Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Ann Hum Genet ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361243

RESUMO

The DYNC2H1 gene has been associated with short-rib polydactyly syndrome (SRPS), among other skeletal ciliopathies. Two cases are presented of distinctive phenotypes resulting from splicing variants in DYNC2H1. The first is a 14-week-old fetus with enlarged nuchal translucency, oral hamartoma, malformed uvula, bifid epiglottis, short ribs, micromelia, long bone agenesis, polysyndactyly, heart defect, pancreatic cysts, multicystic dysplastic kidney, megabladder and trident acetabulum. A ciliopathies NGS panel revealed two compound heterozygous variants in DYNC2H1: c.7840-18T>G r.7841_7964del p.Gly2614Aspfs*5 and c.11070G>A r.11044_11116del p.Ile3682Aspfs*2. Both variants were initially classified as variants of uncertain significance but were reclassified as likely pathogenic after PCR-based RNA testing. The second is an 11-year-old overweight male with multiple accessory oral frenula, median cleft lip and alveolar ridge, polysyndactyly, brachydactyly, normal rib length, and hypogonadism. Exome sequencing revealed two compound heterozygous variants in DYNC2H1: c.6315del p.(Thr2106Glnfs*7), classified as likely pathogenic, and c.3303-16A>G p.(?), classified as a variant of uncertain significance. PCR-based RNA testing suggested that c.3303-16A>G induces an in-frame deletion: r.3303_3458del p.Asp1102_Arg1153del, although the normal transcript is still produced. These results are consistent with both SRPS type I/III in the first case and orofaciodigital syndrome in the second, an unprecedented description. This work thus improves the clinical and molecular knowledge of the phenotypes associated with splicing variants in the DYNC2H1 gene.

2.
Open Biol ; 14(9): 240128, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39255848

RESUMO

Cilia are antenna-like organelles protruding from the surface of many cell types in the human body. Defects in ciliary structure or function often lead to diseases that are collectively called ciliopathies. Cilia and flagella-associated protein 410 (CFAP410) localizes at the basal body of cilia/flagella and plays essential roles in ciliogenesis, neuronal development and DNA damage repair. It remains unknown how its specific basal body location is achieved. Multiple single amino acid mutations in CFAP410 have been identified in patients with various ciliopathies. One of the mutations, L224P, is located in the C-terminal domain (CTD) of human CFAP410 and causes severe spondylometaphyseal dysplasia, axial (SMDAX). However, the molecular mechanism for how the mutation causes the disorder remains unclear. Here, we report our structural studies on the CTD of CFAP410 from three distantly related organisms, Homo sapiens, Trypanosoma brucei and Chlamydomonas reinhardtii. The crystal structures reveal that the three proteins all adopt the same conformation as a tetrameric helical bundle. Our work further demonstrates that the tetrameric assembly of the CTD is essential for the correct localization of CFAP410 in T. brucei, as the L224P mutation that disassembles the tetramer disrupts its basal body localization. Taken together, our studies reveal that the basal body localization of CFAP410 is controlled by the CTD and provide a mechanistic explanation for how the mutation L224P in CFAP410 causes ciliopathies in humans.


Assuntos
Corpos Basais , Trypanosoma brucei brucei , Corpos Basais/metabolismo , Humanos , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Modelos Moleculares , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Cristalografia por Raios X , Mutação , Sequência de Aminoácidos , Multimerização Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química
3.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282264

RESUMO

TMEM67 mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known. We identify a novel cleavage motif in the extracellular domain of TMEM67 cleaved by the extracellular matrix metalloproteinase ADAMTS9. This cleavage regulates the abundance of two functional forms: A C-terminal portion which localizes to the ciliary transition zone regulating ciliogenesis, and a non-cleaved form which regulates Wnt signaling. By characterizing three TMEM67 ciliopathy patient variants within the cleavage motif utilizing mammalian cell culture and C. elegans, we show the cleavage motif is essential for cilia structure and function, highlighting its clinical significance. We generated a novel non-cleavable TMEM67 mouse model which develop severe ciliopathies phenocopying Tmem67 -/- mice, but in contrast, undergo normal Wnt signaling, substantiating the existence of two functional forms of TMEM67.

4.
Dis Model Mech ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263856

RESUMO

Defects in ciliary signaling or mutations in proteins that localize to primary cilia lead to a class of human diseases known as ciliopathies. About 10% of mammalian genes encode cilia-associated proteins and a major gap in the cilia research field is prioritizing which genes to study and finding the in vivo vertebrate mutant alleles and reagents available for their study. Here we present a unified resource listing the cilia-associated human genes cross-referenced to available mouse and zebrafish mutant alleles, their associated phenotypes as well as expression data in kidney and functional data for vertebrate Hedgehog signaling. This resource empowers researchers to easily sort and filter genes based on their own expertise and priorities, cross-reference with newly-generated -omics datasets, and quickly find in vivo resources and phenotypes associated with a gene of interest.

5.
G Ital Nefrol ; 41(4)2024 Aug 26.
Artigo em Italiano | MEDLINE | ID: mdl-39243410

RESUMO

This article constitutes a review of the existing literature on the potential correlation between autosomal dominant polycystic kidney disease (ADPKD) and intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Additionally, it presents a clinical case where familiarity for both pathologies was observed, derived from the direct experience of our clinic, reinforcing the hypothesis of a possible common pathogenetic pathway. The review focuses on the potential genetic correlation between these two pathologies within the realm of ciliopathies, emphasizing the importance of targeted screening and monitoring strategies to detect pancreatic complications early in patients with ADPKD. Furthermore, it highlights the complexity in the clinical management of these rare conditions and underscores the importance of early diagnosis in optimizing clinical outcomes.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma Papilar , Neoplasias Intraductais Pancreáticas , Rim Policístico Autossômico Dominante , Humanos , Adenocarcinoma Mucinoso/complicações , Adenocarcinoma Mucinoso/diagnóstico , Adenocarcinoma Mucinoso/patologia , Carcinoma Papilar/complicações , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/patologia , Neoplasias Intraductais Pancreáticas/complicações , Neoplasias Intraductais Pancreáticas/diagnóstico , Neoplasias Intraductais Pancreáticas/patologia , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/genética
6.
Ophthalmic Genet ; 45(5): 516-521, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092760

RESUMO

BACKGROUND: Biallelic pathogenic variants in CDH23 can cause Usher syndrome type I (USH1), typically characterized by sensorineural hearing loss, variable vestibular areflexia, and a progressive form of rod-cone dystrophy. While missense variants in CDH23 can cause DFNB12 deafness, other variants can affect the cadherin 23 function, more severely causing Usher syndrome type I D. The main purpose of our study is to describe the genotypes and phenotypes of patients with mild retinitis pigmentosa (RP), including sector RP with two pathogenic variants in CDH23. MATERIALS AND METHODS: Clinical examination included medical history, comprehensive ophthalmologic examination, and multimodal retinal imaging, and in case 1 and 2, full-field electroretinography (ERG). Genetic analysis was performed in all cases, and segregation testing of proband relatives was performed in case 1 and 3. RESULTS: Three unrelated cases presented with variable clinical phenotype for USH1 and were found to have two pathogenic variants in CDH23, with missense variant, c.5237 G > A: p.Arg1746Gln being common to all. All probands had mild to profound hearing loss. Case 1 and 3 had mild RP with mid peripheral and posterior pole sparing, while case 2 had sector RP. ERG results were consistent with the marked loss of retinal function in both eyes at the level of photoreceptor in case 1 and case 2, with normal peak time in the former. CONCLUSION: Patients harbouring c.5237 G > A: p.Arg1746Gln variants in CDH23 can present with a mild phenotype including sector RP. This can aid in better genetic counselling and in prognostication.


Assuntos
Caderinas , Eletrorretinografia , Mutação de Sentido Incorreto , Linhagem , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Caderinas/genética , Masculino , Feminino , Adulto , Fenótipo , Pessoa de Meia-Idade , Proteínas Relacionadas a Caderinas , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico
7.
Pediatr Pulmonol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115449

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia. Most cases are inherited recessively, due to variants in >50 genes that result in abnormal or absent motile cilia. This leads to chronic upper and lower airway disease, subfertility, and laterality defects. Given overlapping clinical features and genetic heterogeneity, diagnosis can be difficult and often occurs late. Of those tested an estimated 30% of genetically screened PCD patients still lack a molecular diagnosis. A molecular diagnosis allows for appropriate clinical management including prediction of phenotypic features correlated to genotype. Here, we aimed to identify how readily a genetic diagnosis could be made using whole genome sequencing (WGS) to facilitate identification of pathogenic variants in known genes as well as novel PCD candidate genes. METHODS: WGS was used to screen for pathogenic variants in eight patients with PCD. RESULTS: 7/8 cases had homozygous or biallelic variants in DNAH5, DNAAF4 or DNAH11 classified as pathogenic or likely pathogenic. Three identified variants were deletions, ranging from 3 to 13 kb, for which WGS identified precise breakpoints, permitting confirmation by Sanger sequencing. WGS yielded identification of a de novo variant in a novel PCD gene TUBB4B. CONCLUSION: Here, WGS uplifted genetic diagnosis of PCD by identifying structural variants and novel modes of inheritance in new candidate genes. WGS could be an important component of the PCD diagnostic toolkit, increasing molecular diagnostic yield from current (70%) levels, and enhancing our understanding of fundamental biology of motile cilia and variants in the noncoding genome.

8.
Pediatr Nephrol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098869

RESUMO

BACKGROUND: Nephronophthisis (NPH) comprises a heterogeneous group of inherited renal ciliopathies clinically characterized by progressive kidney failure. So far, definite diagnosis is based on molecular testing only. Here, we studied the feasibility of NPHP1 and NPHP4 immunostaining of nasal epithelial cells to secure and accelerate the diagnosis of NPH. METHODS: Samples of 86 individuals with genetically determined renal ciliopathies were analyzed for NPHP1 localization using immunofluorescence microscopy (IF). A sub-cohort of 35 individuals was also analyzed for NPHP4 localization. Western blotting was performed to confirm IF results. RESULTS: NPHP1 and NPHP4 were both absent in all individuals with disease-causing NPHP1 variants including one with a homozygous missense variant (c.1027G > A; p.Gly343Arg) formerly classified as a "variant of unknown significance." In individuals with an NPHP4 genotype, we observed a complete absence of NPHP4 while NPHP1 was severely reduced. IF results were confirmed by immunoblotting. Variants in other genes related to renal ciliopathies did not show any impact on NPHP1/NPHP4 expression. Aberrant immunostaining in two genetically unsolved individuals gave rise for a further genetic workup resulting in a genetic diagnosis for both with disease-causing variants in NPHP1 and NPHP4, respectively. CONCLUSIONS: IF of patient-derived respiratory epithelial cells may help to secure and accelerate the diagnosis of nephronophthisis-both by verifying inconclusive genetic results and by stratifying genetic diagnostic approaches. Furthermore, we provide in vivo evidence for the interaction of NPHP1 and NPHP4 in a functional module.

9.
Front Genet ; 15: 1419025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092430

RESUMO

Introduction: Bardet-Biedl syndrome is a rare condition characterized by obesity, retinitis pigmentosa, polydactyly, development delay, and structural kidney anomalies. This syndrome has an autosomal recessive type of inheritance. For the first time, molecular genetic testing has been provided for a large cohort of Russian patients with Bardet-Biedl syndrome. Materials and methods: Genetic testing was provided to 61 unrelated patients using an MPS panel that includes coding regions and intronic areas of all genes (n = 21) currently associated with Bardet-Biedl syndrome. Results: The diagnosis was confirmed for 41% of the patients (n = 25). Disease-causing variants were observed in BBS1, BBS4, BBS7, TTC8, BBS9, BBS10, BBS12, and MKKS genes. In most cases, pathogenic and likely pathogenic variants were localized in BBS1, BBS10, and BBS7 genes; recurrent variants were also observed in these genes. Discussion: The frequency of pathogenic and likely pathogenic variants in the BBS1 and BBS10 genes among Russian patients matches the research data in other countries. The frequency of pathogenic variants in the BBS7 gene is about 1.5%-2% of patients with Bardet-Biedl syndrome, while in the cohort of Russian patients, the fraction is 24%. In addition, the recurrent pathogenic variant c.1967_1968delinsC was detected in the BBS7 gene. The higher frequency of this variant in the Russian population, as well as the lack of association of this pathogenic variant with Bardet-Biedl syndrome in other populations, suggests that the variant c.1967_1968delinsC in the BBS7 gene is major and has a founder effect in the Russian population. Results provided in this article show the significant role of pathogenic variants in the BBS7 gene for patients with Bardet-Biedl syndrome in the Russian population.

10.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063141

RESUMO

KIAA0586 variants have been associated with a wide range of ciliopathies, mainly Joubert syndrome (JS, OMIM #616490) and short-rib thoracic dysplasia syndrome (SRTD, OMIM #616546). However, the hypothesis that this gene is involved with hydrolethalus syndrome (HSL, OMIM #614120) and orofaciodigital syndrome IV (OMIM #258860) has already been raised. Ciliopathies' clinical features are often overlapped despite differing in phenotype severity. Besides KIAA0586, HYLS1 and KIF7 are also known for being causative of ciliopathies, indicating that all three genes may have similar or converging genomic pathways. Overall, the genotypic and phenotypic spectrum of ciliopathies becomes wider and conflicting while more and more new variants are added to this group of disorders' molecular pot. In this case report we discuss the first Brazilian individual clinically diagnosed with hydrolethalus syndrome and molecular findings that demonstrate the role of KIAA0586 as a causative gene of a group of genetic disorders. Also, recent reports on individuals with intronic and exonic variants combined leading to ciliopathies support our patient's molecular diagnosis. At the same time, we discuss variable expressivity and overlapping features in ciliopathies.


Assuntos
Anormalidades Múltiplas , Cerebelo , Anormalidades do Olho , Doenças Renais Císticas , Fenótipo , Retina , Humanos , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Doenças Renais Císticas/genética , Anormalidades Múltiplas/genética , Retina/anormalidades , Retina/patologia , Retina/metabolismo , Cerebelo/anormalidades , Cerebelo/patologia , Ciliopatias/genética , Masculino , Mutação , Feminino , Proteínas de Ciclo Celular
11.
Cureus ; 16(6): e62689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036105

RESUMO

Mutations in the KIF7 gene have been implicated in autosomal recessive conditions such as Joubert syndrome, acrocallosal syndrome, and fetal hydrolethalus, as well as in retinal degeneration and other ocular manifestations due to their effect on primary cilia. In this study, we report that the full-field electroretinogram (ERG) test showed non-recordable scotopic ERG responses, while photopic ERG responses were diminished bilaterally. This is a case report of a 62-year-old female patient with painless, progressive vision loss in both eyes. Fundus examination revealed a pale optic nerve head, vessel attenuation, and macular thinning without peripheral pigmentary changes. The full-field electroretinogram (ERG) test showed non-recordable scotopic ERG responses, while photopic ERG responses were diminished bilaterally. Based on these ocular findings, the patient was clinically diagnosed with retinitis pigmentosa (RP) sine pigmento. Genetic testing identified a pathogenic heterozygous mutation in the KIF7 gene with the variant c.61C>T (p.Arg21*). Our case suggests that this pathologic variant may be associated with RP sine pigmento. Further studies are warranted to better understand the role of the KIF7 gene in retinal dystrophies.

12.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001875

RESUMO

The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, nonmoving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the downregulation of vitronectin-integrin αvß3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.


Assuntos
Diferenciação Celular , Cílios , Neovascularização Fisiológica , Hipófise , Animais , Camundongos , Angiogênese , Cílios/metabolismo , Cílios/fisiologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos Knockout , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Hipófise/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Quinases Dyrk/genética
13.
FEBS J ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825736

RESUMO

Centriolar satellites are ubiquitous membrane-less organelles that play critical roles in numerous cellular and organismal processes. They were initially discovered through electron microscopy as cytoplasmic granules surrounding centrosomes in vertebrate cells. These structures remained enigmatic until the identification of pericentriolar material 1 protein (PCM1) as their molecular marker, which has enabled their in-depth characterization. Recently, centriolar satellites have come into the spotlight due to their links to developmental and neurodegenerative disorders. This review presents a comprehensive summary of the major advances in centriolar satellite biology, with a focus on studies that investigated their biology associated with the essential scaffolding protein PCM1. We begin by exploring the molecular, cellular, and biochemical properties of centriolar satellites, laying the groundwork for a deeper understanding of their functions and mechanisms at both cellular and organismal levels. We then examine the implications of their dysregulation in various diseases, particularly highlighting their emerging roles in neurodegenerative and developmental disorders, as revealed by organismal models of PCM1. We conclude by discussing the current state of knowledge and posing questions about the adaptable nature of these organelles, thereby setting the stage for future research.

15.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791606

RESUMO

Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.


Assuntos
Dedos , Megalencefalia , Humanos , Megalencefalia/genética , Dedos/anormalidades
16.
Microorganisms ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674609

RESUMO

Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.

17.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502237

RESUMO

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Assuntos
Anormalidades Múltiplas , Diferenciação Celular , Cerebelo , Cerebelo/anormalidades , Anormalidades do Olho , Células-Tronco Pluripotentes Induzidas , Doenças Renais Císticas , Neurônios , Retina , Retina/anormalidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Cerebelo/patologia , Cerebelo/metabolismo , Neurônios/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Retina/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/metabolismo , Masculino , Feminino , Mutação/genética , Cílios/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473800

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.


Assuntos
Hipertensão , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/complicações , Qualidade de Vida , Rim , Hipertensão/etiologia , Fígado
19.
Am J Med Genet A ; 194(7): e63566, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38357848

RESUMO

PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.409G>A p.Gly137Arg in PRKACA. In this study, we report the fifth affected individual with the same variant and review the clinical features and radiographic findings of this rare syndrome.


Assuntos
Anormalidades Múltiplas , Polidactilia , Humanos , Polidactilia/genética , Polidactilia/patologia , Polidactilia/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/diagnóstico , Feminino , Comunicação Interatrial/genética , Comunicação Interatrial/diagnóstico por imagem , Comunicação Interatrial/diagnóstico , Comunicação Interatrial/patologia , Masculino , Fenótipo , Mutação/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/diagnóstico por imagem , Índia
20.
Biomedicines ; 12(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397964

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...