Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
2.
Chemosphere ; 364: 143248, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233291

RESUMO

Microcystin (MC) toxin produced by cyanobacteria has become a significant concern for societies worldwide. The risk of MC in drinking water has been assessed to human health. Nonetheless, its risk to animal health has not been thoroughly evaluated. This study investigated MCs in irrigation water and alfalfa plant from nearby farmlands. Both irrigation water and alfalfa shoots contained greater MC concentrations (1.8-17.4 µg L-1 and 0.053-0.128 µg g-1) during summer than winter (2.4 µg L-1 and 0.017 µg g-1). These MC concentrations showed a correlation with the predominance of cyanobacteria in the sites, triggering the potential risk of these microorganisms in irrigation waters. Accordingly, there would be a high risk (risk quotient, RQ > 1) during summer and a moderate risk (0.1

Assuntos
Irrigação Agrícola , Medicago sativa , Microcistinas , Microcistinas/metabolismo , Microcistinas/análise , Medicago sativa/metabolismo , Animais , Medição de Risco , Monitoramento Ambiental , Estações do Ano , Cianobactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Bovinos , Ovinos
3.
Chemosphere ; : 143436, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349071

RESUMO

Cyanobacteria-produced allelochemicals, including hepatotoxic microcystins (MCs), exert an inhibitory effect on macrophyte growth. However, the role of macrophyte-associated bacteria and algae (macrophyte microbiota) in mitigating these immediate negative effects of cyanotoxins remains poorly understood. In this paper, we analyzed the biodegradation of microcystin-RR, MC-LR, and MC-LF by microbiota of the macrophyte Spirodela polyrhiza. The biodegradation of two MC variants was observed and LC-MS/MS analysis allowed identifying the degradation products of MC-RR (m/z 1011, 984, 969, 877, 862, 820, and 615) and MC-LR (m/z 968 and 653), including eight previously unreported products. No degradation products of MC-LF were detected, suggesting its stability and resistance under experimental conditions. NGS-based profiling of microbial consortia revealed no major differences in bacterial community composition across experimental treatments. Taxa previously reported as capable of MC degradation have been found in S. polyrhiza microbiota. Furthermore, the presence of genes encoding putative microcystinase homologues and the formation of new linear intermediates suggest a biochemical pathway that is similar, but not identical to previously reported. The ability of aquatic plant microbiota to biodegrade MCs holds environmental significance, and further studies in this field are required.

4.
Toxins (Basel) ; 16(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39330836

RESUMO

Cyanobacteria are cosmopolitan organisms; nonetheless, climate change and eutrophication are increasing the occurrence of cyanobacteria blooms (cyanoblooms), thereby raising the risk of cyanotoxins in water sources used for drinking, agriculture, and livestock. This study aimed to determine the presence of cyanobacteria, including toxigenic cyanobacteria and the occurrence of cyanotoxins in the El Pañe reservoir located in the high-Andean region, Arequipa, Peru, to support water quality management. The study included morphological observation of cyanobacteria, molecular determination of cyanobacteria (16S rRNA analysis), and analysis of cyanotoxins encoding genes (mcyA for microcystins, cyrJ for cylindrospermopsins, sxtl for saxitoxins, and AnaC for anatoxins). In parallel, chemical analysis using Liquid Chromatography coupled with Mass Spectrometry (LC-MS/MS) was performed to detect the presence of cyanotoxins (microcystins, cylindrospermopsin, saxitoxin, and anatoxin, among others) and quantification of Microcystin-LR. Morphological data show the presence of Dolichospermum sp., which was confirmed by molecular analysis. Microcystis sp. was also detected through 16S rRNA analysis and the presence of mcyA gene related to microcystin production was found in both cyanobacteria. Furthermore, microcystin-LR and demethylated microcystin-LR were identified by chemical analysis. The highest concentrations of microcystin-LR were 40.60 and 25.18 µg/L, in May and November 2022, respectively. Microcystins were detected in cyanobacteria biomass. In contrast, toxins in water (dissolved) were not detected. Microcystin concentrations exceeded many times the values established in Peruvian regulation and the World Health Organization (WHO) in water intended for human consumption (1 µg/L). This first comprehensive report integrates morphological, molecular, and chemical data and confirms the presence of two toxigenic cyanobacteria and the presence of microcystins in El Pañe reservoir. This work points out the need to implement continuous monitoring of cyanobacteria and cyanotoxins in the reservoir and effective water management measures to protect the human population from exposure to these contaminants.


Assuntos
Toxinas Bacterianas , Cianobactérias , Monitoramento Ambiental , Microcistinas , Peru , Cianobactérias/genética , Cianobactérias/metabolismo , Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Microcistinas/análise , Qualidade da Água , Toxinas de Cianobactérias , Microbiologia da Água , Toxinas Marinhas/análise
5.
Toxins (Basel) ; 16(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39195738

RESUMO

Peracetic acid (PAA) shows potential for use in drinking water treatment as an alternative to prechlorination, such as for mussel control and disinfection by-product precursor destruction, though its impact as a preoxidant during cyanobacterial blooms remains underexplored. Here, Microcystis aeruginosa inactivation and microcystin-LR and -RR release and degradation using PAA were explored. The toxin degradation rates were found to be higher in alkaline conditions than in neutral and acidic conditions. However, all rates were significantly smaller than comparable rates when using free chlorine. The inactivation of M. aeruginosa cells using PAA was faster at acidic pH, showing immediate cell damage and subsequent cell death after 15-60 min of exposure to 10 mg/L PAA. In neutral and alkaline conditions, cell death occurred after a longer lag phase (3-6 h). During cell inactivation, microcystin-LR was released slowly, with <35% of the initial intracellular toxins measured in solution after 12 h of exposure to 10 mg/L PAA. Overall, PAA appears impractically slow for M. aeruginosa cell inactivation or microcystin-LR and -RR destruction in drinking water treatment, but this slow reactivity may also allow it to continue to be applied as a preoxidant for other purposes during cyanobacterial blooms without the risk of toxin release.


Assuntos
Toxinas Marinhas , Microcistinas , Microcystis , Oxirredução , Ácido Peracético , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Microcistinas/toxicidade , Microcistinas/metabolismo , Ácido Peracético/farmacologia , Toxinas Marinhas/toxicidade , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Água Potável/microbiologia , Água Potável/química
6.
Toxins (Basel) ; 16(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39195770

RESUMO

Anthropic eutrophication leads to water quality degradation because it may cause the development of harmful cyanobacterial blooms, affecting aquatic biota and threatening human health. Because in the natural environment zooplankters are exposed continuously or intermittently to cyanotoxins in the water or through cyanobacterial consumption, this study aimed to assess the effects of the toxigenic Microcystis aeruginosa VU-5 by different ways of exposure in Daphnia curvirostris. The acute toxicity produced by the cells, the aqueous crude extract of cells (ACE), and the cell-free culture medium (CFM) were determined. The effect on the survival and reproduction of D. curvirostris under continuous and intermittent exposure was determined during 26 d. The LC50 was 407,000 cells mL-1; exposure to the ACE and CFM produced mortality lower than 20%. Daphnia survivorship and reproduction were significantly reduced. Continuous exposure to Microcystis cells caused 100% mortality on the fourth day. Exposure during 4 and 24 h in 48 h cycles produced adult mortality, and reproduction decreased as the exposure time and the Microcystis concentrations increased. The higher toxicity of cells than the ACE could mean that the toxin's absorption is higher in the digestive tract. The temporary exposure to Microcystis cells produced irreversible damage despite the recovery periods with microalgae as food. The form and the continuity in exposure to Microcystis produced adverse effects, warning about threats to the zooplankton during HCBs.


Assuntos
Daphnia , Microcystis , Reprodução , Animais , Daphnia/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Microcistinas/toxicidade
7.
Toxins (Basel) ; 16(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39195767

RESUMO

Cyanobacterial blooms are increasingly common during winters, especially when they are mild. The goal of this study was to determine the summer and winter phytoplankton community structure, cyanotoxin presence, and toxigenicity in a eutrophic lake susceptible to cyanobacterial blooms throughout the year, using classical microscopy, an analysis of toxic cyanometabolites, and an analysis of genes involved in biosynthesis of cyanotoxins. We also assessed whether cyanobacterial diversity in the studied lake has changed compared to what was reported in previous reports conducted several years ago. Moreover, the bloom-forming cyanobacterial strains were isolated from the lake and screened for cyanotoxin presence and toxigenicity. Cyanobacteria were the main component of the phytoplankton community in both sampling times, and, in particular, Oscillatoriales were predominant in both summer (Planktothrix/Limnothrix) and winter (Limnothrix) sampling. Compared to the winter community, the summer community was denser; richer in species; and contained alien and invasive Nostocales, including Sphaerospermopsis aphanizomenoides, Raphidiopsis raciborskii, and Raphidiopsis mediterranea. In both sampling times, the blooms contained toxigenic species with genetic determinants for the production of cylindrospermopsin and microcystins. Toxicological screening revealed the presence of microcystins in the lake in summer but no cyanotoxins in the winter period of sampling. However, several cyanobacterial strains isolated from the lake during winter and summer produced anabaenopeptins and microcystins. This study indicates that summer and winter blooms of cyanobacteria in the temperate zone can differ in biomass, structure, and toxicity, and that the toxic hazards associated with cyanobacterial blooms may potentially exist during winter.


Assuntos
Cianobactérias , Lagos , Fitoplâncton , Estações do Ano , Lagos/microbiologia , Fitoplâncton/efeitos dos fármacos , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Toxinas Bacterianas/toxicidade , Eutrofização , Microcistinas/toxicidade , Monitoramento Ambiental , Proliferação Nociva de Algas
8.
Mar Pollut Bull ; 207: 116843, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151330

RESUMO

Spatiotemporal patterns and drivers of hepatotoxic microcystins (MC) were investigated in the Atchafalaya-Vermilion Bay System (AVBS), a subtropical, river-dominated estuary in Louisiana. Along with environmental data, monthly particulate MC (pMC) samples were examined over a two-year period (2016-2018), and biweekly pMC and dissolved MC (dMC) samples were examined over a five-month period in 2020. Solid phase adsorption toxin tracking (SPATT) samplers used to quantify time-integrated dMC concentrations were also deployed in 2020. Low, but detectable concentrations of pMC (≤0.033 µg L-1) and dMC (≤0.190 µg L-1) were found throughout the AVBS in 37.8 and 21.2 % of samples, respectively. Time integrative SPATT samplers detected dMC in nearly 100 % of the deployments, compared to dMC detections in 30.8 % of the discrete samples. This study documents widespread MC presence throughout the AVBS and while concentrations were low, knowledge gaps remain regarding the potential long-term impacts of sublethal MC exposure to estuarine organisms.


Assuntos
Monitoramento Ambiental , Estuários , Microcistinas , Microcistinas/análise , Louisiana , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 950: 175339, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39117191

RESUMO

Microcystins (MCs) can be detected in various matrices in two forms: a freely extractable fraction and a total (free and covalently protein-bound) fraction. Although the majority of MCs analyses are limited to the free fraction, they do not allow the analysis of all MCs variants or protein-bound forms. Other methods, known as total MCs analysis methods, enable simultaneous analysis of all MCs variants, as well as bound forms, which may be a major form of toxin accumulation in organisms. Among these techniques, the chemical oxidation method (e.g. Lemieux) allows the detection of total forms of MC (and nodularins) by oxidizing the common part to all MC and nodularins, and analyzing the resultant MMPB product (2-methyl-3-methoxy-4-phenylbutyric acid). However, the execution of this method in the context of health monitoring is challenging due to the variability of the protocols, the recoveries obtained with these protocols, and the important matrix effects associated with the method. The objectives of this study were i) to optimize an existing protocol of chemical oxidation "Lemieux1" on fresh fish fillet matrices, ii) to compare two existing protocols ("Lemieux1" and "Lemieux2"), and iii) apply Lemieux oxidation to fish fillets and livers naturally contaminated with MCs-producing cyanobacteria and to freshwater mussels contaminated with MCs in laboratories. Optimization of the "Lemieux1" protocol, in particular in the oxidation and SPE (solid phase extraction) steps improved the method's yields on the fresh fish fillet matrix (from <5 % to around 40 %). Moreover, several quantification methods have been compared through various calibration techniques (solvent calibration curve, matrix-matched calibration curve, oxidized MC-LR calibration curve and also by testing the addition of d3-MMPB as an internal standard). Comparison with the "Lemieux2" protocol showed the best results on the same matrix, with yields of around 65 %. MMPB was analyzed using this "Lemieux 2" protocol, in livers of carps sampled during an episode of cyanobacteria proliferation, at concentrations ranging from 17.9 to 27.5 µg/kg MMPB and at concentrations ranging from 50 to 2890 µg/kg MMPB in freshwater mussels laboratory contaminated to MCs.


Assuntos
Microcistinas , Oxirredução , Microcistinas/análise , Animais , Cromatografia Líquida , Peixes , Bivalves , Espectrometria de Massas/métodos , Espectrometria de Massa com Cromatografia Líquida
10.
Chemosphere ; 364: 142976, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094701

RESUMO

Cyanobacteria in water supplies are considered an emerging threat, as some species produce toxic metabolites, cyanotoxins, of which the most widespread and well-studied are microcystins. Consumption of contaminated water is a common exposure route to cyanotoxins, making the study of cyanobacteria in drinking waters a priority to protect public health. In drinking water treatment plants, pre-oxidation with chlorinated compounds is widely employed to inhibit cyanobacterial growth, although concerns on its efficacy in reducing cyanotoxin content exists. Additionally, the effects of chlorination on abundant but less-studied cyanometabolites (e.g. cyanopeptolins whose toxicity is still unclear) remain poorly investigated. Here, two chlorinated oxidants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO2), were tested on the toxic cyanobacterium Microcystis aeruginosa, evaluating their effect on cell viability, toxin profile and content. Intra- and extracellular microcystins and other cyanometabolites, including their degradation products, were identified using an untargeted LC-HRMS approach. Both oxidants were able to inactivate M. aeruginosa cells at a low dose (0.5 mg L-1), and greatly reduced intracellular toxins content (>90%), regardless of the treatment time (1-3 h). Conversely, a two-fold increase of extracellular toxins after NaClO treatment emerged, suggesting a cellular damage. A novel metabolite named cyanopeptolin-type peptide-1029, was identified based on LC-HRMSn (n = 2, 3) evidence, and it was differently affected by the two oxidants. NaClO led to increase its extracellular concentration from 2 to 80-100 µg L-1, and ClO2 induced the formation of its oxidized derivative, cyanopeptolin-type peptide-1045. In conclusion, pre-oxidation treatments of raw water contaminated by toxic cyanobacteria may lead to increased cyanotoxin concentrations in drinking water and, depending on the chemical agent, its dose and treatment duration, also of oxidized metabolites. Since the effects of such metabolites on human health remain unknown, this issue should be handled with extreme caution by water security agencies involved in drinking water management.


Assuntos
Compostos Clorados , Cloro , Microcistinas , Microcystis , Purificação da Água , Microcistinas/análise , Microcistinas/metabolismo , Purificação da Água/métodos , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Compostos Clorados/farmacologia , Cloro/farmacologia , Cromatografia Líquida , Óxidos/química , Óxidos/farmacologia , Hipoclorito de Sódio/farmacologia , Halogenação , Água Potável/microbiologia , Água Potável/química , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo
11.
Sci Total Environ ; 951: 175431, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128511

RESUMO

Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 µg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.


Assuntos
Daphnia , Saxitoxina , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Animais , Saxitoxina/toxicidade , Poluentes Químicos da Água/toxicidade , Humanos , Proliferação Nociva de Algas , Colinesterases/metabolismo , Daphnia magna
12.
Arch Microbiol ; 206(8): 348, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990418

RESUMO

Anatoxin-a (ATX-a) is a neurotoxin produced by some species of cyanobacteria. Due to its water solubility and stability in natural water, it could pose health risks to human, animals, and plants. Conventional water treatment techniques are not only insufficient for the removal of ATX-a, but they also result in cell lysis and toxin release. The elimination of this toxin through biodegradation may be a promising strategy. This study examines for the first time the biodegradation of ATX-a to a non-toxic metabolite (Epoxy-ATX-a) by a strain of Bacillus that has a history of dealing with toxic cyanobacteria in a eutrophic lake. The Bacillus strain AMRI-03 thrived without lag phase in a lake water containing ATX-a. The strain displayed fast degradation of ATX-a, depending on initial toxin concentration. At the highest initial concentrations (50 & 100 µg L- 1), total ATX-a degradation took place in 4 days, but it took 6 & 7 days at lower concentrations (20, 10, and 1 µg L- 1, respectively). The ATX-a biodegradation rate was also influenced by the initial toxin concentration, reaching its maximum value (12.5 µg L- 1 day- 1) at the highest initial toxin concentrations (50 & 100 µg L- 1). Temperature and pH also had an impact on the rate of ATX-a biodegradation, with the highest rates occurring at 25 and 30 ºC and pH 7 and 8. This nontoxic bacterial strain could be immobilized within a biofilm on sand filters and/or sludge for the degradation and removal of ATX-a and other cyanotoxins during water treatment processes, following the establishment of mesocosm experiments to assess the potential effects of this bacterium on water quality.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Toxinas de Cianobactérias , Cianobactérias , Eutrofização , Lagos , Tropanos , Lagos/microbiologia , Tropanos/metabolismo , Cianobactérias/metabolismo , Cianobactérias/isolamento & purificação , Bacillus subtilis/metabolismo , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/genética , Arábia Saudita , Toxinas Bacterianas/metabolismo
13.
Harmful Algae ; 137: 102679, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39003024

RESUMO

Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated the skill of a statistical classification model developed from water quality surveys in one season with low temporal replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in subsequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and 2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017 data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of microcystin detection in this population of lakes. We then applied the 2017 classification model to data collected in subsequent years and found that model skill declined but remained effective at predicting microcystin detection (area under the curve, AUC ≥ 0.7). We assessed if classification skill could be improved by assimilating the previous years' monitoring data into the model, but model skill was only minimally enhanced. Overall, the classification model remained reliable under varying climatic conditions. Finally, we tested if early season observations could be combined with a trained model to provide early warning for late summer microcystin detection, but model skill was low in all years and below the AUC threshold for two years. The results of these modeling exercises support the application of correlative analyses built on single-season sampling data to monitoring decision-making, but similar investigations are needed in other regions to build further evidence for this approach in management application.


Assuntos
Monitoramento Ambiental , Lagos , Microcistinas , Modelos Estatísticos , Microcistinas/análise , Lagos/química , Monitoramento Ambiental/métodos , Iowa , Cianobactérias , Clima , Estações do Ano , Proliferação Nociva de Algas , Qualidade da Água
14.
Environ Toxicol Chem ; 43(9): 1936-1949, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38967263

RESUMO

Harmful algal blooms (HABs) are a persistent and increasing problem globally, yet we still have limited knowledge about how they affect wildlife. Although semi-aquatic and aquatic amphibians and reptiles have experienced large declines and occupy environments where HABs are increasingly problematic, their vulnerability to HABs remains unclear. To inform monitoring, management, and future research, we conducted a literature review, synthesized the studies, and report on the mortality events describing effects of cyanotoxins from HABs on freshwater herpetofauna. Our review identified 37 unique studies and 71 endpoints (no-observed-effect and lowest-observed-effect concentrations) involving 11 amphibian and 3 reptile species worldwide. Responses varied widely among studies, species, and exposure concentrations used in experiments. Concentrations causing lethal and sublethal effects in laboratory experiments were generally 1 to 100 µg/L, which contains the mean value of reported HAB events but is 70 times less than the maximum cyanotoxin concentrations reported in the environment. However, one species of amphibian was tolerant to concentrations of 10,000 µg/L, demonstrating potentially immense differences in sensitivities. Most studies focused on microcystin-LR (MC-LR), which can increase systemic inflammation and harm the digestive system, reproductive organs, liver, kidneys, and development. The few studies on other cyanotoxins illustrated that effects resembled those of MC-LR at similar concentrations, but more research is needed to describe effects of other cyanotoxins and mixtures of cyanotoxins that commonly occur in the environment. All experimental studies were on larval and adult amphibians; there were no such studies on reptiles. Experimental work with reptiles and adult amphibians is needed to clarify thresholds of tolerance. Only nine mortality events were reported, mostly for reptiles. Given that amphibians likely decay faster than reptiles, which have tissues that resist decomposition, mass amphibian mortality events from HABs have likely been under-reported. We propose that future efforts should be focused on seven major areas, to enhance our understanding of effects and monitoring of HABs on herpetofauna that fill important roles in freshwater and terrestrial environments. Environ Toxicol Chem 2024;43:1936-1949. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfíbios , Proliferação Nociva de Algas , Répteis , Animais , Microcistinas/toxicidade , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Toxinas Marinhas/toxicidade
15.
Sci Total Environ ; 948: 174745, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032754

RESUMO

Harmful cyanobacterial blooms will be more intense and frequent in the future, contaminating surface waters with cyanotoxins and posing a threat to communities heavily reliant on surface water usage for crop irrigation. Constructed wetlands (CWs) are proposed to ensure safe crop irrigation, but more research is needed before implementation. The present study operated 28 mesocosms in continuous mode mimicking horizontal sub-surface flow CWs. Mesocosms were fed with synthetic lake water and spiked periodically with two cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), at environmentally relevant cyanotoxins concentrations (10 µg L-1). The influence of various design factors, including plant species, porous media, and seasonality, was explored. The mesocosms achieved maximum MC-LR and CYN mass removal rates of 95 % and 98 %, respectively. CYN removal is reported for the first time in CWs mimicking horizontal sub-surface flow CWs. Planted mesocosms consistently outperformed unplanted mesocosms, with Phragmites australis exhibiting superior cyanotoxin mass removal compared to Juncus effusus. Considering evapotranspiration, J. effusus yielded the least cyanotoxin-concentrated effluent due to the lower water losses in comparison with P. australis. Using the P-kC* model, different scaling-up scenarios for future piloting were calculated and discussed. Additionally, bacterial community structure was analyzed through correlation matrices and differential taxa analyses, offering valuable insights into their removal of cyanotoxins. Nevertheless, attempts to validate microcystin-LR biotransformation via the known mlrA gene degradation pathway were unfruitful, indicating alternative enzymatic degradation pathways occurring in such complex CW systems. Further investigation into the precise molecular mechanisms of removal and the identification of transformation products is needed for the comprehensive understanding of cyanotoxin mitigation in CW. This study points towards the feasibility of horizontal sub-surface flow CWs to be employed to control cyanotoxins in irrigation or recreational waters.


Assuntos
Alcaloides , Toxinas Bacterianas , Biodegradação Ambiental , Toxinas de Cianobactérias , Toxinas Marinhas , Microcistinas , Uracila , Áreas Alagadas , Microcistinas/metabolismo , Toxinas Marinhas/metabolismo , Alcaloides/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo , Toxinas Bacterianas/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Cianobactérias/metabolismo
16.
Toxicon X ; 23: 100199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38974839

RESUMO

Biocrusts dominate the soil surface in deserts and are composed of diverse microbial communities that provide important ecosystem services. Cyanobacteria in biocrusts produce many secondary metabolites, including the neurotoxins BMAA, AEG, DAB, anatoxin-a(S) (guanitoxin), and the microcystin hepatotoxins, all known or suspected to cause disease or illness in humans and other animals. We examined cyanobacterial growth and prevalence of these toxins in biocrusts at millimeter-scales, under a desert-relevant illumination gradient. In contrast to previous work, we showed that hydration had an overall positive effect on growth and toxin accumulation, that nitrogen was not correlated with growth or toxin production, and that phosphorus enrichment negatively affected AEG and BMAA concentrations. Excess illumination positively correlated with AEG, and negatively correlated with all other toxins and growth. Basic pH negatively affected only the accumulation of BMAA. Anatoxin-a(S) (guanitoxin) was not correlated with any tested variables, while microcystins were not detected in any of the samples. Concerning toxin pools, AEG and BMAA were good predictors of the presence of one another. In a newly conceptualized scheme, we integrate aspects of biocrust growth and toxin pool accumulations with arid-relevant desertification drivers.

17.
Toxicon ; 247: 107846, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964620

RESUMO

Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 µg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 µg kg-1 fresh weight, FW) followed by spinach (180 µg kg-1 FW), onion (170 µg g-1 FW), Swiss chard (160 µg kg-1 FW) and fava bean (46 µg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 µg kg bw-1 d-1 for adults and 0.11-1.5 µg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 µg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.


Assuntos
Irrigação Agrícola , Contaminação de Alimentos , Inocuidade dos Alimentos , Microcistinas , Verduras , Microcistinas/análise , Egito , Medição de Risco , Verduras/química , Humanos , Contaminação de Alimentos/análise , Cianobactérias
18.
Heliyon ; 10(11): e31350, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828292

RESUMO

Harmful Algal Blooms (HAB) have the potential to impact human health primarily through their possible cyanotoxins production. While conventional water treatments can result in the removal of unlysed cyanobacterial cells and low levels of cyanotoxins, during severe HAB events, cyanotoxins can break through and can be present in the treated water due to a lack of adequate toxin treatment. The objectives of this study were to assess the HAB conditions in drinking water sources in New Jersey and investigate relationships between environmental variables and cyanobacterial communities in these drinking water sources. Source water samples were collected monthly from May to October 2019 and analyzed for phytoplankton and cyanobacterial cell densities, microcystins, cylindrospermopsin, Microcystis 16S rRNA gene, microcystin-producing mcyB gene, Raphidiopsis raciborskii-specific rpoC1 gene, and cylindrospermopsin-producing pks gene. Water quality parameters included water temperature, pH, dissolved oxygen, specific conductance, fluorescence of phycocyanin and chlorophyll, chlorophyll-a, total suspended solids, total dissolved solids, dissolved organic carbon, total nitrogen, ammonia, and total phosphorus. In addition to source waters, microcystins and cylindrospermopsin were analyzed for treated waters. The results showed all five selected New Jersey source waters had high total phosphorus concentrations that exceeded the established New Jersey Surface Water Quality Standards for lakes and rivers. Commonly found cyanobacteria were identified, such as Microcystis and Dolichospermum. Site E was the site most susceptible to HABs with significantly greater HAB variables, such as extracted phycocyanin, fluorescence of phycocyanin, cyanobacterial cell density, microcystins, and Microcystis 16S rRNA gene. All treated waters were undetected with microcystins, indicating treatment processes were effective at removing toxins from source waters. Results also showed that phycocyanin values had a significantly positive relationship with microcystin concentration, copies of Microcystis 16S rRNA and microcystin-producing mcyB genes, suggesting these values can be used as a proxy for HAB monitoring. This study suggests that drinking water sources in New Jersey are vulnerable to forthcoming HAB. Monitoring and management of source waters is crucial to help safeguard public health.

19.
J Toxicol Environ Health A ; 87(17): 701-717, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38865103

RESUMO

Microcystis aeruginosa is one of the most predominant freshwater bloom-forming cyanobacterium found globally which is capable of producing toxic secondary metabolites including microcystins that might intoxicate animals and humans when contaminated water or food is ingested. Salvinia auriculata Aubl is one of the plants that might possess bioactive compounds capable of controlling growth and reproduction of M. aeruginosa. The present study aimed to determine the presence of bioactive compounds in S. auriculata extracts and determine alterations occurred in growth and reproduction of M. aeruginosa when exposed to these plant extracts. In addition, this investigation aimed to examine the influence of S. auriculata on antioxidant enzymes detected in M. aeruginosa. The results obtained demonstrated that the aqueous and ethanolic extracts of S. auriculata presented potential for control of cyanobacteria populations, exhibiting algicidal action on M. aeruginosa as well as interfering in antioxidant enzymes activities and parameters associated with oxidative stress. Phytochemical analyses demonstrated the presence of polyphenols and flavonoids content in both extracts. In addition, application of S. auriculata extracts did not produce cytogenotoxicity and/or mutagenicity utilizing Allium cepa test. Therefore, further studies are needed in order to identify and characterize the compounds responsible for these effects on M. aeruginosa and provide information regarding the possible application of S. auriculata in the treatment of drinking water.


Assuntos
Microcystis , Extratos Vegetais , Microcystis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos
20.
Biosensors (Basel) ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920572

RESUMO

In this study, we report a multiplexed platform for the simultaneous determination of five marine toxins. The proposed biosensor is based on a disposable electrical printed (DEP) microarray composed of eight individually addressable carbon electrodes. The electrodeposition of gold nanoparticles on the carbon surface offers high conductivity and enlarges the electroactive area. The immobilization of thiolated aptamers on the AuNP-decorated carbon electrodes provides a stable, well-orientated and organized binary self-assembled monolayer for sensitive and accurate detection. A simple electrochemical multiplexed aptasensor based on AuNPs was designed to synchronously detect multiple cyanotoxins, namely, microcystin-LR (MC-LR), Cylindrospermopsin (CYL), anatoxin-α, saxitoxin and okadaic acid (OA). The choice of the five toxins was based on their widespread presence and toxicity to aquatic ecosystems and humans. Taking advantage of the conformational change of the aptamers upon target binding, cyanotoxin detection was achieved by monitoring the resulting electron transfer increase by square-wave voltammetry. Under the optimal conditions, the linear range of the proposed aptasensor was estimated to be from 0.018 nM to 200 nM for all the toxins, except for MC-LR where detection was possible within the range of 0.073 to 150 nM. Excellent sensitivity was achieved with the limits of detection of 0.0033, 0.0045, 0.0034, 0.0053 and 0.0048 nM for MC-LR, CYL, anatoxin-α, saxitoxin and OA, respectively. Selectivity studies were performed to show the absence of cross-reactivity between the five analytes. Finally, the application of the multiplexed aptasensor to tap water samples revealed very good agreement with the calibration curves obtained in buffer. This simple and accurate multiplexed platform could open the window for the simultaneous detection of multiple pollutants in different matrices.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Toxinas de Cianobactérias , Técnicas Eletroquímicas , Ouro , Toxinas Marinhas , Nanopartículas Metálicas , Microcistinas , Saxitoxina , Toxinas Marinhas/análise , Microcistinas/análise , Ouro/química , Saxitoxina/análise , Nanopartículas Metálicas/química , Toxinas Bacterianas/análise , Uracila/análise , Uracila/análogos & derivados , Tropanos/análise , Alcaloides/análise , Ácido Okadáico/análise , Eletrodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...