Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Phytopathology ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356564

RESUMO

The effectiveness of fungicides to control foliar fungal crop diseases is being diminished by the increasing spread of resistances to fungicides. One approach that may help to maintain efficacy is remediation of resistant populations by sensitive ones. However, the success of such approaches can be compromised by re-incursion of resistance through aerial spore dispersal; although, knowledge of localized gene flow is lacking. Here, we report on a replicated mark-release-recapture field experiment with several treatments set up to study spore-dispersal-mediated gene flow of a mutated allele that confers demethylase inhibitor resistance in Pyrenophora teres f. teres (Ptt). Artificial inoculation of the host, barley (Hordeum vulgare), was successful across the 12-ha trial, where the introduced sensitive- and resistant-populations were, respectively, 6- and 13-fold the DNA concentration of the native Ptt population. Subsequent disease pressure remained low which hampered spread of the epidemic to such extent that gene flow was not detected at, or beyond 2.5 m from source points. In the absence of gene flow, plots were assessed for treatment effects; fungicide applied to populations that contained 14.3% of allele mutation increased in frequency to 24.5%, whereas sensitive populations had no change in structure. Untreated controls of native Ptt population remained genetically stable, yet untreated controls that were inoculated with sensitive Ptt had half the resistance frequency of the native population structure. The trial demonstrates the potential for management to remediate fungicide resistant pathogen populations, where localized gene flow is minimal; to safeguard chemical crop protection into the future.

2.
Front Microbiol ; 15: 1458456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318429

RESUMO

A novel species of Mucor was identified as the causal agent of a brown rot of Prunus domestica (European plum), widely grown in the south of Xinjiang, China. This disease first appears as red spots after the onset of the fruits. With favorable environmental conditions, fruit with infected spots turn brown, sag, expand, wrinkle, and harden, resulting in fruit falling. Fungal species were isolated from infected fruits. A phylogenetic analysis based on internal transcribed spacer (ITS) regions and the large subunit (LSU) of the nuclear ribosomal RNA (rRNA) gene regions strongly supported that these isolates made a distinct evolutionary lineage in Mucor (Mucoromycetes, Mucoraceae) that represents a new taxonomic species, herein named as Mucor xinjiangensis. Microscopic characters confirmed that these strains were morphologically distinct from known Mucor species. The pathogenicity of M. xinjiangensis was confirmed by attaching an agar disk containing mycelium on fruits and re-isolation of the pathogen from symptomatic tissues. Later, fourteen fungicides were selected to determine the inhibitory effect on the pathogen. Further, results showed that difenoconazole had the best effect on the pathogen and the strongest toxicity with the smallest half maximal effective concentration (EC50) value, followed by a compound fungicide composed of difenoconazole with azoxystrobin, mancozeb, prochloraz with iprodione, pyraclostrobin with tebuconazole, and trifloxystrobin with tebuconazole and ethhylicin. Present study provides the basis for the prevention and control of the novel plum disease and its pathogen.

3.
Insects ; 15(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39336691

RESUMO

Kiwifruit (Actinidia chinensis) cultivation is expanding worldwide, with China, New Zealand, and Italy being the major producing countries. Halyomorpha halys, the brown marmorated stink bug, is raising serious concerns to kiwifruit cultivation both in China and Italy. This study aimed at improving the chemical control efficacy against this pest by comparing two insecticide spray techniques (a conventional ray atomizer and a trumpet-modified atomizer adapted for localized spray application) in kiwifruit. In fact, kiwifruit is often grown with a 'pergola' training system, which may reduce the effectiveness of insecticide penetration into the canopy. Experiments were performed in naturally infested orchards of both Actinidia chinensis var. chinensis 'Jintao' and A. chinensis var. deliciosa 'Hayward'. Furthermore, mesh cages containing H. halys adults were deployed within orchards to assess the insects' mortality at 1, 3, 7, and 10 days after an insecticide application with two spray techniques during two consecutive seasons. In the cultivar 'Jintao', the two systems performed similarly, while in the cultivar 'Hayward', an overall significantly higher insect mortality was recorded with the trumpet atomizer (94-100%) compared to the conventional atomizer (59-78%). Crop damage was also evaluated on both cultivars, simulating the grower insecticide applications with the two spray techniques. At harvest, no difference emerged between the spray techniques, which provided a significantly better protection compared to the untreated control (12-17% compared to 33-47% of injured fruits). Further investigations in this direction are needed also considering the restriction of insecticidal active substances ongoing in the European Union and the need to maximize the efficacy of the available tools.

4.
J Nematol ; 56(1): 20240030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39157452

RESUMO

Mexico is the 8th largest producer of tomatoes. Meloidogyne enterolobii is reported in Sinaloa, affecting tomato cultivars with genetic resistance to Meloidogyne spp. We aimed to evaluate field applications of fluopyram, fluensulfone, and fluazaindolizine treatments for managing M. enterolobii on tomatoes. Experiments were set on raised beds in a shade house. Nematicides were applied via drip irrigation. Under fluopyram treatment, M. enterolobii did not reduce the number of extra-large-size fruits. The number of large-size fruits with fluopyram and fluazaindolizine plus fluopyram treatments was also unaffected by M. enterolobii. Yield from the treatments fluopyram, fluazaindolizine plus fluopyram, and fluensulfone plus fluopyram was similar to the control treatment without M. enterolobii. Finally, fluazaindolizine plus fluopyram, fluopyram, and fluensulfone plus fluopyram treatments showed the highest reduction of root galling. We conclude that the fluopyram was more effective as an individual treatment. Pre-plant applications of fluensulfone and fluazaindolizine reduced the damage to the plant and the loss of yield; however, the complementary application of fluorinated nematicides improved the management of M. enterolobii in the tomato crop.

5.
Phytopathology ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186063

RESUMO

In soil-borne diseases, the plant-pathogen interaction begins as soon as the seed germinates and develops into a seedling. Aphanomyces euteiches, an oomycete, stays dormant in soil and gets activated by sensing the host through chemical signals present in the root exudates. The composition of plant exudates may, thus, play an important role during the early phase of infection. To better understand the role of root exudates in plant resistance, we investigated the interaction between partially resistant lines (PI660736 and PI557500) and susceptible pea cultivars (CDC Meadow and AAC Chrome) against Aphanomyces euteiches during the pre-invasion phase. The root exudates of two sets of cultivars clearly distinguished from each other in inducing oospore germination. PI557500 root exudate not only had diminished induction but also inhibited the oospore germination. The contrast between the root exudates of resistance and susceptible cultivars was reflected in their metabolic profiles. Data from fractionation and oospore germination inhibitory experiments identified a group of saponins that accumulated differentially in susceptible and resistant cultivars. We detected 56 saponins and quantified 44 of them in pea root and 30 from root exudate; the majority of them, especially Soyasaponin I and dehydrosoyasaponin I with potent in vitro inhibitory activities, were present in significantly higher amounts in both roots and root exudates of PI660736 and PI557500 as compared to Meadow and Chrome. Our results provide evidence for saponins as deterrents against Aphanomyces euteiches, which might have contributed to the resistance against root rot in the studied pea cultivars.

6.
World J Microbiol Biotechnol ; 40(10): 302, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150639

RESUMO

The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.


Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Phytophthora , Doenças das Plantas , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Farmacorresistência Fúngica/genética , Mutação , Agricultura
7.
Pest Manag Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149768

RESUMO

BACKGROUND: Eutetranychus banksi (McGregor) (Acari: Tetranychidae) is an invasive spider mite native to the Americas. In 2013 it invaded the main citrus-growing area in Spain producing significant damage and requiring chemical treatments. This work examines its population structure, spatial distribution and presents a sampling plan, which will assist in developing an integrated pest management (IPM) strategy. RESULTS: There were differences in the population structure on fruits and leaves, as well as between leaves from different flushes with fluctuations over time correlated with variations in sex ratio. No differences in aggregation at the different plant strata were found; however, immature stages showed a higher aggregation than adults, with females being the sex with the lowest aggregation. There was a high correlation between E. banksi motile forms and adult females with the total population, thus both were used as reference stages to develop sampling plans. We recommend binomial sampling of 100 leaves for female monitoring, sampling two leaves per tree on 25 trees per transect regularly spaced along two diagonal transects, the first oriented northeast to southwest and the second northwest to southeast. To be more accurate, it is possible to survey the presence/absence of motile forms. In this case, four leaves per tree in 50 trees per transect should be monitored. CONCLUSION: This study has resulted in the first sampling plan for E. banksi, one of the most damaging citrus mite species described so far. The binomial sampling plan involves monitoring reference developmental stages, as well as a reasonable sample size that makes it applicable in field sampling for decisions making based on a future intervention threshold. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Med Vet Entomol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167411

RESUMO

Chagas disease is considered one of the most important human parasitosis in the United States. This disease is mainly transmitted by insects of the subfamily Triatominae. The chemical vector control is the main tool for reducing the incidence of the disease. However, the presence of triatomines after pyrethroids spraying has been reported in some regions, as in the case of Triatoma infestans in Argentina and Bolivia. The presence of insects can be explained by the colonization from neighbouring areas, the reduction of insecticide dose to sublethal levels due to environmental factors, and/or by the evolution of insecticide resistance. In the last two scenarios, a proportion of the insects is not killed by insecticide and gives rise to residual populations. This article focuses on the toxicological processes associated with these scenarios in triatomines. Sublethal doses may have different effects on insect biology, that is, sublethal effects, which may contribute to the control. In addition, for insect disease vectors, sublethal doses could have negative effects on disease transmission. The study of sublethal effects in triatomines has focused primarily on the sequence of symptoms associated with nervous intoxication. However, the effects of sublethal doses on excretion, reproduction and morphology have also been studied. Rhodnius prolixus and T. infestans and pyrethroids insecticides were the triatomine species and insecticides, respectively, mainly studied. Insecticide resistance is an evolutionary phenomenon in which the insecticide acts as a selective force, concentrating on the insect population's pre-existing traits that confer resistance. This leads to a reduction in the susceptibility to the insecticide, which was previously effective in controlling this species. The evolution of resistance in triatomines received little attention before the 2000s, but after the detection of the first focus of resistance associated with chemical control failures in T. infestans from Argentina in 2002, the study of resistance increased remarkably. A significant number of works have studied the geographical distribution, the resistance mechanisms, the biological modifications associated with resistance, the environmental influences and the genetic of T. infestans resistant to pyrethroid insecticides. Currently, studies of insecticide resistance are gradually being extended to other areas and other species. The aim of this article was to review the knowledge on both phenomena (sublethal effects and insecticide resistance) in triatomines. For a better understanding of this article, some concepts and processes related to insect-insecticide interactions, individual and population toxicology and evolutionary biology are briefly reviewed. Finally, possible future lines of research in triatomine toxicology are discussed.

9.
Pest Manag Sci ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001705

RESUMO

Melanaphis sacchari (Zehntner;Hemiptera: Aphididae), sugarcane aphid (SCA), is an invasive phloem-feeder found worldwide with a wide host range of economically important plants including sorghum and sugarcane. Given its high reproductive capacity and ability to rapidly spread over long distances, SCA presents challenges for effective control, leading to substantial economic losses. Recent studies have identified two multiloci SCA genotypes specialized in feeding on sugarcane (MLL-D) and sorghum (MLL-F) in the USA, which raises concerns as the USA is the second largest sorghum-producing country. This has encouraged research towards identifying these two biotypes where some research has stated them as two species; MLL-D clade to be M. sacchari and MLL-F clade to be M. sorghi Theobald (Hemiptera: Aphididae), sorghum aphid (SA). This review aims at compiling research progress that has been made on understanding the SCA/SA species complex. Furthermore, this review also highlights a wide range of management strategies against SCA/SA that includes both biological and chemical methods. In addition, the review emphasizes studies examining host plant resistance to understand and evaluate the role of R-genes and phytohormones such as jasmonic acid, salicylic acid and ethylene against SCA. Beside this, plant volatiles and other secondary metabolites such as flavonoids, terpenes and phytanes are also explored as potential control agents. Being an invasive pest, a single management tactic is inadequate to control SCA population and hence, integrated pest management practices incorporating physical, cultural and biological control methods should be implemented with exclusive chemical control as a last resort, which this review examines in detail. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10.
Heliyon ; 10(12): e33165, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021951

RESUMO

Bangladesh Agricultural Research Institute (BARI) released two beautiful Lilium varieties in 2020. In the same year the farmers in Gazipur district reported a set of disease symptoms on these flowers and alerted the Plant Pathology Division of BARI. Subsequent investigation confirmed the symptoms as Botrytis gray mold (BGM), caused by Botrytis cinerea. The pathogen identity was confirmed through ITS gene sequencing. A series of in vitro and in planta experiments conducted to understand the symptoms, the optimal growth condition for the pathogen, potential resistant Lilium genotypes, effective chemical treatments and potential of biological control agents to combat the disease. B. cinerea exhibited the highest growth in V8 media (88.55 mm) at pH6 (85.32 mm) and temperature between 20 and 25 °C (89.56 mm), and pH6 (85.32 mm). Screening revealed that five oriental-originated genotypes provided lower disease incidence (31.66-41.66 %), and were categorized as moderately resistant to resistant in disease reaction. Six fungicides successfully reduced mycelial growth in vitro. Moreover, Ipridione provided the lowest % disease incidence (27.11) and % disease severity (5.33) in the in planta nethouse experiment. Therefore, this fungicide was recommended to the farmers initially. Additionally, two fungal biocontrol agents Epicoccum nigrum EJS002 and Trichoderma ThC003, demonstrated effectiveness in reducing leaf lesion size over control in a detach leaf assessment technique. In conclusion, this study presents BGM of Lilium as a farmers issue for the first time in Bangladesh. It also provides valuable insights into its management, recommending specific chemical fungicides for farmers to use, and two fungal antagonists (E. nigrum EJS002 and Trichoderma ThC003) as potential disease control agent.

11.
PeerJ ; 12: e17518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952990

RESUMO

Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.


Assuntos
Pectobacterium , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Pectobacterium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Paquistão
12.
Plant Dis ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971961

RESUMO

This study characterized 52 isolates of Monilinia fructicola from peach and nectarine orchards for their multi-resistance patterns to thiophanate-methyl (TF), tebuconazole (TEB), and azoxystrobin (AZO) using in vitro sensitivity assays and molecular analysis. The radial growth of M. fructicola isolates was measured on media amended with a single discriminatory dose of 1 µg/ml for TF and AZO and 0.3 µg/ml for TEB. Cyt b, CYP51, and ß-tubulin were tested for point mutations that confer resistance to quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs), and methyl benzimidazole carbamates (MBCs), respectively. Eight phenotypes were identified including isolates with single, double, and triple in vitro resistance to QoI, MBC, and DMI fungicides. All resistant phenotypes to TF and TEB presented the H6Y mutation in ß-tubulin and the G641S mutation in CYP51. None of the point mutations typically linked to QoI resistance were present in the Monilinia isolates examined. Moreover, fitness of the M. fructicola phenotypes was examined in vitro and detached fruit assays. Phenotypes with single-resistance displayed equal fitness in in vitro and fruit assays compared to the wild-type. In contrast, the dual and triple-resistance phenotypes suffered fitness penalties based on osmotic sensitivity and aggressiveness on peach fruit. In this study, multiple resistance to MBC, DMI, and QoI fungicide groups was confirmed in M. fructicola. Results suggest that Monilinia populations with multiple resistance phenotypes are likely to be less competitive in the field than those with single resistance, thereby impeding their establishment over time and facilitating disease management.

13.
J Econ Entomol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001690

RESUMO

The clover seed weevil, Tychius picirostris Fabricius (Coleoptera: Curculionidae), is a major pest in Oregon white clover seed crops. Reliance on synthetic pyrethroid insecticides and limited availability of diverse modes of action (MoAs) has increased insecticide resistance selection in regional T. picirostris populations, emphasizing the need to evaluate novel chemistries and rotational strategies for effective insecticide resistance management (IRM). The efficacy of 8 foliar insecticide formulations for managing T. picirostris adult and larval life stages was determined in small and large-plot field trials across 2 crop years. In both years, bifenthrin (Brigade 2EC), the grower's standard, showed negligible adult and larval suppression. Insecticide formulations with isocycloseram and cyantraniliprole active ingredients reduced adult and larval populations when applied at BBCH 59-60 (prebloom) and BBCH 65-66 (full bloom) growth stages, respectively. While differences in T. picirostris abundance were observed among insecticide treatments, seed yield differences were not detected in large-plot trials. Larval abundance was correlated with reduced seed yield, and an economic threshold of ≥3 larvae per 30 inflorescences was determined as a conservative larval threshold to justify foliar applications of diamide insecticides. Additional commercial white clover seed fields were surveyed to compare larval scouting techniques, including a standard Berlese funnel and a grower's do-it-yourself funnel. Both larval extraction techniques were correlated and provided similar estimates of larval abundance. These findings demonstrate new MoAs, optimal insecticide application timing, and larval monitoring methods that can be incorporated into an effective T. picirostris IRM program in white clover seed crops.

14.
Insects ; 15(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39057205

RESUMO

Beekeepers need new treatment options for controlling small hive beetles (Aethina tumida), a devastating honey bee (Apis mellifera) pest. For many years, commercial beekeepers in the U.S. have used gel roach baits off-label as a method for treating SHBs. Herein, we evaluated the acute toxicity of active ingredients commonly found in gel roach baits, including abamectin, clothianidin, hydramethylnon, fipronil, and indoxacarb through topical and oral routes of exposure against SHBs and honey bees. Additionally, coumaphos, the active ingredient of the only registered in-hive control treatment for SHBs, was evaluated to provide a comparison to the gel roach bait active ingredients. Fipronil was the most toxic compound to SHBs topically (LD50 = 0.23 ng/SHB) and through pollen (LC50 = 0.06 µg/g pollen). Fipronil (LD50 = 0.31 ng/honey bee) had a selectivity ratio of 1.3, suggesting that it is more toxic to SHBs than it is to honey bees, but only to a small degree. Abamectin, clothianidin, hydramethylnon, and indoxacarb had a higher toxicity to honey bees than to SHBs through topical exposure. Our results suggest that gel roach baits and their active ingredients are toxic to honey bees and pose a serious risk to colony safety if used as in-hive treatments.

15.
J Econ Entomol ; 117(4): 1518-1525, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38936424

RESUMO

Most field corn in the United States receives a neonicotinoid seed treatment for the management of early-season, soil-dwelling insect pests. Grubs of Maladera formosae (Brenske) (Coleoptera: Scarabaeidae) have been reported feeding on young field corn with both low and high rates of clothianidin seed treatments in Indiana, Michigan, and Ohio. Anecdotally, these infestations are restricted to sandy soils in the region. The purpose of this study was to (1) evaluate whether grub populations in corn are restricted to sandy soils, (2) assess whether soil type influences M. formosae survival, and (3) determine whether soil type affects clothianidin uptake by the plant, possibly explaining the observed differences in M. formosae abundance by soil type. We observed nearly 10-times more grubs in sand (>80% sand content) than loam (<80% sand content) soil within a single corn field. Grub survival to adult was not influenced by soil type. We then compared the concentrations of clothianidin seed treatment in the roots and shoots of corn seedlings grown in either sand or loam soil over time. Similar amounts of the active ingredient were found in the roots and shoots of corn grown in both soil types. Within 2 week, the clothianidin concentrations in both soil types had significantly declined in roots and shoots and were no different from the no-insecticide control. These findings suggest that factors other than insecticide exposure contribute to the higher abundance of M. formosae larvae in sand relative to loam soils, even within the same field.


Assuntos
Besouros , Guanidinas , Inseticidas , Neonicotinoides , Solo , Tiazóis , Zea mays , Animais , Zea mays/crescimento & desenvolvimento , Solo/química , Guanidinas/análise , Michigan , Larva/crescimento & desenvolvimento
16.
Front Plant Sci ; 15: 1411231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916031

RESUMO

Myxomycetes (plasmodial slime molds) are eukaryotic protist predators that are associated with wood, leaf litter, and soil in forests, where they feed on bacteria, protozoans, and (to a more limited extent) fungi. The health of crop plants is essential because they represent a primary food source for humans. However, when myxomycetes produce numerous fruiting bodies on the stems and leaves of crop plants, which is herein referred to as a myxomycete colonization, this has the potential of interfering with plant photosynthesis, transpiration and respiration by blocking out light and covering stomata. Myxomycetes are not pathogens, but their occurrence on plants can be mistakenly interpreted as some type of infection. However, this phenomenon has been largely ignored. This paper provides a comprehensive overview of the taxonomic and economic diversity of the organisms involved in myxomycete colonization. In addition, the various types of myxomycete colonization reported in the literature are described and discussed, a number of images provided, and cultural and chemical prevention and control measures are summarized. The latter should be of significant relevance for local production of crops and plant protective stations. While myxomycetes are not pathogens of crop plants, some species can seriously impact commercially grown mushrooms. Reports of myxomycetes affecting mushrooms are also described in this paper.

17.
Parasitol Res ; 123(6): 232, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847882

RESUMO

This work evaluated if strategic control based on no more than three or four annual treatments is useful to control Rhipicephalus microplus infestations on cattle when it is applied to intensive rotational grazing and silvopastoral systems with high stocking rates in subtropical areas. In the intensive rotational grazing system, three annual treatments with chemical acaricides were applied on cattle in two different schemes: between spring and early summer and from late winter and late spring. Strategic control based on three treatments with chemical acaricides from late winter to late spring plus an additional fourth treatment in summer was tested in the silvopastoral system. In the intensive rotational grazing systems, the control schemes allow to reach a significant reduction in the tick load on cattle considering a time interval from spring to autumn. However, the efficacy levels were not high enough in some specific moments, namely, the tick counts of summer and autumn (there were not significant differences between treated and control groups). The scheme evaluated in the silvopastoral grazing system yielded better results than those tested for the intensive rotational system, because significant differences in tick load between treated and control groups were observed in all post-treatment counts and when the analysis was performed for the whole study period. However, values of efficacy in the count-by-count comparison were disparate, ranging from 64.1 to 99.7. Although the efficacy values obtained in the silvopastoral system were better than those of the rotational grazing systems, the total tick load on treated cattle in autumn was not low enough (mean abundance values 25.14 and 38.14). Ticks were more evenly distributed among hosts in late summer and autumn than in spring or early summer, where few hosts carry most of the ticks. Some management strategies as intensive rotational systems or silvopastoral structures can lead to a more efficient forage use, but they imply greater tick challenge than in extensive grazing systems. In these situations, the schemes of strategic control bases on three or four annual treatments should be complemented with additional tactical treatments in late summer or autumn.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Estações do Ano , Controle de Ácaros e Carrapatos , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/fisiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/parasitologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Controle de Ácaros e Carrapatos/métodos , Acaricidas , Criação de Animais Domésticos/métodos
18.
Pest Manag Sci ; 80(9): 4533-4542, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38742618

RESUMO

BACKGROUND: Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS: T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION: These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.


Assuntos
Parede Celular , Phytophthora , Parede Celular/metabolismo , Phytophthora/fisiologia , Análise de Sequência de RNA , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Hypocreales/fisiologia , Hypocreales/genética , Antibiose
19.
Pest Manag Sci ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801197

RESUMO

BACKGROUND: Chrysodeixis includens (Walker) and Rachiplusia nu (Guenée) are major Plusiinae pests of soybean in the Southern Cone region of South America. In recent decades, C. includens was the main defoliator of soybean in Brazil, but from 2021 onwards, R. nu emerged as an important soybean pest in various regions of the country. Here, we characterize the differential susceptibility and resistance to insecticides in these Plusiinae pests from two soybean regions of Brazil. RESULTS: Except for spinetoram and chlorfenapyr (comparable lethality against both species) and a Bt-based biopesticide (more lethal for C. includens), the tested insecticides showed higher lethality against R. nu than against C. includens, but populations of the same species, even separated by long distances, presented similar resistance levels. For both species, the 90% lethal concentration (LC90) values of most insecticides were higher than the field-recommended dose. Nevertheless, the field-recommended doses of spinetoram, metaflumizone, emamectin benzoate, cyclaniliprole and chlorfenapyr showed comparable control efficacy against both species, whereas indoxacarb, chlorantraniliprole, flubendiamide, teflubenzuron and chlorfluazuron were more lethal for R. nu, and methoxyfenozide and the Bt-based insecticide were more lethal for C. includens. Thiodicarb, methomyl and lambda-cyhalothrin showed low lethality against both species. CONCLUSIONS: Large interspecific differences in the susceptibility to insecticides was found in major Plusiinae pests of soybean in Brazil. Furthermore, variations in susceptibility to insecticides occurred consistently among species and populations, regardless of the collection site and thus despite unequal temporal and spatial exposure to insecticides. These results demonstrate that accurate species identification is essential for effective control of Plusiinae in soybean. © 2024 Society of Chemical Industry.

20.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805647

RESUMO

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Assuntos
Acaricidas , Timol , Toluidinas , Varroidae , Animais , Toluidinas/farmacologia , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Varroidae/fisiologia , Timol/farmacologia , Criação de Abelhas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...