RESUMO
Low availability of routine nucleic acid amplification testing (NAAT) during infection outbreaks, especially in less resourced environments, was highlighted by the Covid pandemic. One of the barriers lies with the supply chain and cost of the active diagnostic ingredients (ADIs) that are the reagents for NAATs. This work explores a novel synthesis method to produce a key NAAT reagent, namely the 2'-deoxynucleoside 5'-triphosphate (dNTPs), via a reusable enzyme bioreactor, that can be integrated into a NAAT workflow. A self-immobilizing R5-silaffin kinase fusion enzyme was designed for immobilization on silica, converting dNMPs to their respective dNTP ADIs for PCR in a R5-kinase mini-bioreactor, designed to be implemented in a reusable device, stable over 2 months, when stored at 4°C. The performance is demonstrated for PCR reactions of the lambda genome and showed successful amplification up to 7.5 kb. In comparison with commercial dNTPs, in Plasmodium malariae NAATs, a high linear correlation was shown between the Ct value and the log(Copy Number), with lower incidence of false positives than with the commercial dNTPs. Overall a pathway to generate deoxynucleotides from monophosphate precursors was demonstrated, and an immobilized enzyme mini-bioreactor investigated as a proof-of-principle for work-flow integration with NAAT in low-resource research and diagnostics labs.
RESUMO
We investigated the interplay among oxidative DNA damage and repair, expression of genes encoding major base excision repair (BER) enzymes and bypass DNA polymerases, and mutagenesis in mammalian cells. Primary mouse embryonic fibroblasts were challenged with oxidative stress induced by methylene blue plus visible light, and formation and repair of DNA damage, changes in gene expression, and mutagenesis were determined at increasing intervals post-treatment (0 - 192 hours). Significant formation of oxidative DNA damage together with upregulation of Ogg1, Polß, and Polκ, and no changes in Mutyh and Nudt1 expression were found in treated cells. There was a distinct interconnection between Ogg1 and Polß expression and DNA damage formation and repair whereby changes in expression of these two genes were proportionate to the levels of oxidative DNA damage, once a 3-plus hour lag time passed (P < 0.05). Equally notable was the matching pattern of Polκ expression and kinetics of oxidative DNA damage and repair (P < 0.05). The DNA damage and gene expression data were remarkably consistent with mutagenicity data in the treated cells; the induced mutation spectrum is indicative of erroneous bypass of oxidized DNA bases and incorporation of oxidized deoxynucleoside triphosphates during replication of the genomic DNA. Our findings support follow-up functional studies to elucidate how oxidation of DNA bases and the nucleotide pool, overexpression of Polκ, delayed upregulation of Ogg1 and Polß, and inadequate expression of Nudt1 and Mutyh collectively affect mutagenesis consequent to oxidative stress.
RESUMO
The variety of enzyme-based biological preservatives is limited. This study evaluated the effects of glutathione peroxidase (GSH-Px) on the quality of crayfish during refrigerated storage by measuring the pH, total volatile basic nitrogen, trimethylamine, and microbial contamination in crayfish muscle simulation system. The results revealed that 0.3% GSH-Px (CK3) not only suppressed the degradation of nitrogenous substances but also decreased the contamination levels of total viable, Enterobacteriaceae, and Pseudomonas counts (P < 0.05). Furthermore, the populations of Lactococcus, Aeromonas, and Massilia differed in the CK3 group compared to the other groups (P < 0.05) at the end of the storage (day 15). Moreover, the principal coordinate analysis showed that the colony composition of CK3 stored for 15 days was similar to that of the control group stored for 10 days. Therefore, GSH-Px exhibits antibacterial activity against Gram-negative bacteria and has good application potential in freshwater aquatic product preservation.
RESUMO
The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Assuntos
S-Adenosilmetionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Mutação , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Sequência de BasesRESUMO
In this study, the ability of a mixture of four different alpha-thiol deoxynucleotide triphosphates (S-dNTPs) each at a concentration of 10µM when incorporated into the genomic DNA of proliferating human HL-60 and Mono-Mac-6 (MM-6) cells in vitro to provide protection from 2, 5, and 10 Gy of gamma radiation was investigated. Incorporation of the four different S-dNTPs into nuclear DNA at 10 µM concentration for five days was validated by agarose gel electrophoretic band shift analysis. S-dNTP-treated genomic DNA reacted with BODIPY-iodoacetamide demonstrated a band shift to higher molecular weight to confirm the presence of sulfur moieties in the resultant phosphorothioate DNA backbones. No overt signs of toxicity or obvious morphologic cellular differentiation were noted in the presence of 10 µM S-dNTPs even after 8 days in culture. Significantly reduced radiation-induced persistent DNA damage measured at 24 and 48 h post-exposure by γ-H2AX histone phosphorylation using FACS analysis in S-dNTP incorporated HL-60 and MM6 cells indicated protection against radiation-induced direct and indirect DNA damage. Statistically significant protection by S-dNTPs was noted at the cellular level by CellEvent™ Caspase-3/7 assay, which assess the extent of apoptotic events, and by trypan blue dye exclusion to assed cell viability. The results appear to support an innocuous antioxidant thiol radioprotective effect built into genomic DNA backbones as the last line of defense against ionizing radiation and free radical-induced DNA damage.
Assuntos
Protetores contra Radiação , Humanos , Protetores contra Radiação/farmacologia , Compostos de Sulfidrila/farmacologia , DNA , Dano ao DNA , Nucleotídeos , AntioxidantesRESUMO
A novel genome-wide accessible chromatin visualization, quantitation, and sequencing method is described, which allows in situ fluorescence visualization and sequencing of the accessible chromatin in the mammalian cell. The cells are fixed by formaldehyde crosslinking, and processed using a modified nick translation method, where a nicking enzyme nicks one strand of DNA, and DNA polymerase incorporates biotin-conjugated dCTP, 5-methyl-dCTP, Fluorescein-12-dATP or Texas Red-5-dATP, dGTP, and dTTP. This allows accessible chromatin DNA to be labeled for visualization and on bead NGS library preparation. This technology allows cellular level chromatin accessibility quantification and genomic analysis of the epigenetic information in the chromatin, particularly accessible promoter, enhancers, nucleosome positioning, transcription factor occupancy, and other chromosomal protein binding.
Assuntos
Cromatina , DNA , Animais , DNA/genética , Genômica , Nucleossomos , DNA Polimerase Dirigida por DNA/genética , Mamíferos/genéticaRESUMO
One of the key outcomes of activation of DNA replication checkpoint (DRC) or DNA damage checkpoint (DDC) is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), which is a prerequisite for normal progression through the S phase and for effective DNA repair. We have recently shown that DDC increases aerobic metabolism and activates the electron transport chain (ETC) to elevate ATP production and dNTP synthesis by repressing transcription of histone genes, leading to globally altered chromatin architecture and increased transcription of genes encoding enzymes of tricarboxylic acid (TCA) cycle and the ETC. The aim of this study was to determine whether DRC activates ETC. We show here that DRC activates ETC by a checkpoint kinase Dun1p-dependent mechanism. DRC induces transcription of RNR1-4 genes and elevates mtDNA copy number. Inactivation of RRM3 or SGS1, two DNA helicases important for DNA replication, activates DRC but does not render cells dependent on ETC. However, fitness of rrm3Δ and sgs1Δ cells requires Dun1p. The slow growth of rrm3Δdun1Δ and sgs1Δdun1Δ cells can be suppressed by introducing sml1Δ mutation, indicating that the slow growth is due to low levels of dNTPs. Interestingly, inactivation of ETC in dun1Δ cells results in a synthetic growth defect that can be suppressed by sml1Δ mutation, suggesting that ETC is important for dNTP synthesis in the absence of Dun1p function. Together, our results reveal an unexpected connection between ETC, replication stress, and Dun1p kinase.
Assuntos
Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transporte de Elétrons/genética , Fase S , Mutação , Nucleotídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , DNA Helicases/metabolismoRESUMO
Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen ß-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where ß-conglutin was immobilized on the wells of a microtiter plate, competing with ß-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Biotina , Ressonância de Plasmônio de Superfície , Ouro/químicaRESUMO
BACKGROUND AND AIMS: Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions. METHODS: The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system. KEY RESULTS: The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal. CONCLUSIONS: SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
Assuntos
Ribonucleotídeo Redutases , Solanum lycopersicum , Ciclo Celular/genética , Cloroplastos , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fotossíntese/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismoRESUMO
A new method for evaluating the substrate efficiency of deoxynucleoside triphosphates containing functional groups for the selection of modified aptamers (mod-SELEX) is proposed. The method involves conducting three consecutive rounds of PCR with a combinatorial library and a modified dNTP candidate for mod-SELEX. The conclusion about the applicability of a specific dNTP derivative is made by the nature of the change in the amplification curve during the three rounds of PCR in real time and does not require SELEX rounds. If the library degenerates during amplification (becomes less representative), it means that the specific modification of dNTP cannot be used with the selected polymerase and the other selected library amplification conditions, since it leads to competitive amplification. When the nature of the signal accumulation curve does not change, it is concluded that the modified triphosphate does not affect the distribution of oligonucleotides with different sequences in the library, that is, it does not lead to a change in its composition from the point of view of the applied detection method. It is these derivatives that can be applied with the selected conditions for the selection of aptamers. The method is applicable for quick assessment of the substrate suitability of modifications introduced into deoxynucleoside triphosphates for mod-SELEX and will be useful in the selection of aptamers for clinical diagnostics, medicine and scientific research.
Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Biblioteca Gênica , Polifosfatos , Técnica de Seleção de Aptâmeros/métodosRESUMO
BACKGROUND: Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. RESULTS: Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. CONCLUSIONS: Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development.
Assuntos
Doenças Neurodegenerativas , Núcleosídeo-Fosfato Quinase , Peixe-Zebra , Animais , Mutação , Doenças Neurodegenerativas/genética , Núcleosídeo-Fosfato Quinase/genética , Fosforilação , Timidina Quinase/metabolismo , Peixe-Zebra/metabolismoRESUMO
Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates. Four thiolated reverse primers containing a variable base at their 3' end were immobilised on individual gold electrodes of an array. Following hybridisation with target DNA, solid phase recombinase polymerase amplification was carried out and primer elongation incorporating the ferrocene labelled oligonucleotides was only detected at one of the electrodes, thus facilitating identification of the SNP under interrogation. The assay was applied to the direct detection of the SNP in fingerprick blood samples from eight different individuals, with the results obtained corroborating with next generation sequencing. The ability to be able to robustly identify the SNP using a 10 µL fingerprick sample, demonstrates that SNP discrimination is achieved using low femtomolar (ca. 8 × 105 copies DNA) levels of DNA.
Assuntos
Técnicas Biossensoriais , Recombinases , DNA/genética , Humanos , Metalocenos , Polimorfismo de Nucleotídeo Único , Recombinases/genéticaRESUMO
Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.
Assuntos
Neoplasias do Colo , Leucemia , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Proteína 1 com Domínio SAM e Domínio HD , Substituição de Aminoácidos , Linhagem Celular , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Ciclina A2/química , Ciclina A2/genética , Ciclina A2/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Leucemia/enzimologia , Leucemia/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Relação Estrutura-AtividadeRESUMO
Since December 2019, we have been in the battlefield with a new threat to the humanity known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we describe the four main methods used for diagnosis, screening and/or surveillance of SARS-CoV-2: Real-time reverse transcription polymerase chain reaction (RT-PCR); chest computed tomography (CT); and different complementary alternatives developed in order to obtain rapid results, antigen and antibody detection. All of them compare the highlighting advantages and disadvantages from an analytical point of view. The gold standard method in terms of sensitivity and specificity is the RT-PCR. The different modifications propose to make it more rapid and applicable at point of care (POC) are also presented and discussed. CT images are limited to central hospitals. However, being combined with RT-PCR is the most robust and accurate way to confirm COVID-19 infection. Antibody tests, although unable to provide reliable results on the status of the infection, are suitable for carrying out maximum screening of the population in order to know the immune capacity. More recently, antigen tests, less sensitive than RT-PCR, have been authorized to determine in a quicker way whether the patient is infected at the time of analysis and without the need of specific instruments.
RESUMO
Modified 2'-deoxyribonucleotide triphosphates (dNTPs) have widespread applications in both existing and emerging biomolecular technologies. For such applications it is an essential requirement that the modified dNTPs be substrates for DNA polymerases. To date very few examples of C5-modified dNTPs bearing negatively charged functionality have been described, despite the fact that such nucleotides might potentially be valuable in diagnostic applications using Si-nanowire-based detection systems. Herein we have synthesised C5-modified dUTP and dCTP nucleotides each of which are labelled with an dianionic reporter group. The reporter group is tethered to the nucleobase via a polyethylene glycol (PEG)-based linkers of varying length. The substrate properties of these modified dNTPs with a variety of DNA polymerases have been investigated to study the effects of varying the length and mode of attachment of the PEG linker to the nucleobase. In general, nucleotides containing the PEG linker tethered to the nucleobase via an amide rather than an ether linkage proved to be the best substrates, whilst nucleotides containing PEG linkers from PEG6 to PEG24 could all be incorporated by one or more DNA polymerase. The polymerases most able to incorporate these modified nucleotides included Klentaq, Vent(exo-) and therminator, with incorporation by Klenow(exo-) generally being very poor.
Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiuracil/química , Polietilenoglicóis/químicaRESUMO
HIV Type 1 (HIV-1) and simian immunodeficiency virus (SIV) display differential replication kinetics in macrophages. This is because high expression levels of the active host deoxynucleotide triphosphohydrolase sterile α motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) deplete intracellular dNTPs, which restrict HIV-1 reverse transcription, and result in a restrictive infection in this myeloid cell type. Some SIVs overcome SAMHD1 restriction using viral protein X (Vpx), a viral accessory protein that induces proteasomal degradation of SAMHD1, increasing cellular dNTP concentrations and enabling efficient proviral DNA synthesis. We previously reported that SAMHD1-noncounteracting lentiviruses may have evolved to harbor RT proteins that efficiently polymerize DNA, even at low dNTP concentrations, to circumvent SAMHD1 restriction. Here we investigated whether RTs from SIVmac239 virus lacking a Vpx protein evolve during in vivo infection to more efficiently synthesize DNA at the low dNTP concentrations found in macrophages. Sequence analysis of RTs cloned from Vpx (+) and Vpx (-) SIVmac239-infected animals revealed that Vpx (-) RTs contained more extensive mutations than Vpx (+) RTs. Although the amino acid substitutions were dispersed indiscriminately across the protein, steady-state and pre-steady-state analysis demonstrated that selected SIVmac239 Vpx (-) RTs are characterized by higher catalytic efficiency and incorporation efficiency values than RTs cloned from SIVmac239 Vpx (+) infections. Overall, this study supports the possibility that the loss of Vpx may generate in vivo SIVmac239 RT variants that can counteract the limited availability of dNTP substrate in macrophages.
Assuntos
Mutação , Nucleotídeos/metabolismo , DNA Polimerase Dirigida por RNA/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/enzimologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Interações Hospedeiro-Patógeno , Cinética , Macaca mulatta , Macrófagos/metabolismo , Macrófagos/virologia , Estrutura Terciária de Proteína , DNA Polimerase Dirigida por RNA/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/isolamento & purificaçãoRESUMO
Alphaherpesviral ribonucleotide reductase (RNR) is composed of large (pUL39, RR1) and small (pUL40, RR2) subunits. This enzyme can catalyze conversion of ribonucleotide to deoxynucleotide diphosphates that are further phosphorylated into deoxynucleotide triphosphate (dNTPs). The dNTPs are substrates for de novo viral DNA synthesis in infected host cells. The enzymatic activity of RNR depends on association between RR1 and RR2. However, the molecular basis underlying alphaherpesviral RNR complex formation is still largely unknown. In the current study, we investigated the pseudorabies virus (PRV) RNR interaction domains in pUL39 and pUL40. The interaction of pUL39 and pUL40 was identified by co-immunoprecipitation (co-IP) and colocalization analyses. Furthermore, the interaction amino acid (aa) domains in pUL39 and pUL40 were mapped using a series of truncated proteins. Consequently, the 90-210 aa in pUL39 was identified to be responsible for the interaction with pUL40. In turn, the 66-152, 218-258 and 280-303 aa in pUL40 could interact with pUL39, respectively. Deletion of 90-210 aa in pUL39 completely abrogated the interaction with pUL40. Deletion of 66-152, 218-258 and 280-303 aa in pUL40 remarkably weakened the interaction with pUL39, whereas a weak interaction could still be observed. Amino acid sequence alignments showed that the interaction domains identified in PRV pUL39/pUL40 were relatively non-conserved among the selected RNR subunits in alphaherpesviruses HSV1, HSV2, HHV3(VZV), BHV1, EHV1 and DEV. However, they were relatively conserved among PRV, HSV1 and HSV2. Collectively, our findings provided some molecular targets for inhibition of pUL39-pUL40 interaction to antagonize viral replication in PRV infected hosts.
Assuntos
Herpesvirus Suídeo 1/enzimologia , Subunidades Proteicas/química , Ribonucleotídeo Redutases/química , Linhagem Celular , Células HEK293 , Humanos , Nucleotidases/metabolismo , Alinhamento de Sequência , Replicação ViralRESUMO
Due to the extreme infectivity of Yersinia pestis it poses a serious threat as a potential biowarfare agent, which can be rapidly and facilely disseminated. A cost-effective and specific method for its rapid detection at extremely low levels is required, in order to facilitate a timely intervention for containment. Here, we report an ultrasensitive method exploiting a combination of isothermal nucleic acid amplification with a tailed forward primer and biotinylated dNTPs, which is performed in less than 30 min. The polymerase chain reaction (PCR) and enzyme linked oligonucleotide assay (ELONA) were used to optimise assay parameters for implementation on the LFA, and achieved detection limits of 45 pM and 940 fM using SA-HRP and SA-polyHRP, respectively. Replacing PCR with isothermal amplification, namely recombinase polymerase amplification, similar signals were obtained (314 fM), with just 15 min of amplification. The lateral flow detection of the isothermally amplified and labelled amplicon was then explored and detection limits of 7 fM and 0.63 fg achieved for synthetic and genomic DNA, respectively. The incorporation of biotinylated dNTPs and their exploitation for the ultrasensitive molecular detection of a nucleic acid target has been demonstrated and this generic platform can be exploited for a multitude of diverse real life applications.
Assuntos
Desoxirribonucleotídeos/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Yersinia pestis/isolamento & purificação , Biotinilação , Desoxirribonucleotídeos/genética , Reação em Cadeia da Polimerase , Yersinia pestis/genéticaRESUMO
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Assuntos
Proteína 1 com Domínio SAM e Domínio HD/fisiologia , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Reparo do DNA , Desoxirribonucleotídeos/metabolismo , Humanos , Imunidade Inata , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Viroses/imunologia , Viroses/virologia , Replicação ViralRESUMO
Genomes represent the starting point of genetic studies. Since the discovery of DNA structure, scientists have devoted great efforts to determine their sequence in an exact way. In this review we provide a comprehensive historical background of the improvements in DNA sequencing technologies that have accompanied the major milestones in genome sequencing and assembly, ranging from early sequencing methods to Next-Generation Sequencing platforms. We then focus on the advantages and challenges of the current technologies and approaches, collectively known as Third Generation Sequencing. As these technical advancements have been accompanied by progress in analytical methods, we also review the bioinformatic tools currently employed in de novo genome assembly, as well as some applications of Third Generation Sequencing technologies and high-quality reference genomes.