Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.680
Filtrar
1.
Curr Pharm Des ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108120

RESUMO

Globally, gram-negative bacteria are a significant cause of morbidity. Multi-drug resistance bacteria are responsible for an increasing surge in infections that place a high cost on healthcare systems around the world. Recently, colistin, an antibiotic belonging to the polymyxin family, was reintroduced to combat multidrug- resistant gram-negative bacteria. Excessive and persistent use of colistin has led to the development and spread of colistin-resistant gram-negative bacteria throughout the globe. Healthcare units in various countries, including Saudi Arabia, are currently battling colistin-resistant gram-negative bacteria. Recently, colistin-resistant gram-negative bacteria have become a major health concern in Saudi Arabia. Hence, extensive epidemiological surveys and studies are required to understand the current status of the colistin antibiotic. Examining the knowledge currently available to the medical community on the molecular mechanism, clinical effectiveness, molecular epidemiology, and bacterial resistance to colistin in Saudi Arabia is the aim of this review.

2.
Int J Antimicrob Agents ; : 107285, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111708

RESUMO

Colistin (COL) was once considered to be the last line of defence against multidrug-resistant bacteria belonging to the family Enterobacteriaceae. Due to the misuse of COL, COL-resistant (COL-R) Enterobacteriaceae have emerged. To address this clinical issue and combat COL resistance, novel approaches are urgently needed. In this study, the in vitro and in vivo antimicrobial and antibiofilm effects of the immunomodulator AS101 were investigated in combination with COL against COL-R Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). Checkerboard assay, time-kill assay, and scanning electron microscopy confirmed the in vitro antimicrobial phenotype, whereas, crystal violet staining and multidimensional confocal laser scanning microscopy with live/dead staining confirmed the antibiofilm capability of the combination therapy. Moreover, the Galleria mellonella infection model and the mouse infection model indicated the high in vivo efficacy of the combination therapy. Additionally, cytotoxicity experiments performed using human kidney-derived HK-2 cells and hemolysis assays performed using human erythrocytes collectively demonstrated safety at effective combination concentrations. Furthermore, quantification of the expression of inflammatory cytokines via ELISA confirmed the anti-inflammatory advantage of combination therapy. At the mechanistic level, changes in outer and inner membrane permeability and accumulation of ROS levels, which might be potential mechanisms for synergistic antimicrobial effects. In conclusion, this study found that AS101 can restore COL susceptibility in clinical COL-R E. coli and K. pneumoniae and also has synergistic antibiofilm and anti-inflammatory capabilities. This study provided a novel strategy to combat clinical infections caused by COL-R E. coli and K. pneumoniae.

3.
Front Pharmacol ; 15: 1409998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101134

RESUMO

Background: Carbapenem-resistant Gram-negative organism (CRO) infection is a critical clinical disease with high mortality rates. The 30-day mortality rate following antibiotic treatment serves as a benchmark for assessing the quality of care. Colistin sulfate is currently considered the last resort therapy against infections caused by CRO. Nevertheless, there is a scarcity of reliable tools for personalized prognosis of CRO infections. This study aimed to develop and validate a nomogram to predict the 30-day all-cause mortality in patients with CRO infection who underwent colistin sulfate treatment. Methods: A prediction model was developed and preliminarily validated using CRO-infected patients treated with colistin sulfate at Tongji Hospital in Wuhan, China, who were hospitalized between May 2018 and May 2023, forming the study cohort. Patients admitted to Xianning Central Hospital in Xianning, China, between May 2018 and May 2023 were considered for external validation. Multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of 30-day all-cause mortality. The receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and the calibration curve were used to evaluate model performance. The decision curve analysis (DCA) was used to assess the model clinical utility. Results: A total of 170 patients in the study cohort and 65 patients in the external validation cohort were included. Factors such as age, duration of combination therapy, nasogastric tube placement, history of previous surgery, presence of polymicrobial infections, and occurrence of septic shock were independently associated with 30-day all-cause mortality and were used to construct the nomogram. The AUC of the nomogram constructed from the above six factors was 0.888 in the training set. The Hosmer-Lemeshow test showed that the model was a good fit (p = 0.944). The calibration curve of the nomogram was close to the ideal diagonal line. Furthermore, the decision curve analysis demonstrated significantly better net benefit in the model. The external validation proved the reliability of the prediction nomogram. Conclusion: A nomogram was developed and validated to predict the occurrence of 30-day all-cause mortality in patients with CRO infection treated with colistin sulfate. This nomogram offers healthcare providers a precise and efficient means for early prediction, treatment management, and patient notification in cases of CRO infection treated with colistin sulfate.

4.
Iran J Vet Res ; 25(1): 5-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156804

RESUMO

Background: Antimicrobial resistance in avian pathogenic Escherichia coli (APEC) represents a major concern in the avian industry worldwide and limited studies have investigated Colistin resistance among APEC in Algeria. Aims: Investigate antibiotic resistance, in particular, Colistin, and mediated-Colistin resistance (mcr) genes, as well as the virulence genes in APEC. Methods: One hundred E. coli were isolated from poultry suspected of colibacillosis. Antimicrobial susceptibility testing was done on 14 antibiotics by the disk diffusion method. Colistin minimum inhibitory concentration (MIC) was assessed by the broth microdilution method. Using multiplex PCR, mcr genes (mcr-1 to 5) and 7 virulence-related genes were investigated in Colistin-resistant isolates. Results: Results showed high resistance to Tetracycline (99%), Nalidixic acid (92%), Doxycycline (90%), Ampicillin (89%), Ofloxacin (74%), Sulfamethoxazole-Trimethoprim (72%), and Amoxicillin-Clavulanic acid (57%); in addition, 92% of isolates were multidrug resistant. The rate of resistance to Colistin was 27% (27/100) of which 96.3% (26/27) of isolates carried the mcr-1 gene. Twenty-five of the Colistin-resistant isolates (92.59%) had at least three virulence genes. The most frequently isolated virulence genes were: fim H (96.3%) followed by hlyF, iroN, and iss (77.7%, each), iutA and ompT were found in 59.25% and 55.5% of isolates, respectively. The most prevalent combination of virulence factors was hlyF-iss-iroN-iutA-ompT-fimH. Conclusion: This is the first report which highlighted Colistin resistance with the detection of mcr-1 in APEC isolates in the area of study. Colistin resistance and carriage of mcr-1 in virulent and multidrug-resistant isolates of E. coli are alarming and a surveillance program to limit the spread of these pathogens is mandatory.

5.
Cureus ; 16(8): e67164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161549

RESUMO

INTRODUCTION: Antibiotic resistance among Gram-negative bacterial isolates is increasingly observed. With the emergence of carbapenem-resistant and pan-resistant pathogens, treating these resistant infections is becoming more challenging due to the limited number of effective drugs. There is a desperate need for the discovery of new antibiotics with novel mechanisms of action. Cefiderocol is one such novel antibiotic with a unique siderophore-based mechanism of action, which has been recently approved for clinical use against drug-resistant pathogens. The present study aims to identify the in vitro activity of cefiderocol against major carbapenem-resistant clinical isolates, including those resistant to colistin. MATERIALS AND METHODS: One hundred and one carbapenem-resistant clinical isolates were included in the study. Identification and antibiotic susceptibility testing were performed using the automated VITEK® 2 Compact (bioMérieux SA, Marcy-l'Étoile, France) identification and susceptibility testing system, except for colistin and cefiderocol. Colistin resistance in Enterobacterales and Pseudomonas aeruginosa was assessed using the agar dilution minimum inhibitory concentration method, while for Acinetobacter baumannii, broth microdilution method was employed. Cefiderocol susceptibility testing was conducted using the Kirby-Bauer disc diffusion method with 30 µg discs on standard Mueller-Hinton agar plates. For selected isolates, cefiderocol minimum inhibitory concentration detection was performed using broth microdilution with iron-depleted cation-adjusted Mueller-Hinton broth. RESULTS: Of the total 101 isolates, the majority (75, 74.25%) were Enterobacterales which included Klebsiella pneumonia (42, 41.58%) and Escherichia coli (33, 32.67%), followed by Pseudomonas aeruginosa (13, 12.87%) and Acinetobacter baumannii (10, 9.9%). Only three (2.97%) of the isolates were Stenotrophomonas maltophilia. Most of the isolates were susceptible to cefiderocol, with only four (3.96%) isolates showing resistance. Colistin resistance was observed in six (6.12%) of the isolates. There was a good correlation between disc diffusion testing and broth microdilution testing for the detection of cefiderocol-resistant isolates. No cross-resistance with colistin was observed, as all colistin-resistant isolates were uniformly susceptible to cefiderocol Conclusion: Cefiderocol is highly effective with good in vitro activity against the majority of carbapenem-resistant pathogens. While some isolates do show resistance, it is relatively uncommon. Given its safety profile compared to colistin, cefiderocol can serve as an alternative to colistin to treat carbapenem-resistant infections and it may be considered even for the management of colistin-resistant cases. Disc diffusion testing is a reliable method for identifying cefiderocol-resistant isolates in routine clinical and diagnostic laboratories, especially in resource-limited settings.

6.
Microbiol Resour Announc ; : e0031324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162443

RESUMO

Colistin is one of the last-line treatments for multi-drug resistant Gram-negative bacterial infections. The emergence of mobile colistin resistance genes has driven global concern and triggered the need for surveillance. Our report reveals the identification of mcr-9.1 and mcr-10.1 in Ecuador by employing a proximity ligation technique.

7.
Microbiol Spectr ; : e0053224, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162501

RESUMO

Colistin resistance in Escherichia coli is of public health significance for its use to treat multidrug-resistant Gram-negative infections. Amino acid variations in PmrB have been implicated in colistin resistance in E. coli. In this cross-sectional study, 288 generic E. coli isolates from surveillance of broiler chicken and feedlot cattle feces, retail meat, wastewater, and well water were whole-genome sequenced. Phylogroup designation and screening for two amino acid substitutions in PmrB putatively linked to colistin resistance (Y358N, E123D) were performed in silico. Three additional data sets of publicly available E. coli assemblies were similarly scrutinized: (i) E. coli isolates from studies identifying the Y358N or E123D substitutions, (ii) colistin-susceptible E. coli isolates reported in the literature, and (iii) a random sampling of 14,700 E. coli assemblies available in the National Center for Biotechnology Information public database. Within all data sets, ≥95% of phylogroup B1 and C isolates have the PmrB Y358N variation. The PmrB E123D amino acid substitution was only identified in phylogroup B2 isolates, of which 94%-100% demonstrate the substitution. Both PmrB amino acid variations were infrequent in other phylogroups. Among published colistin susceptible isolates, colistin minimum inhibitory concentrations (MICs) were not higher in isolates bearing the E123D and Y358N amino acid variations than in isolates without these PmrB substitutions. The E123D and Y358N PmrB amino acid substitutions in E. coli appear strongly associated with phylogroup. The previously observed associations between Y358N and E123D amino acid substitutions in PmrB and colistin resistance in E. coli may be spurious. IMPORTANCE: Colistin is a critical last-resort treatment for extensively drug-resistant Gram-negative infections in humans. Therefore, accurate identification of the genetic mechanisms of resistance to this antimicrobial is crucial to effectively monitor and mitigate the spread of resistance. Examining over 16,000 whole-genome sequenced Escherichia coli isolates, this study identifies that PmrB E123D and Y358N amino acid substitutions previously associated with colistin resistance in E. coli are strongly associated with phylogroup and are alone not sufficient to confer a colistin-resistant phenotype. This is a critical clarification, as both substitutions are identified as putative mechanisms of colistin resistance in many publications and a common bioinformatic tool. Given the potential spurious nature of initial associations of these substitutions with colistin resistance, this study's findings emphasize the importance of appropriate experimental design and consideration of relevant biological factors such as phylogroup when ascribing causal mechanisms of resistance to chromosomal variations.

8.
BMC Infect Dis ; 24(1): 812, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134953

RESUMO

BACKGROUND: Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum ß-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS: A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS: Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION: This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.


Assuntos
Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , beta-Lactamases/genética , Estudos Transversais , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Oriente Médio/epidemiologia , Feminino , Adulto , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/enzimologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Adulto Jovem , Adolescente , Idoso , Criança , Carbapenêmicos/farmacologia , Pré-Escolar
9.
Int J Biol Macromol ; : 134670, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151868

RESUMO

Endolysins (lysins), a novel class of antibacterial agents derived from bacteriophages, efficiently lyse bacteria by degrading the peptidoglycan layer within the bacterial wall. Colistin, a classic peptide antibiotic with the ability to permeabilize the outer membrane, has recently shown great promise in synergizing with lysins against gram-negative bacteria. However, the exact mechanism responsible for their synergy remains unclear. Here, we first demonstrated the synergistic bacterial killing of various lysin and colistin combinations. With a model lysin, LysAB2, we then confirmed that there is a threshold concentration of colistin causing sufficient permeabilization of the outer membrane for lysin to access the peptidoglycan layer and subsequently exert its lytic ability. The threshold colistin concentrations were found to range 0.2-0.8 µM for the tested bacteria, with the exact value largely depending on the density of lipopolysaccharides on the outer membrane. Beyond the threshold colistin level, LysAB2 could synergize with colistin at a concentration as low as 0.31 µM. Next, we proved for the first time that lysin-induced degradation of the peptidoglycan layer facilitated the disruption of cytoplasmic membrane by colistin, elevated the level of reactive oxygen species in bacterial cells, and boosted the killing effect of colistin. Additionally, the colistin-lysin combination could effectively eliminate established biofilms due to the biofilm dispersal ability of lysin. The in-vivo efficacy was preliminary confirmed in a Galleria mellonella infection model for combination with colistin doses (≥ 1.8 µg/larvae), which could reach beyond the threshold concentration, and a fixed LysAB2 dose (10 µg/larvae). In summary, our study provided the first experimental evidence unravelling the mechanisms behind the synergy of colistin and lysins. All these findings provided important insights in guiding the dosing strategy for applying this combination in future development.

11.
J Infect Dev Ctries ; 18(7): 1050-1057, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39078788

RESUMO

INTRODUCTION: The aim of this study was to compare the efficacy and safety of colistin sulfate (CS) with polymyxin B sulfate (PMB) in the treatment of pneumonia induced by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODOLOGY: Patients diagnosed with pneumonia caused by CR-GNB and admitted to the intensive care unit (ICU) from January 2020 to September 2022 were enrolled in this study. The patients were divided into the CS group and the PMB group according to their medication regimens. Group-wise demographic data, clinical efficacy, prognosis, and adverse events were analyzed and compared. RESULTS: A total of 120 patients (68 in the CS group and 52 in the PMB group) with pneumonia were included in the study. The majority of the pathogens were CR-Acinetobacter baumannii, followed by CR-Klebsiella pneumoniae, and CR-Pseudomonas aeruginosa. The clinical response rates in the CS and PMB groups after treatment were 62.0% and 65.4%, bacterial clearances were 44.0% and 36.5%, 28-day mortality rates were 16.0% and 13.5%, respectively; no significant differences between the two treatments were found. Nevertheless, the adverse effects were significantly less common in the CS group than in the PMB group, especially when treatments were administered intravenously. CONCLUSIONS: CS, a novel polymyxin E formulation, is as effective as PMB in treating pneumonia induced by CR-GNB while causing less side effects.


Assuntos
Antibacterianos , Colistina , Pneumonia Bacteriana , Polimixina B , Humanos , Polimixina B/uso terapêutico , Polimixina B/administração & dosagem , Masculino , Colistina/uso terapêutico , Colistina/efeitos adversos , Colistina/administração & dosagem , Feminino , Antibacterianos/uso terapêutico , Pessoa de Meia-Idade , Idoso , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Estudos Retrospectivos , Acinetobacter baumannii/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Resultado do Tratamento , Adulto , Bactérias Gram-Negativas/efeitos dos fármacos , Unidades de Terapia Intensiva , Pseudomonas aeruginosa/efeitos dos fármacos , Idoso de 80 Anos ou mais , Klebsiella pneumoniae/efeitos dos fármacos
12.
Sci Rep ; 14(1): 16444, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013979

RESUMO

Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.


Assuntos
Injúria Renal Aguda , Antibacterianos , Carnitina , Colistina , Mitocôndrias , Animais , Colistina/efeitos adversos , Colistina/administração & dosagem , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Carnitina/farmacologia , Carnitina/administração & dosagem , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Masculino , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Ciclosporina
13.
Iran J Pharm Res ; 23(1): e143910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005734

RESUMO

Background: Antibiotic-resistant Escherichia coli is one of the major opportunistic pathogens that cause hospital-acquired infections worldwide. These infections include catheter-associated urinary tract infections (UTIs), ventilator-associated pneumonia, surgical wound infections, and bacteraemia. Objectives: To understand the mechanisms of resistance and prevent its spread, we studied E. coli C91 (ST38), a clinical outbreak strain that was extensively drug-resistant. The strain was isolated from an intensive care unit (ICU) in one of Kuwait's largest hospitals from a patient with UTI. Methods: This study used whole-genome sequencing (Illumina, MiSeq) to identify the strain's multi-locus sequence type, resistance genes (ResFinder), and virulence factors. This study also measured the minimum inhibitory concentrations (MIC) of a panel of antibiotics against this isolate. Results: The analysis showed that E. coli C-91 was identified as O99 H30 ST38 and was resistant to all antibiotics tested, including colistin (MIC > 32 mg/L). It also showed intermediate resistance to imipenem and meropenem (MIC = 8 mg/L). Genome analysis revealed various acquired resistance genes, including mcr-1, bla CTX-M-14, bla CTX-M-15, and bla OXA1. However, we did not detect bla NDM or bla VIM. There were also several point mutations resulting in amino acid changes in chromosomal genes: gyrA, parC, pmrB, and ampC promoter. Additionally, we detected several multidrug efflux pumps, including the multidrug efflux pump mdf(A). Eleven prophage regions were identified, and PHAGE_Entero_SfI_NC was detected to contain ISEc46 and ethidium multidrug resistance protein E (emrE), a small multidrug resistance (SMR) protein family. Finally, there was an abundance of virulence factors in this isolate, including fimbriae, biofilm, and capsule formation genes. Conclusions: This isolate has a diverse portfolio of antimicrobial resistance and virulence genes and belongs to ST38 O99 H30, posing a serious challenge to treating infected patients in clinical settings.

14.
Infect Drug Resist ; 17: 2899-2912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005853

RESUMO

Purpose: The World Health Organization has identified Klebsiella pneumoniae (KP) as a significant threat to global public health. The rising threat of carbapenem-resistant Klebsiella pneumoniae (CRKP) leads to prolonged hospital stays and higher medical costs, necessitating faster diagnostic methods. Traditional antibiotic susceptibility testing (AST) methods demand at least 4 days, requiring 3 days on average for culturing and isolating the bacteria and identifying the species using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), plus an extra day for interpreting AST results. This lengthy process makes traditional methods too slow for urgent clinical situations requiring rapid decision-making, potentially hindering prompt treatment decisions, especially for fast-spreading infections such as those caused by CRKP. This research leverages a cutting-edge diagnostic method that utilizes an artificial intelligence-clinical decision support system (AI-CDSS). It incorporates machine learning algorithms for the swift and precise detection of carbapenem-resistant and colistin-resistant strains. Patients and Methods: We selected 4307 KP samples out of a total of 52,827 bacterial samples due to concerns about multi-drug resistance using MALDI-TOF MS and Vitek-2 systems for AST. It involved thorough data preprocessing, feature extraction, and machine learning model training fine-tuned with GridSearchCV and 5-fold cross-validation, resulting in high predictive accuracy, as demonstrated by the receiver operating characteristic and area under the curve (AUC) scores, laying the groundwork for our AI-CDSS. Results: MALDI-TOF MS analysis revealed distinct intensity profiles differentiating CRKP and susceptible strains, as well as colistin-resistant Klebsiella pneumoniae (CoRKP) and susceptible strains. The Random Forest Classifier demonstrated superior discriminatory power, with an AUC of 0.96 for detecting CRKP and 0.98 for detecting CoRKP. Conclusion: Integrating MALDI-TOF MS with machine learning in an AI-CDSS has greatly expedited the detection of KP resistance by approximately 1 day. This system offers timely guidance, potentially enhancing clinical decision-making and improving treatment outcomes for KP infections.

15.
Front Cell Infect Microbiol ; 14: 1410997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027135

RESUMO

Background: Acinetobacter baumannii (AB) has emerged as one of the most challenging pathogens worldwide, causing invasive infections in the critically ill patients due to their ability to rapidly acquire resistance to antibiotics. This study aimed to analyze antibiotic resistance genes harbored in AB and non-baumannii Acinetobacter calcoaceticus-baumannii (NB-ACB) complex causing invasive diseases in Korean children. Methods: ACB complexes isolated from sterile body fluid of children in three referral hospitals were prospectively collected. Colistin susceptibility was additionally tested via broth microdilution. Whole genome sequencing was performed and antibiotic resistance genes were analyzed. Results: During January 2015 to December 2020, a total of 67 ACB complexes were isolated from sterile body fluid of children in three referral hospitals. The median age of the patients was 0.6 (interquartile range, 0.1-7.2) years old. Among all the isolates, 73.1% (n=49) were confirmed as AB and others as NB-ACB complex by whole genome sequencing. Among the AB isolates, only 22.4% susceptible to carbapenem. In particular, all clonal complex (CC) 92 AB (n=33) showed multi-drug resistance, whereas 31.3% in non-CC92 AB (n=16) (P<0.001). NB-ACB showed 100% susceptibility to all classes of antibiotics except 3rd generation cephalosporin (72.2%). The main mechanism of carbapenem resistance in AB was the bla oxa23 gene with ISAba1 insertion sequence upstream. Presence of pmr gene and/or mutation of lpxA/C gene were not correlated with the phenotype of colistin resistance of ACB. All AB and NB-ACB isolates carried the abe and ade multidrug efflux pumps. Conclusions: In conclusion, monitoring and research for resistome in ACB complex is needed to identify and manage drug-resistant AB, particularly CC92 AB carrying the bla oxa23 gene.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Humanos , Criança , Pré-Escolar , Lactente , República da Coreia/epidemiologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Feminino , Masculino , COVID-19/epidemiologia , Colistina/farmacologia , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efeitos dos fármacos , Acinetobacter calcoaceticus/isolamento & purificação , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Estudos Prospectivos , beta-Lactamases/genética , beta-Lactamases/metabolismo
16.
Front Mol Biosci ; 11: 1338497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050734

RESUMO

Introduction: Colistin (CMS) is used for the curation of infections caused by multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney and neuronal cells. The recommended human doses are 2.5-5 mg/kg/day, and the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used doses even 10-fold higher than human doses. It is essential to investigate the impact of metabolic response of doses, that are comparable to human doses, to identify biomarkers of latent toxicity. The innovation of the current study is the in vivo stimulation of CMS's impact using a range of CMS doses that have never been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered in mice, correspond to the therapeutic and toxic human doses, based on previous expertise of our team, regarding the human exposure. The study mainly focused on the biochemical impact of CMS on the metabolome, and on the alterations provoked by 50%-fold of dose increase. The main objectives were i) the comprehension of the biochemical changes resulting after CMS administration and ii) from its dose increase; and iii) the determination of dose-related metabolites that could be considered as toxicity monitoring biomarkers. Methods: The in vivo experiment employed two doses of CMS versus a control group treated with normal saline, and samples of plasma, kidney, and liver were analysed with a UPLC-MS-based metabolomics protocol. Both univariate and multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and pathway analysis were combined for the data interpretation. Results: The results pointed out six dose-responding metabolites (PAA, DA4S, 2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in renal purine metabolism. Also, the study determined altered levels of liver suberylglycine, a metabolite linked to hepatic steatosis. One of the most intriguing findings was the detection of elevated levels of renal xanthine and uric acid, that act as AChE activators, leading to the rapid degradation of acetylcholine. This evidence provides a naïve hypothesis, for the potential association between the CMS induced nephrotoxicity and CMS induced 39 neurotoxicity, that should be further investigated.

17.
Infect Drug Resist ; 17: 3011-3023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050833

RESUMO

Purpose: Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. Methods: Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. Results: The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. Conclusion: The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39073669

RESUMO

Non-baumannii Acinetobacter spp. are becoming more prevalent in clinical settings including those that present resistance to last-resort antibiotics such as colistin. AB222-IK40 is an Acinetobacter courvalinii strain isolated from the Ottawa Hospital Research Institute located in Ottawa, Canada. To our knowledge, it is the first report of clinical A. courvalinii in Canada. Based on the susceptibility profile, AB222-IK40 is resistant to colistin and non-susceptible to ertapenem. Whole-genome sequencing allowed for genomic investigation into colistin resistance mechanisms. No previously identified mechanism(s) were observed, but a mobile colistin resistance (mcr)-like gene and a UDP-glucose dehydrogenase gene were identified. Based on phylogenomic analyses, the mcr-like gene is an intrinsic phosphoethanolamine transferase. This gene family is implicated in one of the many mechanisms responsible for colistin resistance in Acinetobacter baumannii as well as Acinetobacter modestus. UDP-glucose dehydrogenase is involved in colistin resistance in Enterobacterales and has been shown to be involved in capsule formation in A. baumannii. Global lipidomics revealed greater abundance of phosphatidyl-myo-inositol and lyso-phosphatidyl ethanolamine moieties in the membrane of A. courvalinii than in A. baumannii. Lipidomic profiles showed differences that were probably responsible for the colistin resistance phenotype in AB222-IK40. This isolate was also hypervirulent based on survival assays in Galleria mellonella. As this is the first report of A. courvalinii from a hospital in Canada, this species may be an emerging clinical pathogen, and therefore, it is important to understand this mechanism of its colistin resistance and hypervirulence.

19.
Environ Pollut ; 359: 124598, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053799

RESUMO

Wastewater treatment plants are hotspots for the release of antimicrobial resistant pathogenic bacteria into aquatic ecosystems, significantly contributing to the cycle of antimicrobial resistance. Special attention should be paid to antimicrobial resistant ESKAPE bacteria, which have been identified as high-priority targets for control measures. Among them, Klebsiella pneumoniae is particularly noteworthy. In this study, we collected wastewater samples from the inlet, sedimentation tank, and effluent water of a wastewater treatment plant in June, July, October, and November of 2018. We detected and characterized 42 K. pneumoniae strains using whole genome sequencing (15 from the inlet, 8 from the sedimentation tank, and 19 from the effluent). Additionally, the strains were tested for their antimicrobial resistance phenotype. Using whole genome sequencing no distinct patterns were observed in terms of their genetic profiles. All strains were resistant to tetracycline, meanwhile 60%, 47%, and 37.5% of strains isolated from the inlet, sedimentation tank, and effluent, respectively, were multidrug resistant. Some of the multidrug resistant isolates were also resistant to colistin, and nearly all tested positive for the eptB and arnT genes, which are associated with polymyxin resistance. Various antimicrobial resistance genes were linked to mobile genetic elements, and they did not correlate with detected virulence groups or defense systems. Overall, our results, although not quantitative, highlight that multidrug resistant K. pneumoniae strains, including those resistant to colistin and genetically unrelated, being discharged into aquatic ecosystems from wastewater treatment plants. This suggests the necessity of monitoring aimed at genetically characterizing these pathogenic bacteria.

20.
Microorganisms ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39065073

RESUMO

Colistin-resistant Escherichia coli (COE) has been recently recognized as a serious threat to animal and human health. This study aimed to determine the prevalence and antibiotic resistance profile of COE isolated from raw beef and cow feces in Vietnam. Our results showed that 16% (16/100) and 32% (32/100) of raw beef and cow feces samples were positive for COE, respectively. A total of 48 COE strains were isolated, with 16 originating from raw beef and 32 from cow feces samples. The antibiotic susceptibility test revealed that the COE isolates were highly resistant to ampicillin, tetracycline, florfenicol, trimethoprim/sulfamethoxazole, streptomycin, and nalidixic acid, with resistance rates ranging from 66.67% to 87.5%. In addition, 87.5% of the isolates were identified to be multidrug-resistant strains. Further molecular characterization indicated that all COE isolates carried the mcr-1 gene, with 16 of them also harboring blaCTX-M-55 genes. Taken together, the findings in this study demonstrate that raw beef and cow feces are important sources of COE, which can be potentially transmitted to humans through the food chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...