Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 200: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582598

RESUMO

The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.


Assuntos
Inseticidas , Mariposas , Oryza , Animais , Larva/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Pupa , Mariposas/metabolismo , Oryza/metabolismo
2.
Plant Cell Physiol ; 63(12): 1900-1913, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681253

RESUMO

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Germinação/genética , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Insect Biochem Mol Biol ; 143: 103740, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183732

RESUMO

Nuclear receptors (NRs) function as key factors in diverse signaling and metabolic pathways. Previous studies have focused on the roles of a nuclear receptor, hormone receptor 4 (HR4), mainly in holometabolous insects, while current knowledge of its function in hemimetabolous insects is still limited. In this study, we identified a HR4 gene in the orthopteran species Locusta migratoria. The full-length open reading frame of LmHR4 comprises 2694-nucleotides encoding a polypeptide of 897 amino acids, which contained a DNA-binding and a ligand-binding domain. Analyzing LmHR4 expression by quantitative reverse-transcription PCR (RT-qPCR) revealed that LmHR4 was highly expressed in integument, hindgut and fat body. During development from 3rd and 5th nymphal instars, the expression of LmHR4 reached maximal levels before ecdysis. We further demonstrated that LmHR4 expression is induced by 20-hydroxyecdysone (20E) and suppressed by silencing LmEcR, suggesting that LmHR4 expression is controlled by 20E signaling. The dsLmHR4-injected nymphs failed to molt and remained in the nymphal stage until death. Hematoxylin and eosin staining of the integument indicated that apolysis in the dsLmHR4-injected insects was delayed compared to that in control insects. Chitin staining and ultra-structural analysis showed that both the synthesis of the new cuticle and the degradation of the old cuticle were blocked in dsLmHR4-injected insects. Silencing LmHR4 decreased 20E titer and down-regulated the transcript levels of genes involved in chitin synthesis and degradation. Taken together, these results suggest that LmHR4 is essential for the formation of epidermal cuticle by mediating the 20E signaling to regulate the expression of chitin synthesis and degradation genes.


Assuntos
Locusta migratoria , Animais , Ecdisterona/metabolismo , Proteínas de Insetos/metabolismo , Locusta migratoria/metabolismo , Muda/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Insect Biochem Mol Biol ; 126: 103450, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818622

RESUMO

Insect adult metamorphosis generally proceeds with undetectable levels of juvenile hormone (JH). In adult development of the red flour beetle Tribolium castaneum, biosynthesis of adult cuticle followed by its pigmentation and sclerotization occurs, and dark coloration of the cuticle becomes visible in pharate adults. Here, we examined the molecular mechanism of adult cuticular formation in more detail. We noticed that an exogenous JH mimic (JHM) treatment of Day 0 pupae did not inhibit pigmentation or sclerotization, but instead, induced precocious pigmentation of adult cuticle two days in advance. Quantitative RT-PCR analyses revealed that ecdysone-induced protein 75B (E75) is downregulated in JHM-treated pupae. Meanwhile, tyrosine hydroxylase (Th), an enzyme involved in cuticular pigmentation and sclerotization, was precociously induced, whereas a structural cuticular protein CPR27 was downregulated, by exogenous JHM treatment. RNA interference-mediated knockdown of E75 resulted in precocious adult cuticular pigmentation, which resembled the phenotype caused by JHM treatment. Notably, upregulation of Th as well as suppression of CPR27 were observed with E75 knockdown. Meanwhile, JHM treatment suppressed the expression of genes involved in melanin synthesis, such as Yellow-y and Laccase 2, but E75 knockdown did not result in marked reduction in their expression. Taken together, these results provided insights into the regulatory mechanisms of adult cuticular formation; the transcription of genes involved in adult cuticular formation proceeds in a proper timing with undetectable JH, and exogenous JHM treatment disturbs their transcription. For some of these genes such as Th and CPR27, E75 is involved in transcriptional regulation. This study shed light on the molecular mode of action of JHM as insecticides; exogenous JHM treatment disturbed the expression of genes involved in the adult cuticular formation, which resulted in lethality as pharate adults.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Insetos/metabolismo , Hormônios Juvenis , Metamorfose Biológica , Pigmentação , Receptores de Esteroides/metabolismo , Tribolium , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes de Insetos , Proteínas de Insetos/efeitos dos fármacos , Proteínas de Insetos/genética , Hormônios Juvenis/metabolismo , Hormônios Juvenis/farmacologia , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologia , Pigmentação/genética , Pigmentação/fisiologia , Receptores de Esteroides/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tribolium/genética , Tribolium/metabolismo , Tribolium/fisiologia , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Pest Manag Sci ; 76(9): 2907-2917, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32358831

RESUMO

BACKGROUND: Knickkopf (Knk) proteins play crucial roles in the formation of insect cuticle. Recent studies in the holometabolous insect red flour beetle (Tribolium castaneum) have shown that three Knk genes encoding TcKnk, TcKnk2 and TcKnk3 play different but essential roles at different developmental stages and in different tissues. However, the functions of Knk genes had not been fully explored in hemimetabolous insects such as the migratory locust Locusta migratoria. RESULTS: We identified three transcripts of LmKnk-like genes LmKnk2 and LmKnk3 with the full-length cDNA sequences, which were named as LmKnk2, LmKnk3-FL and LmKnk3-5'. These three transcripts were highly expressed before molting and mainly expressed in the integument. Among these genes, silencing only LmKnk3-5' by RNA interference (RNAi) caused molting defects and high mortality of the locusts. Injection of dsLmKnk3-5' dramatically decreased chitin content, but did not affect cuticle laminar ultra-structures in the integument. After the knockdown of LmKnk3-5' transcript, lipid deposition on the cuticle surface was impeded, and locusts exhibited increased susceptibility to each of four insecticides in three different classes. However, no visible phenotypic changes were observed after LmKnk2 or LmKnk3-FL was silenced by RNAi. CONCLUSION: We demonstrate that LmKnk3-5' is essential for cuticle formation in L. migratoria. This contrasts the findings that the cognate protein in T. castaneum TcKnk3-5' is dispensable for cuticle formation and survival. Hence, we provide some evidence that the function of Knk-type proteins may be species-specific. We therefore think that LmKnk3-5' may be a good target for the application of RNAi-based technologies for species-specific insect pest management. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas , Locusta migratoria , Tribolium , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Interferência de RNA , Tribolium/genética
6.
Planta ; 251(4): 93, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246349

RESUMO

MAIN CONCLUSION: Genome-wide identification, spatio-temporal expression analysis and functional characterization of selected Brassica napus GPATs highlight their roles in cuticular wax biosynthesis and defense against fungal pathogens. Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is a key enzyme in the biosynthesis of glycerolipids, a major component of cellular membranes and extracellular protective layers, such as cuticles in plants. Brassica napus is an economically important crop and cultivated worldwide mostly for its edible oil. The B. napus GPATs (BnGPATs) are insufficiently characterized. Here, we performed genome-wide analysis to identify putative GPATs in B. napus and its diploid progenitors B. rapa and B oleracea. The 32 B. napus BnGPATs are phylogenetically divided into three major groups, cutin, suberin, and diverse ancient groups. Analysis of transcriptomes of different tissues and seeds at different developmental stages revealed the spatial and temporal expression profiles of BnGPATs. The yield and oil quality of B. napus are adversely affected by the necrotrophic fungus, Sclerotinia sclerotiorum. We showed that several BnGPATs, including cutin-related BnGPAT19 and 21, were upregulated in the S. sclerotiorum resistant line. RNAi-mediated suppression of BnGPAT19 and 21 in B. napus resulted in thinner cuticle, leading to rapid water and chlorophyll loss in toluidine blue staining and leaf bleaching assays. In addition, the RNAi plants also developed severe necrotic lesions following fungal inoculation compared to the wild-type plants, indicating that BnGPAT19 and 21 are likely involved in cuticular wax biosynthesis that is critical for initial pathogen defense. Taken together, we provided a comprehensive account of GPATs B. napus and characterized BnGPAT19 and 21 for their potential roles in cuticular wax biosynthesis and defense against fungal pathogens.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipídeos de Membrana/biossíntese , Ascomicetos/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glicerol-3-Fosfato O-Aciltransferase/classificação , Lipídeos/biossíntese , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Transcriptoma
7.
Pest Manag Sci ; 76(6): 2225-2232, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981304

RESUMO

BACKGROUND: The application of RNA interference (RNAi) technique in controlling agricultural insect pests has been receiving much attention since the discovery of RNAi. The brown planthopper (BPH) Nilaparvata lugens, a notorious pest of rice, has evolved a high level of resistance to many kinds of insecticides. Tyrosine hydroxylase (Th) is an indispensable survival gene in holometabolous insects, playing key roles in cuticle tanning and immunity. In this study, we investigated whether Th could be used as a potential target in controlling N. lugens. RESULTS: Here, we demonstrated that NlTh had a periodical expression pattern during molting with the highest level observed in epidermis. Dysfunction of NlTH by dsNlTh microinjection or 3-IT feeding similarly caused rapid death of N. lugens. Compared with dsGFP control BPHs, dsNlTh injected BPHs (i) had cuticle pigmentation and sclerotizaton defects; (ii) had less endocuticle lamella in tergum integument; (iii) showed higher mortality during the molting process as a result of defective cuticle shedding; (iv) showed feeding disorders indicated by a low number of probe wound dots on rice; (v) had more vulnerable cuticle. CONCLUSION: This study demonstrated that TH orthologues play a conservative and crucial role for exocuticle tanning in both holometabolous and hemimetabolous insects, and NlTh could be targeted for RNAi-mediated BPH control. The rapid lethal phenotype of NlTH dysfunction BPHs partly induced by cuticle formation defects. © 2020 Society of Chemical Industry.


Assuntos
Hemípteros , Animais , Muda , Interferência de RNA , Tirosina 3-Mono-Oxigenase
8.
Front Plant Sci ; 9: 223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541083

RESUMO

The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two most closely related homologs of AtZOU, OsZOU-1 and OsZOU-2; of these, OsZOU-1 expression is limited to within the endosperm where it can be detected throughout this structure 5 days after pollination (DAP). Its expression gradually decreases from seven DAP to nine DAP. The second of the two most closely related homologs, OsZOU-2, is highly expressed in leaves and stem, but is not detected in developing seeds. Heterologous expression of OsZOU-1 and OsZOU-2 in Atzou-4 mutants also revealed that OsZOU-1 partially complements the seed phenotypes of these individuals, while its counterpart, OsZOU-2, was unable to recover these phenotypes. The over-expression of OsZOU-1 severely disrupts both seed development and plant growth in transgenic rice lines, as plants in which this gene has been knocked down failed in the separation of endosperm from embryo and cuticle formation during seed development. The results of this study therefore suggest that OsZOU-1 is orthologous to the AtZOU, and regulates both endosperm development and cuticle formation in rice.

9.
mBio ; 8(5)2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951480

RESUMO

The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae), is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae). The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host's growth and reproduction but contributes to the host's cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont's biological roles for the stored-product pest.IMPORTANCE Some beetles notorious as stored-product pests possess well-developed symbiotic organs called bacteriomes for harboring specific symbiotic bacteria, although their biological roles have been poorly understood. Here we report a peculiar endosymbiotic system of a grain pest beetle, Oryzaephilus surinamensis, in which four oval bacteriomes in the abdomen are full of extremely elongated tubular bacterial cells. Experimental symbiont elimination did not hinder the host's growth and reproduction, but resulted in emergence of reddish beetles, uncovering the symbiont's involvement in host's cuticle formation. We speculate that the extremely elongated symbiont cell morphology might be due to the degenerative symbiont genome deficient in bacterial cell division and/or cell wall formation, which highlights an evolutionary consequence of intimate host-symbiont coevolution.


Assuntos
Bacteroidetes/isolamento & purificação , Besouros/metabolismo , Besouros/microbiologia , Simbiose , Animais , Bacteroidetes/genética , Bacteroidetes/metabolismo , Besouros/crescimento & desenvolvimento , Evolução Molecular , Genoma Bacteriano , Larva , Filogenia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...