Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695158

RESUMO

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Assuntos
Gymnema sylvestre , Receptores Acoplados a Proteínas G , Humanos , Gymnema sylvestre/metabolismo , Gymnema sylvestre/química , Animais , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Paladar/fisiologia , Ligação Proteica , Sequência de Aminoácidos , Células HEK293
2.
J Biol Chem ; 300(4): 107125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432638

RESUMO

Cyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of ß-turn nucleation on cyclotide oxidative folding. Two types of ß-turn mimics were grafted into kalata B1, individually replacing each of the four ß-turns in the folded cyclotide. Insertion of d-Pro-Gly into loop 5 was beneficial to the folding of both cyclic kB1 and a linear form of the peptide. The linear grafted analog folded four-times faster in aqueous conditions than cyclic kB1 in optimized conditions. Additionally, the cyclic analogue folded without the need for redox agents by transitioning through a native-like intermediate that was on-pathway to product formation. Kalata B1 is from the Möbius subfamily of cyclotides. Grafting d-Pro-Gly into loop 5 of cyclotides from two other subfamilies also had a beneficial effect on folding. Our findings demonstrate the importance of a ß-turn nucleation site for cyclotide oxidative folding, which could be adopted as a chemical strategy to improve the in vitro folding of diverse cystine-rich peptides.


Assuntos
Ciclotídeos , Oxirredução , Dobramento de Proteína , Ciclotídeos/química , Proteínas de Plantas/química , Sequência de Aminoácidos
3.
Biochem Pharmacol ; 228: 116175, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552850

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.


Assuntos
Canais Iônicos Sensíveis a Ácido , Venenos de Aranha , Aranhas , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Venenos de Aranha/genética , Animais , Aranhas/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Xenopus laevis , Sequência de Aminoácidos , Humanos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/química
4.
J Biol Chem ; 300(4): 107203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508311

RESUMO

We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.


Assuntos
Conotoxinas , Animais , Sequência de Aminoácidos , Conotoxinas/química , Caramujo Conus , Cisteína/química , Dissulfetos/química , Granulinas/química , Granulinas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína
5.
Curr Cancer Drug Targets ; 24(12): 1275-1285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357956

RESUMO

BACKGROUND: Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE: In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS: We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS: The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION: Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.


Assuntos
Bombesina , Humanos , Bombesina/química , Bombesina/farmacologia , Animais , Peptídeos/química , Peptídeos/farmacologia , Miniproteínas Nó de Cistina/química , Miniproteínas Nó de Cistina/farmacologia
6.
Cell Chem Biol ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056465

RESUMO

Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.

7.
Biochem Biophys Res Commun ; 680: 34-41, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37716155

RESUMO

Many insects produce the cyclic neuropeptide inotocin (CLITNCPRGamide), which is the insect orthologue of the mammalian neuropeptides oxytocin and vasopressin. These insects also have one inotocin G protein-coupled receptor (GPCR), which is the orthologue of the mammalian oxytocin and vasopressin receptors. The tick Ixodes scapularis belongs to the subphylum Chelicerata, an arthropod taxon different from insects, to which also spiders, scorpions, and mites belong. I. scapularis is an ectoparasite and a health risk for humans, because it transfers pathogenic microorganisms to its human host during a blood meal, thereby causing serious neurological diseases, among them Lyme disease and tick-borne encephalitis (TBE). By annotating the genomic sequence of I. scapularis, we previously found one presumed tick inotocin preprohormone gene and, in contrast to insects, three genes coding for presumed inotocin GPCRs. We now find that these GPCR genes cluster on one genomic contig, suggesting that they originated by recent gene duplications. Closely located on the same contig are also four adipokinetic hormone/corazonin-related peptide (ACP) GPCR genes, and one crustacean cardioactive peptide (CCAP) GPCR gene, suggesting evolutionary relationships. These evolutionary relationships are confirmed by phylogenetic tree analyses of their gene products. We also cloned the tick inotocin preprohormone, which has a structural organization closely resembling mammalian oxytocin and vasopressin preprohormones, including the presence of a conserved neurophysin sequence, having seven cystine bridges. This neurophysin sequence has two cystine-knot domains, but in contrast to mammalian neurophysins, the tick neurophysin contains a canonical prohormone convertase cleavage signal and a peptide C-terminal amidation sequence (GKR), suggesting cleavage into two biologically active cystine-knot peptides. This cleavage/amidation sequence occurs in neurophysins from most hard tick species, but not in other chelicerates. Mature tick inotocin is different from insect inotocin and has the sequence CFITNCPPGamide. Finally, we cloned and stably expressed the three tick inotocin receptors in Chinese Hamster Ovary cells and found that each of them was activated by nanomolar concentrations of tick inotocin (EC50 for ITR1 = 1.6 × 10-8 M; EC50 for ITR2 = 5.8 × 10-9 M; EC50 for ITR3 = 9.3 × 10-9 M), thereby establishing that they are genuine tick inotocin receptors.

8.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505687

RESUMO

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Assuntos
Venenos de Aranha , Peçonhas , Animais , Peçonhas/farmacologia , Brasil , Mosquitos Vetores , Peptídeos/farmacologia , Insetos , Venenos de Aranha/toxicidade , Venenos de Aranha/química
9.
J Biol Chem ; 299(7): 104901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302550

RESUMO

Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules. Yet, there is a paramount knowledge gap in understanding the functionality of distinct sites along the triple helix. Here, we present a recombinant technique to produce triple helical fragments for functional studies. The experimental strategy utilizes the unique capacity of the NC2 heterotrimerization domain of collagen IX to drive three α-chain selection and registering the triple helix stagger. For proof of principle, we produced and characterized long triple helical fragments of collagen IV that were expressed in a mammalian system. The heterotrimeric fragments encompassed the CB3 trimeric peptide of collagen IV, which harbors the binding motifs for α1ß1 and α2ß1 integrins. Fragments were characterized and shown to have a stable triple helix, post-translational modifications, and high affinity and specific binding of integrins. The NC2 technique is a universal tool for the high-yield production of heterotrimeric fragments of collagens. Fragments are suitable for mapping functional sites, determining coding sequences of binding sites, elucidating pathogenicity and pathogenic mechanisms of genetic mutations, and production of fragments for protein replacement therapy.


Assuntos
Colágeno Tipo IV , Integrinas , Multimerização Proteica , Animais , Humanos , Sítios de Ligação , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Integrinas/química , Integrinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Mutação , Domínios Proteicos
10.
J Cell Commun Signal ; 17(2): 371-390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245184

RESUMO

CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).

11.
Biochem Pharmacol ; 213: 115598, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201876

RESUMO

Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae. Here, we use single animal transcriptomics and venom proteomics to investigate the venom of an iconic limacodid, the North American saddleback caterpillar Acharia stimulea. We identified 65 venom polypeptides, grouped into 31 different families. Neurohormones, knottins, and homologues of the immune signaller Diedel make up the majority of A.stimulea venom, indicating strong similarities to D. vulnerans venom, despite the large geographic separation of these caterpillars. One notable difference is the presence of RF-amide peptide toxins in A. stimulea venom. Synthetic versions of one of these RF-amide toxins potently activated the human neuropeptide FF1 receptor, displayed insecticidal activity when injected into Drosophila melanogaster, and moderately inhibited larval development of the parasitic nematode Haemonchus contortus. This study provides insights into the evolution and activity of venom toxins in Limacodidae, and provides a platform for future structure-function characterisation of A.stimulea peptide toxins.


Assuntos
Mariposas , Peçonhas , Humanos , Animais , Peçonhas/química , Amidas , Drosophila melanogaster , Austrália , Peptídeos/toxicidade
12.
Toxicon X ; 18: 100151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36873112

RESUMO

Venoms from tarantulas contain low molecular weight vasodilatory compounds whose biological action is conceived as part of the envenomation strategy due to its propagative effects. However, some properties of venom-induced vasodilation do not match those described by such compounds, suggesting that other toxins may cooperate with these ones to produce the observed biological effect. Owing to the distribution and function of voltage-gated ion channels in blood vessels, disulfide-rich peptides isolated from venoms of tarantulas could be conceived into potential vasodilatory compounds. However, only two peptides isolated from spider venoms have been investigated so far. This study describes for the first time a subfraction containing inhibitor cystine knot peptides, PrFr-I, obtained from the venom of the tarantula Poecilotheria regalis. This subfraction induced sustained vasodilation in rat aortic rings independent of vascular endothelium and endothelial ion channels. Furthermore, PrFr-I decreased calcium-induced contraction of rat aortic segments and reduced extracellular calcium influx to chromaffin cells by the blockade of L-type voltage-gated calcium channels. This mechanism was unrelated to the activation of potassium channels from vascular smooth muscle, since vasodilation was not affected in the presence of TEA, and PrFr-I did not modify the conductance of the voltage-gated potassium channel Kv10.1. This work proposes a new envenomating function of peptides from venoms of tarantulas, and establishes a new mechanism for venom-induced vasodilation.

13.
FEBS J ; 290(14): 3688-3702, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912793

RESUMO

Venom-derived peptides targeting ion channels involved in pain are regarded as a promising alternative to current, and often ineffective, chronic pain treatments. Many peptide toxins are known to specifically and potently block established therapeutic targets, among which the voltage-gated sodium and calcium channels are major contributors. Here, we report on the discovery and characterization of a novel spider toxin isolated from the crude venom of Pterinochilus murinus that shows inhibitory activity at both hNaV 1.7 and hCaV 3.2 channels, two therapeutic targets implicated in pain pathways. Bioassay-guided HPLC fractionation revealed a 36-amino acid peptide with three disulfide bridges named µ/ω-theraphotoxin-Pmu1a (Pmu1a). Following isolation and characterization, the toxin was chemically synthesized and its biological activity was further assessed using electrophysiology, revealing Pmu1a to be a toxin that potently blocks both hNaV 1.7 and hCaV 3. Nuclear magnetic resonance structure determination of Pmu1a shows an inhibitor cystine knot fold that is the characteristic of many spider peptides. Combined, these data show the potential of Pmu1a as a basis for the design of compounds with dual activity at the therapeutically relevant hCaV 3.2 and hNaV 1.7 voltage-gated channels.


Assuntos
Venenos de Aranha , Aranhas , Animais , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Venenos de Aranha/farmacologia , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Dor , Peptídeos/farmacologia , Espectroscopia de Ressonância Magnética , Aranhas/metabolismo
14.
Toxins (Basel) ; 15(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36828426

RESUMO

Venom expressed by the nearly 50,000 species of spiders on Earth largely remains an untapped reservoir of a diverse array of biomolecules with potential for pharmacological and agricultural applications. A large fraction of the noxious components of spider venoms are a functionally diverse family of structurally related polypeptides with an inhibitor cystine knot (ICK) motif. The cysteine-rich nature of these toxins makes structural elucidation difficult, and most studies have focused on venom components from the small handful of medically relevant spider species such as the highly aggressive Brazilian wandering spider Phoneutria nigriventer. To alleviate difficulties associated with the study of ICK toxins in spiders, we devised a comprehensive approach to explore the evolutionary patterns that have shaped ICK functional diversification using venom gland transcriptomes and proteomes from phylogenetically distinct lineages of wandering spiders and their close relatives. We identified 626 unique ICK toxins belonging to seven topological elaborations. Phylogenetic tests of episodic diversification revealed distinct regions between cysteine residues that demonstrated differential evidence of positive or negative selection, which may have structural implications towards the specificity and efficacy of these toxins. Increased taxon sampling and whole genome sequencing will provide invaluable insights to further understand the evolutionary processes that have given rise to this diverse class of toxins.


Assuntos
Venenos de Aranha , Aranhas , Animais , Cistina , Cisteína , Filogenia , Venenos de Aranha/química , Evolução Molecular
15.
Proc Natl Acad Sci U S A ; 120(1): e2218630120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574673

RESUMO

A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αß heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2ß5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2ß5 hormone from Caenorhabditis elegans (Ceα2ß5). Ceα2ß5 is unglycosylated, as are many other α2ß5 hormones. Both Hsα2ß5, the human homolog of Ceα2ß5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2ß5 is generally similar in structure to these counterparts; however, its α2 and ß5 subunits are more symmetric as compared with α and ß of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2ß5 and αß heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2ß5 structure validates its AlphaFold model, and thus also that for Hsα2ß5; and interfacial characteristics in a model for the Hsα2ß5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.


Assuntos
Caenorhabditis elegans , Glicoproteínas , Hormônios , Receptores Acoplados a Proteínas G , Animais , Sequência de Aminoácidos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/genética
16.
Plants (Basel) ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501311

RESUMO

Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.

17.
Mol Pharm ; 19(7): 2620-2628, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35674464

RESUMO

Integrin αvß6 has been considered as a promising biomarker for lung cancer, and its expression is often related to poor prognosis. An αvß6-binding cystine knot peptide R01-MG was previously engineered and validated. Here, we developed a positron emission tomography (PET) probe of R01-MG for imaging αvß6-positive lung cancer. Cystine knot peptide R01-MG was synthesized through solid-phase peptide synthesis chemistry and radiolabeled with 68Ga after being conjugated with 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA). The stability of 68Ga-DOTA-R01-MG was analyzed in phosphate-buffered saline (PBS) (pH 7.4) and fetal bovine serum (FBS). The cell uptake assay of the probe was evaluated using αvß6-positive (A549 and H1975) and αvß6-negative (H1299) lung cancer cell lines. In addition, small animal PET imaging and biodistribution studies of 68Ga-DOTA-R01-MG were performed in αvß6-positive and αvß6-negative lung cancer models. Our study showed that 68Ga-DOTA-R01-MG exhibited excellent stability in PBS and FBS. Small animal PET imaging and biodistribution data revealed that 68Ga-DOTA-R01-MG displayed rapid and good tumor uptake in animal models with αvß6-positive lung cancer, and the probe was rapidly cleared from the normal tissues, resulting in good tumor-to-normal tissue contrasts. Meanwhile, no obvious tumor uptake of 68Ga-DOTA-R01-MG was observed in animal models with αvß6-negative lung cancer, demonstrating specific binding of the probe to integrin αvß6. In conclusion, 68Ga-DOTA-R01-MG has great potential to be a promising PET tracer for imaging αvß6-positive lung cancer.


Assuntos
Cistina , Neoplasias Pulmonares , Animais , Antígenos de Neoplasias , Linhagem Celular Tumoral , Cistina/metabolismo , Radioisótopos de Gálio , Integrina alfaVbeta3/metabolismo , Integrinas , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Nus , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
18.
Toxicon X ; 14: 100119, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35372826

RESUMO

Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders.

19.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163075

RESUMO

Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Cromatografia de Afinidade/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Recombinantes/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/agonistas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Proteínas Recombinantes/genética
20.
Eur J Nucl Med Mol Imaging ; 50(1): 184-193, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729628

RESUMO

PURPOSE: A novel cystine-knot peptide-based PET radiopharmaceutical, 18F-FP-R01-MG-F2 (knottin), was developed to selectively bind to human integrin αvß6 which is overexpressed in pancreatic cancer. The purpose of this study is to evaluate the safety, biodistribution, dosimetry, and lesion uptake of 18F-FP-R01-MG-F2 in patients with pancreatic cancer. METHODS: Fifteen patients (6 men, 9 women) with histologically confirmed pancreatic cancer were prospectively enrolled and underwent knottin PET/CT between March 2017 and February 2021 (ClinicalTrials.gov Identifier NCT02683824). Vital signs and laboratory results were collected before and after the imaging scans. Maximum standardized uptake values (SUVmax) and mean SUV (SUVmean) were measured in 24 normal tissues and pancreatic cancer lesions for each patient. From the biodistribution data, the organ doses and whole-body effective dose were calculated using OLINDA/EXM software. RESULTS: There were no significant changes in vital signs or laboratory values that qualified as adverse events or serious adverse events. At 1 h post-injection, areas of high 18F-FP-R01-MG-F2 uptake included the pituitary gland, stomach, duodenum, kidneys, and bladder (average SUVmean: 9.7-14.5). Intermediate uptake was found in the normal pancreas (average SUVmean: 4.5). Mild uptake was found in the lungs and liver (average SUVmean < 1.0). The effective dose was calculated to be 2.538 × 10-2 mSv/MBq. Knottin PET/CT detected all known pancreatic tumors in the 15 patients, although it did not detect small peri-pancreatic lymph nodes of less than 1 cm in short diameter in two of three patients who had lymph node metastases at surgery. Knottin PET/CT detected distant metastases in the lungs (n = 5), liver (n = 4), and peritoneum (n = 2), confirmed by biopsy and/or contrast-enhanced CT. CONCLUSION: 18F-FP-R01-MG-F2 is a safe PET radiopharmaceutical with an effective dose comparable to other diagnostic agents. Evaluation of the primary pancreatic cancer and distant metastases with 18F-FP-R01-MG-F2 PET is feasible, but larger studies are required to define the role of this approach. TRIAL REGISTRATION: NCT02683824.


Assuntos
Miniproteínas Nó de Cistina , Neoplasias Pancreáticas , Feminino , Humanos , Masculino , Cistina/metabolismo , Miniproteínas Nó de Cistina/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Distribuição Tecidual , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...