Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.135
Filtrar
1.
Mar Life Sci Technol ; 6(3): 462-474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39219679

RESUMO

Gasdermins (GSDMs) are proteins cleaved by caspase (CASP) to trigger pyroptosis. In teleosts, pyroptosis is mediated by gasdermin E (GSDME). The Pufferfish, Takifugu rubripes, possesses two GSDME orthologs: named TrGSDMEa and TrGSDMEb. TrGSDMEa is cleaved by CASP3/7 to liberate the N-terminal (NT) domain that can trigger pyroptosis in mammalian cells. However, the biological function of TrGSDMEa in pufferfish is unknown, and TrGSDMEb is poorly studied. We found that TrGSDMEb was cleaved by CASP1/3/6/7/8, but the resulting NT domain, despite its similarity to TrGSDMEa-NT domain in sequence and structure, failed to induce pyroptosis. TrGSDMEa and TrGSDMEb exhibited similar expression patterns in pufferfish under normal physiological conditions but were up- and downregulated, respectively, in expression during Vibrio harveyi and Edwardsiella tarda infection. Bacterial infection induced the activation of TrGSDMEa and CASP3/7 in pufferfish cells, resulting in pyroptosis accompanied with IL-1ß production and maturation. Inhibition of TrGSDMEa-mediated pyroptosis via TrCASP3/7 reduced the death of pufferfish cells and augmented bacterial dissemination in fish tissues. Structure-oriented mutagenesis identified 16 conserved residues in teleost GSDMEa that were required for the pore formation or auto-inhibition of GSDMEa. This study illustrates the role of GSDMEa-mediated pyroptosis in teleost defense against bacterial pathogens and provides new insights into the structure-based function of vertebrate GSDME. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00237-x.

2.
Front Plant Sci ; 15: 1428272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220009

RESUMO

Introduction: Salicylic acid (SA) is a phenolic compound widely found in plants. It plays a key role in exerting plant disease resistance. Panax vietnamensis Ha & Grushv., a valuable medicinal plant, contains high levels of phenolic compounds, which contribute significantly to the resilience of the plant against stress. However, the precise role of SA in regulating the synthesis of secondary metabolites in P.vietnamensis remains elusive. Methods: Two-year-old P. vietnamensis seedlings were treated with exogenous SA. We systematically assessed the changes in the physiological parameters of SA-treated P. vietnamensis leaves, employing transcriptome and metabolome analyses to elucidate the underlying mechanisms. Results: Our results revealed a significant improvement of the plant's antioxidant capacity at 6 h post-treatment. Furthermore, exogenous SA treatment promoted the biosynthesis of lignin and flavonoids such as rutin, coumarin, and cyanidin. In addition, it increased the levels of endogenous SA and jasmonic acid (JA), promoting the disease resistance of the plants. Thus, SA pretreatment enhanced the defense of P. vietnamensis against pathogens. Conclusions: Our study provided novel insights into the potential molecular mechanisms underlying SA-mediated biosynthesis of secondary metabolites. Furthermore, our results provided a theoretical foundation for optimizing the cultivation practices of P.vietnamensis and the application of SA as a plant immunomodulator.

3.
Front Fungal Biol ; 5: 1437344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220294

RESUMO

In warm and humid regions, the productivity of sorghum is significantly limited by the fungal hemibiotrophic pathogen Colletotrichum sublineola, the causal agent of anthracnose, a problematic disease of sorghum (Sorghum bicolor (L.) Moench) that can result in grain and biomass yield losses of up to 50%. Despite available genomic resources of both the host and fungal pathogen, the molecular basis of sorghum-C. sublineola interactions are poorly understood. By employing a dual-RNA sequencing approach, the molecular crosstalk between sorghum and C. sublineola can be elucidated. In this study, we examined the transcriptomes of four resistant sorghum accessions from the sorghum association panel (SAP) at varying time points post-infection with C. sublineola. Approximately 0.3% and 93% of the reads mapped to the genomes of C. sublineola and Sorghum bicolor, respectively. Expression profiling of in vitro versus in planta C. sublineola at 1-, 3-, and 5-days post-infection (dpi) indicated that genes encoding secreted candidate effectors, carbohydrate-active enzymes (CAZymes), and membrane transporters increased in expression during the transition from the biotrophic to the necrotrophic phase (3 dpi). The hallmark of the pathogen-associated molecular pattern (PAMP)-triggered immunity in sorghum includes the production of reactive oxygen species (ROS) and phytoalexins. The majority of effector candidates secreted by C. sublineola were predicted to be localized in the host apoplast, where they could interfere with the PAMP-triggered immunity response, specifically in the host ROS signaling pathway. The genes encoding critical molecular factors influencing pathogenicity identified in this study are a useful resource for subsequent genetic experiments aimed at validating their contributions to pathogen virulence. This comprehensive study not only provides a better understanding of the biology of C. sublineola but also supports the long-term goal of developing resistant sorghum cultivars.

4.
New Phytol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223898

RESUMO

Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.

5.
Heliyon ; 10(16): e36141, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224266

RESUMO

Rice blast disease, caused by Magnaporthe oryzae, poses a significant threat to global rice production, necessitating the development of effective and sustainable management strategies. Biological control using beneficial microbes like Bacillus amyloliquefaciens has emerged as a promising approach due to its ability to enhance plant resistance and reduce disease incidence. Nano-encapsulation of bacteria, which involves embedding beneficial microbes within nanomaterials, offers a novel method to improve the stability, survival, and efficacy of these biocontrol agents. This study evaluated the capacity of encapsulated Bacillus amyloliquefaciens D203, embedded within an alginate-bentonite coating infused with titanium nanoparticles (TNs), to stimulate defense responses in rice seedlings challenged by the Magnaporthe oryzae the causal agent of rice blast disease. Encapsulation was achieved using the extrusion technique, with some modifications. Using a completely randomized design, the experiment was conducted in a greenhouse, with four treatments replicated four times. The experiment used the popular Kenyan rice variety "BASMATI 370". The study investigated the impact of strain D203 on the incidence, severity, and area under disease progress curves related to M. oryzae, as well as the expression of defense-related enzymes. The results demonstrated that rice plants derived from seeds coated with the D203 encapsulated B. amyloliquefaciens strain exhibited higher levels of defense-related enzyme expression, including peroxidase (POD), phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD) and catalase (CAT), compared to controls. In addition, the incidence and severity of the disease were markedly lower in plants treated with encapsulated B. amyloliquefaciens compared to controls, sometimes paralleling the efficacy of hexaconazole treatment. These findings suggest that the encapsulation of strain D203 has the potential to enhance resistance against rice blast disease by inducing systemic resistance through the production of antioxidant enzymes.

6.
Heliyon ; 10(16): e34674, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224353

RESUMO

Given the increasing utilization of forest components in integration systems worldwide, coupled with the growing demand for food in regions facing water restrictions, this study aims to evaluate how physiological and biochemical parameters contribute to the diversification of adaptive mechanisms among native species and eucalyptus genotypes intercropped with soybean or corn. The native tree species Anadenanthera macrocarpa and Dipteryx alata, and the eucalyptus genotypes Urograndis I-144 and Urocam VM01, were grown in soybean and corn intercropping areas and evaluated in fall, winter, spring, and summer. The study evaluated morning water potential, chloroplast pigment concentration, gas exchange, cell damage, and antioxidant enzyme activity. Intercropped with soybean, development the of A. macrocarpa improved through instantaneous water use efficiency, energy use by the electron transport chain, chloroplast pigments, and catalase enzyme activity. On the other hand, A. macrocarpa when, intercropped with corn, despite increasing energy absorption by the reaction center, there is a need for non-photochemical dissipation and in the activity of the enzymes superoxide dismutase and ascorbate peroxidase in response to water and oxidative deficits. In D. alata, the physiological and biochemical responses were not influenced by intercropping but by seasons, with increased chloroplast pigments in fall and electron transport in summer. However, in corn intercropping, the dissipation of excess energy allowed leaf acclimatization. The I-144 and VM01 genotypes also showed no significant differences between intercrops. The results describe photosynthetic and biochemical challenges in the native species A. macrocarpa intercropped with corn, such as a greater need for enzymatic and non-enzymatic defense mechanisms in response to more negative water potential. In D. alata, the challenges are present in both intercrops due to improved mechanisms to protect the photosynthetic apparatus. The survival of the I-144 genotype may be inefficient in both intercrops under prolonged drought conditions, as it modifies the photosystem; in contrast, genotype VM01 was the most adapted to the system for using captured energy, reducing water loss and being resilient.

7.
New Phytol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39224928

RESUMO

Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.

8.
Curr Med Chem ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39225212

RESUMO

Atherosclerosis remains a major challenge to global healthcare despite decades of research and constant trials of novel therapeutic approaches. One feature that makes atherosclerosis treatment so elusive is an insufficient understanding of its origins and the early stages of the pathological process, which limits our means of effective prevention of the disease. Macrovascular pericytes are cells with distinct shapes that are located in the arterial wall of larger vessels and are in many aspects similar to microvascular pericytes that maintain the functionality of small vessels and capillaries. This cell type combines the residual contractile function of smooth muscle cells with a distinct stellar shape that allows these cells to make numerous contacts between themselves and the adjacent endothelial layer. Moreover, pericytes can take part in the immune defense and are able to take up lipids in the course of atherosclerotic lesion development. In growing atherosclerotic plaques, the morphology and function of pericytes change dramatically due to phagocytic and synthetic phenotypes that are actively involved in lipid accumulation and extracellular matrix synthesis. In this review, we summarize our knowledge of this less-studied cell type and its role in atherosclerosis.

9.
Fish Shellfish Immunol ; 153: 109862, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209006

RESUMO

Aeromonas salmonicida is an opportunistic pathogen with relevance for aquaculture. Fish epithelia are covered by a mucus layer, composed mainly by highly glycosylated mucins, which are the first point of contact between fish and pathogens. Quorum sensing (QS), a bacterial communication mechanism through secreted autoinducer signals that governs gene expression, influences bacterial growth and virulence. The main A. salmonicida autoinducers are mediated by the luxS and asaI genes, corresponding to inter- and intraspecies communication, respectively. The aim of this study was to determine the effect of the mucins that pathogens encounter during colonization of the gill and skin on A. salmonicida QS. We found that expression of A. salmonicida asaI, but not luxS, was increased after culture at 20 °C compared to 10 °C. Rainbow trout gill and skin mucins up-regulated asaI expression 2-fold but down-regulated luxS 10-fold. The downregulation of luxS was reflected by a reduction in autoinducer-2 secretion. Mucins isolated from skin had a stronger inhibitory effect than mucins isolated from gills on both luxS expression and A1-2 secretion, consistent with a higher relative abundance of N-Acetylneuraminic acid on skin mucins than on gill mucins. Reduction of AI-2 production by mucins or luxS-deletion lead to a reduced A. salmonicida auto-aggregation. Furthermore, after colonization of the gill, luxS was down regulated whereas asaI expression was upregulated. Both in vivo and in vitro, the expression of luxS and asaI were thus differentially regulated, frequently in an inverse manner. The strong AI-2 inhibiting effect of the skin mucins is likely part of the mucin-based defense against pathogens.

10.
Fish Shellfish Immunol ; 153: 109864, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216712

RESUMO

Gilthead seabream (Sparus aurata) is a marine finfish of economic importance in aquaculture. Despite its adaptability to varying culture conditions, gilthead seabream culture can be affected by viral, bacterial or parasitic diseases. The main route of entry of pathogens is through mucosal surfaces. Teleost external and internal surfaces are covered by mucus, mainly comprised of highly glycosylated proteins called mucins. The mucin glycans regulate pathogen growth, adhesion, virulence and inter and intra species communication. Here, we characterized the gilthead seabream mucus glycosylation, compared it to previously described species and investigated associations with microbiota. 214 glycans were identified. The majority of the glycans were found at more than one epithelial surface, but 27, 22 and 89 O-glycan structures were unique to skin, gill and intestinal sample groups, respectively. Six O-glycan core types were observed. The majority of the seabream skin and gill O-glycans were neutral with unusual poly HexNAc motifs. In contrast, seabream intestinal O-glycans were highly acidic and not of the 'poly HexNAc' type observed in skin and gill. Furthermore, gilthead seabream gill mucosa had less oligomannose and more complex N-glycans compared to skin and intestine. The concentration and diversity of bacteria was similar in skin, gill and intestine, but the bacterial species differed between epithelia and co-varied with glycan epitopes. The presence of a complex mucus glycosylation with plenty of glycan epitopes for bacterial foraging, suggest that the skin mucosal defense in seabream includes an abundant resident microbiota. This large library of structures provides a platform for further studies, for example aiming to identifying glycans to use for diagnostic purposes, to study host-microbe interactions or disease intervention therapies.

11.
Sci Rep ; 14(1): 20024, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198538

RESUMO

Globally from abiotic stresses, salt stress is the major stress that limits crop production. One of them is wheat that has been utilized by more than 1/3 of the world population as staple food due to its nutritive value. Biochar is an activated carbon that can ameliorate the negative impacts on plants under saline conditions. The present study was conducted to examine the ameliorative impact of "Biochar application" to Triticum aestivum L. plant grown under salinity stress and evaluated on the basis of various growth, yield, physiological, biochemical attributes. Preliminary experiment was done to select the Triticum aestivum L. varieties with 90% germination rate for further experiment. The selected varieties, FSD08 and PUNJAB-11 of wheat were treated with two levels of sodium chloride (0 mM and 120 mM). Two varieties of wheat included FSD08 and PUNJAB-11 were treated with two levels of sodium chloride (0 mM and 120 mM). To address the impact of salt stress two levels of biochar 0% and 5% was used as exogenous application. A three way completely randomized experimentation was done in 24 pots of two wheat varieties with three replicates. The results demonstrated that salt stress affected growth, physiological attributes, yield and inorganic mineral ions (Ca2+ and K+) in roots and shoots parameters of wheat negatively while biochar overall improved the performance of plant. SOD, CAT, APX and POD activities enhanced during salt stress as the plant self-defense mechanism against salinity to minimize the damaging effect. Salt stress also significantly increased the membrane permeability, and levels of H2O2, MDA, Cl and Na ions. Biochar treatment nullified negative impacts of NaCl and improved the plant growth and yield significantly. Hence, biochar amendment can be suggested as suitable supplement for sustainable crop production under salinization.


Assuntos
Carvão Vegetal , Estresse Salino , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Carvão Vegetal/farmacologia , Germinação/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salinidade
12.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204846

RESUMO

Machine learning (ML) represents one of the main pillars of the current digital era, specifically in modern real-world applications. The Internet of Things (IoT) technology is foundational in developing advanced intelligent systems. The convergence of ML and IoT drives significant advancements across various domains, such as making IoT-based security systems smarter and more efficient. However, ML-based IoT systems are vulnerable to lurking attacks during the training and testing phases. An adversarial attack aims to corrupt the ML model's functionality by introducing perturbed inputs. Consequently, it can pose significant risks leading to devices' malfunction, services' interruption, and personal data misuse. This article examines the severity of adversarial attacks and accentuates the importance of designing secure and robust ML models in the IoT context. A comprehensive classification of adversarial machine learning (AML) is provided. Moreover, a systematic literature review of the latest research trends (from 2020 to 2024) of the intersection of AML and IoT-based security systems is presented. The results revealed the availability of various AML attack techniques, where the Fast Gradient Signed Method (FGSM) is the most employed. Several studies recommend the adversarial training technique to defend against such attacks. Finally, potential open issues and main research directions are highlighted for future consideration and enhancement.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39212847

RESUMO

Present study was aimed to develop an efficient microbial consortium for combating Alternaria blight disease in cumin. The research involved isolating biocontrol agents against Alternaria burnsii, characterizing their biocontrol and growth promotion traits, and assessing compatibility. A pot experiment was conducted during rabi season of 2022-2023 to evaluate the bioefficacy of four biocontrol agents (1F, 16B, 31B, and 223B) individually and in consortium, focusing on disease severity, plant growth promotion, and defense responses in cumin challenged with A. burnsii. Microbial isolates 1F, 16B, 31B, and 223B significantly inhibited A. burnsii growth in dual plate assays (~ 86%), displaying promising biocontrol and plant growth promotion activities. They were identified as Trichoderma afroharzianum 1F, Aneurinibacillus aneurinilyticus 16B, Pseudomonas lalkuanensis 31B, and Bacillus licheniformis 223B, respectively. The excellent compatibility was observed among all selected biocontrol agents. Cumin plants treated with consortia of 1F + 16B + 31B + 223B showed least percent disease index (32.47%) and highest percent disease control (64.87%). Consortia of biocontrol agents significantly enhanced production of secondary metabolites (total phenol, flavonoids, antioxidant, and tannin) and activation of antioxidant-defense enzymes (POX, PPOX, CAT, SOD, PAL, and TAL) compared to individual biocontrol treatment and infected control. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual biocontrol agent and infected control treatment. The four-microbe consortium significantly enhanced chlorophyll (154%), carotenoid content (88%), plant height (78.77%), dry weight (72.81%), and seed yield (104%) compared to infected control. Based on these findings, this environmentally friendly four-microbe consortium may be recommended for managing Alternaria blight in cumin.

14.
Water Res ; 266: 122347, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39216127

RESUMO

Phytoremediation is an effective solution to treat pollution with antibiotic compounds in aquatic environments; however, the underlying mechanisms for plants to cope with antibiotic pollutants are obscure. Here we used cell suspension culture to investigate the distribution and transformation of ciprofloxacin (CIP) in common reed (Phragmites australis) plants, as well as the accompanying phenotypic and metabolic responses of plants. By means of radioactive isotope labelling, we found that in total 68 % of CIP was transformed via intracellular Phase I transformation (reduction and methylation), Phase Ⅱ conjugation (glycosylation), and Phase Ⅲ compartmentalization (cell-bound residue formation mainly in cell walls, 23 %). The reduction and glycosylation products were secreted by the cells. To mitigate stress induced by CIP and its transformation products, the cells activated the defense system by up-regulating both intra- and extra-cellular antioxidant metabolites (e.g., catechin, l-cystine, and dehydroascorbic acid), anti-C/N metabolism disorder metabolites (e.g., succinic acid), secreting signaling (e.g., nicotinic acid), and anti-stress (e.g., allantoin) metabolites. Notably, the metabolic reprogramming could be involved in the CIP transformation process (e.g., glycosylation). Our findings reveal the strategy of wetland plants to cope with the stress from CIP by transforming the xenobiotic compound and reprogramming metabolism, and provide novel insights into the fate of antibiotics and plant defense mechanisms during phytoremediation.

15.
Int J Psychol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155791

RESUMO

The MOD Rehabilitation Department (RD) offers three types of rehabilitation tracks (RTs): (a) education, (b) work placement, (c) economic independence. This study aimed to examine which of the offered RTs predicted a better integration into the workforce. This is an observational, prospective, case-controlled study. Data were collected from administrative files. The data pertained to soldiers injured in military service, under RD care and recognised as posttraumatic stress disorder (PTSD) patients between 2001 and 2006. As rehabilitation takes 5-6 years, we examined two points in time: 2015 and 5 years later, in 2020. The studied population comprised 462 male military veterans injured during military service and diagnosed with PTSD (mean age at the time of injury was 24.60 [SD 5.70]; median = 22). Of the participants, 87.9% (n = 406) also sustained physical injury, and 12.1% were not injured physically (n = 56; 12.1%). A regression analysis indicated that the educational RT (OR = 19.509; p = .001) predicted integration into the workforce. The whole model explained 49.0% of the variance. Of the three RT types examined, education is the most important. The more years of study, the better the ability to integrate into the workforce.

16.
Plant Physiol Biochem ; 215: 108973, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39133980

RESUMO

Exopolysaccharide (EPS)-producing beneficial bacteria play a multifaceted role in improving plant growth and adaptive responses against different stressors. In this study, we isolated 25 bacterial strains from pea nodules and were further studied for their sodium chloride (NaCl) and cadmium (Cd) stress tolerance. Based on our results, Rhizobium fabae SR-22 (NCBI Accession number: MG063739.1) showed better tolerance toward salinity and Cd stress and produced a wide range of plant growth-promoting compounds. However, the amount of EPS varies during NaCl and Cd stress. It was important to note that NaCl and Cd beyond the tolerant level, affected the morphology and cellular viability of R. fabae. Interestingly, plant growth-promoting (PGP) substances (indole-3-acetic acid, ammonia, siderophore, and ACC deaminase) released by R. fabae were increased with increasing NaCl concentrations. In contrast, PGP substances were greatly decreased by increasing Cd dosages. Further, the beneficial effect of EPS-producing R. fabae in Triticum aestivum grown in soil treated with different levels of NaCl and Cd was assessed. Inoculation of R. fabae in wheat seedlings grown under higher NaCl and Cd concentrations showed improved growth compared to non-inoculated plants. R. fabae exhibited maximum effect in wheat plants grown under 2% NaCl and increased seed germination (8%), root length (13%), vigor indices (19%), root biomass (20%), chlorophyll-a (31%), total chlorophyll (27%) and carotenoid content. Additionally, R. fabae increased Cd and NaCl tolerance in wheat seedlings and improved their antioxidative responses. Conclusively, this work demonstrated that EPS-producing R. fabae showed a promising role in mitigating salinity and Cd-stress in wheat possibly by reducing salt and HM stress-induced abrasions and growth promotion via inorganic phosphate solubilization, and increased nutrient absorption. In the future, R. fabae equipped with these distinguishing characteristics may be used as effective bio-inoculants/bio-formulations in agriculture to address salinity and HM stress issues.

17.
Appl Environ Microbiol ; : e0112024, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136492

RESUMO

The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various Skunavirus members. In the present study, their effectiveness against phage infection was confirmed in milk-based medium, thus validating their potential to ensure reliable dairy fermentations. We furthermore demonstrated that Rhea and Kamadhenu do not directly hinder phage genome replication, transcription, or associated translation. Conversely, Aristaios was found to interfere with phage transcription. Two of the antiphage systems are encoded on pMRC01-like conjugative plasmids, and the Kamadhenu-encoding plasmid was successfully transferred by conjugation to three lactococcal strains, each of which acquired substantially enhanced phage resistance against Skunavirus members. Such advances in our knowledge of the lactococcal phage resistome and the possibility of mobilizing these protective functions to bolster phage protection in sensitive strains provide practical solutions to the ongoing phage problem in industrial food fermentations.IMPORTANCEIn the current study, we characterized and evaluated the mechanistic diversity of three recently described, plasmid-encoded lactococcal antiphage systems. These systems were found to confer high resistance against many members of the most prevalent and problematic lactococcal phage genus, rendering them of particular interest to the dairy industry, where persistent phage challenge requires the development of starter cultures with enhanced phage resistance characteristics. Our acquired knowledge highlights that enhanced understanding of lactococcal phage resistance systems and their encoding plasmids can provide rational and effective solutions to the enduring issue of phage infections in dairy fermentation facilities.

18.
Plant Physiol Biochem ; 215: 109020, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128405

RESUMO

Clubroot, a devastating soil borne disease affecting 30%∼50% of Brassicaceae crops worldwide, lacks effective control measures. In the present study, we explored the potential of melatonin (MT) and copper oxide nanoparticle (CuO-NPs) in mitigating clubroot severity in the Brassica rapa ssp. pekinensis. Following 18 h priming with MT, CuO-NPs, or both seeds were grown in controlled environment using synthetic potting mix. Inoculated with Plasmodiophora brassicae spores on 5th day, followed by a soil drench phyto-nano treatment with a week interval. Plants were assessed for various health and growth indices including disease, biometrics, photosynthesis, reactive oxygen species (ROS), antioxidant enzyme activity, hormones and genes expression at onset of secondary clubroot infection using established protocols. Statistical analysis employed ANOVA with Fisher's LSD for significance assessment (P < 0.05). Our results revealed that seed priming with both MT (50 µMol/L) and CuO-NPs (200 mg/L), followed by soil drenching significantly reduced clubroot incidence (38%) and disease index (57%), compared to control treatments. This synergistic effect was associated with enhanced plant growth (shoots: 48% and roots: 59%). Plants treated with both MT and CuO-NPs showed robust antioxidant defenses, significantly increased superoxide dismutase (SOD (25/29%)), catalase (CAT (83/55%)), and ascorbate peroxidase (APX (83/46%)) activity in both shoots/roots, respectively, compared to infected control. Notably, salicylic acid and jasmonic acid levels doubled in treated plants, while stress hormone abscisic acid (ABA) decreased by 80% in roots and 21% in shoots. Gene expression analysis corroborated these findings, showing that the combined treatment activated antioxidant defense genes (SOD, APX and CAT) by 1.9-7.2-fold and upregulated hormone signaling genes JAZ1 (7.8-fold), MYC2 (3.9-fold) and SABP2 (36-fold). Conversely, ABA biosynthesis genes (ABA1 and NCED1) were downregulated up to 7.2-fold, while plant resistance genes NPR1, PRB1 and PDF1.2 were dramatically increased by up to 6.3-fold compared to infected plants. Overall, our combined treatment approach significantly reduces clubroot severity in B. rapa via enhanced antioxidant defenses, improved ROS scavenging, coordinated hormonal regulation and increased pathogen response genes. This study offers promising strategy for developing effective control measures against clubroot in susceptible cruciferous crops.

19.
Int J Cancer ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129048

RESUMO

Bacteria are ideal anticancer agents and carriers due to their unique capabilities that are convenient in genetic manipulation, tumor-specific targeting, and deep-tissue penetration. However, the specific molecular mechanisms of bacteria-mediated cancer therapy (BMCT) have not been clarified. In this study, we found that TLR4 signaling pathway is critical for Salmonella-mediated tumor targeting, tumor suppression, and liver and spleen protection. TLR4 knockout in mice decreased the levels of cytokines and chemokines, such as S100a8, S100a9, TNF-α, and IL-1ß, in tumor microenvironments (TMEs) after Salmonella treatment, which inhibited tumor cell death and nutrient release, led to reduced bacterial contents in tumors and attenuated antitumor efficacy in a negative feedback manner. Importantly, we found that S100a8 and S100a9 played a leading role in Salmonella-mediated cancer therapy (SMCT). The antitumor efficacy was abrogated and liver damage was prominent when blocked with a specific inhibitor. These findings elucidated the mechanism of Salmonella-mediated tumor targeting, suppression, and host antibacterial defense, providing insights into clinical cancer therapeutics.

20.
Ecol Evol ; 14(8): e70179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149522

RESUMO

Although the postdispersal functions of diaspore (fruit and its appendages) have been reported, little is known about their protective/defensive functions. In this context, diaspores with appendages (persistent inner tepals and/or fruit wings) that experienced predispersal herbivory by insects in natural populations of Rheum nanum were investigated, and the seed abortion percentage, seed and embryo masses, and germination of seeds from diaspores with different categories of insect herbivory were measured and compared. Predispersal insect herbivory of R. nanum diaspores was prevalent in the four investigated populations, but the percentage of diaspores with appendages (persistent inner tepals and and/or fruit wings) damaged by insects was significantly higher than that of diaspores with the pericarp damaged by insects. Seeds from diaspores with gnawed appendages experienced significantly less damage than those with gnawed pericarps. Importantly, we conclude that fruit appendages of R. nanum help to mechanically protect developing seeds from predispersal insect herbivory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...