Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 641822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897730

RESUMO

Diacylglycerol acyl-transferase (DGAT) and cysteine oleosin (CO) expression confers a novel carbon sink (of encapsulated lipid droplets) in leaves of Lolium perenne and has been shown to increase photosynthesis and biomass. However, the physiological mechanism by which DGAT + CO increases photosynthesis remains unresolved. To evaluate the relationship between sink strength and photosynthesis, we examined fatty acids (FA), water-soluble carbohydrates (WSC), gas exchange parameters and leaf nitrogen for multiple DGAT + CO lines varying in transgene accumulation. To identify the physiological traits which deliver increased photosynthesis, we assessed two important determinants of photosynthetic efficiency, CO2 conductance from atmosphere to chloroplast, and nitrogen partitioning between different photosynthetic and non-photosynthetic pools. We found that DGAT + CO accumulation increased FA at the expense of WSC in leaves of L. perenne and for those lines with a significant reduction in WSC, we also observed an increase in photosynthesis and photosynthetic nitrogen use efficiency. DGAT + CO L. perenne displayed no change in rubisco content or Vcmax but did exhibit a significant increase in specific leaf area (SLA), stomatal and mesophyll conductance, and leaf nitrogen allocated to photosynthetic electron transport. Collectively, we showed that increased carbon demand via DGAT+CO lipid sink accumulation can induce leaf-level changes in L. perenne which deliver increased rates of photosynthesis and growth. Carbon sinks engineered within photosynthetic cells provide a promising new strategy for increasing photosynthesis and crop productivity.

2.
J Dairy Sci ; 103(3): 2405-2418, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954581

RESUMO

We previously generated a high-metabolizable energy (HME) perennial ryegrass (Lolium perenne) by genetically modifying the plant to increase the leaf lipid content. Although substantial progress has been made toward characterizing physiological changes of HME ryegrass, very limited information exists for feeding value and its suitability for adoption into the pastoral system. In this study, independent HME ryegrass lines with a range of elevated leaf lipid concentrations were analyzed for changes in fatty acids and possible associated changes in the broader nutritional profile, including the gross energy, which was found to increase by 6.8%. Because ryegrass is often ensiled and fermentation in the rumen leads to biohydrogenation of fatty acids as well as enteric methane production, we sought to investigate these effects on HME ryegrass. This was achieved by performing mini-scale silos and using an automated gas measurement system to incubate the material in rumen fluid in vitro for 24 h. Our study included treatments comprising 3 independent HME ryegrass genotypes and wild-type control materials prepared fresh and as silage, employing in total 5 incubation studies, using rumen fluids collected from 4 nonlactating Jersey × Holstein cows. At intervals during the incubation, the production of gases, volatile fatty acids, and the degree of biohydrogenation were measured. Statistical data analysis indicated that differences in the nutritional compositions of the ensiled materials largely reflected those of their fresh counterparts. Incubation of both fresh and ensiled HME ryegrass in rumen fluid resulted in: (1) a greater percentage of valuable unsaturated fatty acids compared with the control; (2) a significant reduction of butyrate; and (3) a 10 to 15% decrease in the methane proportion of the total gas production. We conclude that ensiling could be a convenient option for preserving HME as a locally produced high-value supplementary feed; however, large-scale application needs to be investigated. In this paper we discuss the potential use of HME ryegrass to enhancing forage feeding value and the potential environmental benefits to the pastoral agriculture industry.


Assuntos
Bovinos/metabolismo , Lolium/metabolismo , Metano/biossíntese , Rúmen/metabolismo , Silagem , Animais , Butiratos/metabolismo , Digestão , Metabolismo Energético , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Lolium/genética , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...