increased their intracellular energy, thus enhancing the tendency for cellular damage and impending detachment. Next to quantifying for the first-time critical levels of endothelial stretch, the present results indicate that young cells are more resilient to deformation and that the fragility of senescent cells may be associated with their stronger adhesion to the substrate.


Assuntos
Senescência Celular , Células Endoteliais , Estresse Mecânico , Humanos , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Senescência Celular/fisiologia , Adesão Celular , Células Endoteliais da Veia Umbilical Humana , Células Cultivadas , Microscopia Eletrônica de Varredura
8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000293

RESUMO

Cell mechanics are a biophysical indicator of cell state, such as cancer metastasis, leukocyte activation, and cell cycle progression. Atomic force microscopy (AFM) is a widely used technique to measure cell mechanics, where the Young modulus of a cell is usually derived from the Hertz contact model. However, the Hertz model assumes that the cell is an elastic, isotropic, and homogeneous material and that the indentation is small compared to the cell size. These assumptions neglect the effects of the cytoskeleton, cell size and shape, and cell environment on cell deformation. In this study, we investigated the influence of cell size on the estimated Young's modulus using liposomes as cell models. Liposomes were prepared with different sizes and filled with phosphate buffered saline (PBS) or hyaluronic acid (HA) to mimic the cytoplasm. AFM was used to obtain the force indentation curves and fit them to the Hertz model. We found that the larger the liposome, the lower the estimated Young's modulus for both PBS-filled and HA-filled liposomes. This suggests that the Young modulus obtained from the Hertz model is not only a property of the cell material but also depends on the cell dimensions. Therefore, when comparing or interpreting cell mechanics using the Hertz model, it is essential to account for cell size.


Assuntos
Módulo de Elasticidade , Lipossomos , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Lipossomos/química , Tamanho Celular , Modelos Biológicos , Ácido Hialurônico/química , Fenômenos Biomecânicos , Humanos
9.
Biomech Model Mechanobiol ; 23(4): 1179-1196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970736

RESUMO

Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is especially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids are a key requirement in any effective in vitro TBI model. The spheroids' shape and size, however, make mechanically loading them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate the spheroids' strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration and development of TBI models.


Assuntos
Lesões Encefálicas Traumáticas , Esferoides Celulares , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Esferoides Celulares/patologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Humanos
10.
Front Bioeng Biotechnol ; 12: 1404508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081332

RESUMO

Studies of cell and tissue mechanics have shown that significant changes in cell and tissue mechanics during lesions and cancers are observed, which provides new mechanical markers for disease diagnosis based on machine learning. However, due to the lack of effective mechanic markers, only elastic modulus and iconographic features are currently used as markers, which greatly limits the application of cell and tissue mechanics in disease diagnosis. Here, we develop a liver pathological state classifier through a support vector machine method, based on high dimensional viscoelastic mechanical data. Accurate diagnosis and grading of hepatic fibrosis facilitates early detection and treatment and may provide an assessment tool for drug development. To this end, we used the viscoelastic parameters obtained from the analysis of creep responses of liver tissues by a self-similar hierarchical model and built a liver state classifier based on machine learning. Using this classifier, we implemented a fast classification of healthy, diseased, and mesenchymal stem cells (MSCs)-treated fibrotic live tissues, and our results showed that the classification accuracy of healthy and diseased livers can reach 0.99, and the classification accuracy of the three liver tissues mixed also reached 0.82. Finally, we provide screening methods for markers in the context of massive data as well as high-dimensional viscoelastic variables based on feature ablation for drug development and accurate grading of liver fibrosis. We propose a novel classifier that uses the dynamical mechanical variables as input markers, which can identify healthy, diseased, and post-treatment liver tissues.

11.
Adv Healthc Mater ; : e2400941, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967294

RESUMO

Damage and repair are recurring processes in tissues, with fibroblasts playing key roles by remodeling extracellular matrices (ECM) through protein synthesis, proteolysis, and cell contractility. Dysregulation of fibroblasts can lead to fibrosis and tissue damage, as seen in idiopathic pulmonary fibrosis (IPF). In advanced IPF, tissue damage manifests as honeycombing, or voids in the lungs. This study explores how transforming growth factor-beta (TGF-ß), a crucial factor in IPF, induces lung fibroblast spheroids to create voids in reconstituted collagen through proteolysis and cell contractility, a process is termed as hole formation. These voids reduce when proteases are blocked. Spheroids mimic fibroblast foci observed in IPF. Results indicate that cell contractility mediates tissue opening by stretching fractures in the collagen meshwork. Matrix metalloproteinases (MMPs), including MMP1 and MT1-MMP, are essential for hole formation, with invadopodia playing a significant role. Blocking MMPs reduces hole size and promotes wound healing. This study shows how TGF-ß induces excessive tissue destruction and how blocking proteolysis can reverse damage, offering insights into IPF pathology and potential therapeutic interventions.

12.
Biomech Model Mechanobiol ; 23(5): 1695-1721, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38847968

RESUMO

Red blood cells (RBCs) carry oxygen and make up 40-45% of blood by volume in large vessels down to 10% or less in smaller capillaries. Because of their finite size and large volume fraction, they are heterogeneously distributed throughout the body. This is partially because RBCs are distributed or partitioned nonuniformly at diverging vessel bifurcations where blood flows from one vessel into two. Despite its increased recognition as an important player in the microvasculature, few studies have explored how the endothelial surface layer (ESL; a vessel wall coating) may affect partitioning and RBC dynamics at diverging vessel bifurcations. Here, we use a mathematical and computational model to consider how altering ESL properties, as can occur in pathological scenarios, change RBC partitioning, deformation, and penetration of the ESL. The two-dimensional finite element model considers pairs of cells, represented by interconnected viscoelastic elements, passing through an ESL-lined diverging vessel bifurcation. The properties of the ESL include the hydraulic resistivity and an osmotic pressure difference modeling how easily fluid flows through the ESL and how easily the ESL is structurally compressed, respectively. We find that cell-cell interaction leads to more uniform partitioning and greatly enhances the effects of ESL properties, especially for deformation and penetration. This includes the trend that increased hydraulic resistivity leads to more uniform partitioning, increased deformation, and decreased penetration. It also includes the trend that decreased osmotic pressure increases penetration.


Assuntos
Comunicação Celular , Células Endoteliais , Eritrócitos , Microvasos , Comunicação Celular/fisiologia , Microvasos/fisiologia , Eritrócitos/citologia , Eritrócitos/fisiologia , Células Endoteliais/citologia , Humanos , Simulação por Computador , Análise de Elementos Finitos , Modelos Biológicos , Propriedades de Superfície , Modelos Cardiovasculares
13.
Comput Biol Med ; 178: 108744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889631

RESUMO

Cancer alters the structural integrity and morphology of cells. Consequently, the cell function is overshadowed. In this study, the micropipette aspiration process is computationally modeled to predict the mechanical behavior of the colorectal cancer cells. The intended cancer cells are modeled as an incompressible Neo-Hookean visco-hyperelastic material. Also, the micropipette is assumed to be rigid with no deformation. The proposed model is validated with an in-vitro study. To capture the equilibrium and time-dependent behaviors of cells, ramp, and creep tests are respectively performed using the finite element method. Through the simulations, the effects of the micropipette geometry and the aspiration pressure on the colorectal cancer cell lines are investigated. Our findings indicate that, as the inner radius of the micropipette increases, despite the increase in deformation rate and aspirated length, the time to reach the equilibrium state increases. Nevertheless, it is obvious that increasing the tip curvature radius has a small effect on the change of the aspirated length. But, due to the decrease in the stress concentration, it drastically reduces the equilibrium time and increases the deformation rate significantly. Interestingly, our results demonstrate that increasing the aspiration pressure somehow causes the cell stiffening, thereby reducing the upward trend of deformation rate, equilibrium time, and aspirated length. Our findings provide valuable insights for researchers in cell therapy and cancer treatment and can aid in developing more precise microfluidic.


Assuntos
Neoplasias Colorretais , Modelos Biológicos , Humanos , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Simulação por Computador , Fenômenos Biomecânicos/fisiologia , Análise de Elementos Finitos , Estresse Mecânico
14.
J Cell Sci ; 137(12)2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940346

RESUMO

Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.


Assuntos
Desmossomos , Desmossomos/metabolismo , Humanos , Animais , Epiderme/metabolismo
15.
Curr Top Dev Biol ; 160: 87-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38937032

RESUMO

A simple machine is a basic of device that takes mechanical advantage to apply force. Animals and plants self-assemble through the operation of a wide variety of simple machines. Embryos of different species actuate these simple machines to drive the geometric transformations that convert a disordered mass of cells into organized structures with discrete identities and function. These transformations are intrinsically coupled to sequential and overlapping steps of self-organization and self-assembly. The processes of self-organization have been explored through the molecular composition of cells and tissues and their information networks. By contrast, efforts to understand the simple machines underlying self-assembly must integrate molecular composition with the physical principles of mechanics. This primer is concerned with effort to elucidate the operation of these machines, focusing on the "problem" of morphogenesis. Advances in understanding self-assembly will ultimately connect molecular-, subcellular-, cellular- and meso-scale functions of plants and animals and their ability to interact with larger ecologies and environmental influences.


Assuntos
Morfogênese , Animais , Plantas , Sementes/crescimento & desenvolvimento
16.
Pharmaceutics ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38931854

RESUMO

Cell mechanics is gaining attraction in drug screening, but the applicable methods have not yet become part of the standardized norm. This review presents the current state of the art for atomic force microscopy, which is the most widely available method. The field is first motivated as a new way of tracking pharmaceutical effects, followed by a basic introduction targeted at pharmacists on how to measure cellular stiffness. The review then moves on to the current state of the knowledge in terms of experimental results and supplementary methods such as fluorescence microscopy that can give relevant additional information. Finally, rheological approaches as well as the theoretical interpretations are presented before ending on additional methods and outlooks.

17.
Small ; 20(36): e2312007, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38708799

RESUMO

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.


Assuntos
Células Epiteliais , Espécies Reativas de Oxigênio , Titânio , Óxido de Zinco , Óxido de Zinco/química , Titânio/química , Titânio/farmacologia , Humanos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotação , Nanopartículas Metálicas/química , Nanopartículas/química , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
18.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746295

RESUMO

The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecules forming this complex composite material constantly rearrange under mechanical stress to confer this protective capacity. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and primarily located proximal to the inner leaflet of the plasma membrane and engages in protein-lipid interactions via a set of membrane-anchoring domains. Spectrin is linked by short actin filaments and its conformation varies in different types of cells. In this work, we developed a generalized network model for the membrane skeleton integrated with myosin contractility and membrane mechanics to investigate the response of the spectrin meshwork to mechanical loading. We observed that the force generated by membrane bending is important to maintain a smooth skeletal structure. This suggests that the membrane is not just supported by the skeleton, but has an active contribution to the stability of the cell structure. We found that spectrin and myosin turnover are necessary for the transition between stress and rest states in the skeleton. Our model reveals that the actin-spectrin meshwork dynamics are balanced by the membrane forces with area constraint and volume restriction promoting the stability of the membrane skeleton. Furthermore, we showed that cell attachment to the substrate promotes shape stabilization. Thus, our proposed model gives insight into the shared mechanisms of the membrane skeleton associated with myosin and membrane that can be tested in different types of cells.

19.
IEEE J Transl Eng Health Med ; 12: 413-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765886

RESUMO

Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells' motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells' and their microenvironment's biophysical properties as the indicator of a tumor's malignancy state. Our objective is to investigate and quantify the correlation between a tumor's malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM's biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of 40 µm when the cancer cell is surrounded by fibroblasts and 12 µm for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.


Assuntos
Matriz Extracelular , Modelos Biológicos , Células Estromais , Humanos , Células Estromais/patologia , Matriz Extracelular/patologia , Matriz Extracelular/metabolismo , Neoplasias/patologia , Neoplasias/fisiopatologia , Microambiente Tumoral , Estresse Mecânico , Feminino
20.
Methods Mol Biol ; 2800: 115-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709482

RESUMO

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.


Assuntos
Citoesqueleto de Actina , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Campos Magnéticos , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...