Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.731
Filtrar
1.
J Environ Sci (China) ; 151: 505-515, 2025 May.
Artigo em Inglês | MEDLINE | ID: mdl-39481956

RESUMO

N-participated lignin depolymerization is of great importance for the transformation of waste lignin into value-added chemicals. The vast majority of developed strategies employ organic amines as nitrogen source, and considerable methods rely on excessive use of strong base, which suffers severe environmental issues. Herein, benzonitrile derivatives are synthesized from oxidized lignin ß-O-4 model compounds in the presence of solid nitrogen source (NH4)2CO3 under mild, base-free conditions over commercially available copper catalyst. Mechanism studies suggest the transformation undergoes a one-pot, highly coupled cascade reaction path involving oxidative C-C bond cleavage and in-situ formation of CN bond. Of which, Cu(OAc)2 catalyzes the transfer of hydrogen from Cß (Cß-H) to Cα, leading to the cleavage of Cα-Cß bonds to offer benzaldehyde derivative, this intermediate then reacts in-situ with (NH4)2CO3 to afford the targeted aromatic nitrile product. Tetrabutylammonium iodide (TBAI), acting as a promoter, plays a key role in breaking the Cα-Cß bonds to form the intermediate benzaldehyde derivative. With this protocol, the feasibility of the production of value-added syringonitrile from birchwood lignin has been demonstrated. This transformation provides a sustainable approach to benzonitrile chemicals from renewable source of lignin.


Assuntos
Cobre , Lignina , Nitrilas , Lignina/química , Nitrilas/química , Catálise , Cobre/química
2.
J Environ Sci (China) ; 147: 550-560, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003070

RESUMO

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 104 ng/m3), total suspended particulate (TSP) (mean= 4.33 × 103 ng/m3) and soil (mean= 4.37 × 103 ng/g) in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility, surrounding residential areas and reference areas, indicating that petroleum refining processes would lead apparent derivation of PAHs. Especially, compared with those in residential and reference areas, gas samples in the petrochemical areas had higher ∑NPAH/∑PAHs (mean=2.18), but lower ∑Cl-PAH/∑PAHs (mean=1.43 × 10-1) and ∑Br-PAH/∑PAHs ratios (mean=7.49 × 10-2), indicating the richer nitrification of PAHs than chlorination during petrochemical process. The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure, and the ILCR (1.04 × 10-4) for petrochemical workers was considered to be potential high risk. Furthermore, one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area, and another 35 PAHs were found, including alkyl-PAHs, phenyl-PAHs and other species, indicating that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.


Assuntos
Monitoramento Ambiental , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Petróleo/análise , Humanos , Indústria de Petróleo e Gás , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Medição de Risco
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125013, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39186875

RESUMO

As a reactive sulfur species, sulfur dioxide (SO2) and its derivatives play crucial role in various physiological processes, which can maintain redox homeostasis at normal levels and lead to the occurrence of many diseases at abnormal levels. So, the development of a suitable fluorescent probe is a crucial step in advancing our understanding of the role of SO2 derivatives in living organisms. Herein, we developed a near-infrared fluorescent probe (SP) based on the ICT mechanism to monitor SO2 derivatives in living organisms in a ratiometric manner. The probe SP exhibited excellent selectivity, good sensitivity, fast response rate (within 50 s), and low detection limit (1.79 µM). In addition, the cell experiment results suggested that the SP has been successfully employed for the real-time monitoring of endogenous and exogenous SO2 derivatives with negligible cytotoxicity. Moreover, SP was effective in detecting SO2 derivatives in mice.


Assuntos
Corantes Fluorescentes , Dióxido de Enxofre , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Dióxido de Enxofre/análise , Animais , Camundongos , Humanos , Limite de Detecção , Espectrometria de Fluorescência , Imagem Óptica , Células HeLa
4.
Arq. bras. oftalmol ; Arq. bras. oftalmol;88(1): e2023, 2025. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1568852

RESUMO

ABSTRACT Purpose: This study aimed to analyze variations in intraoperative corneal thickness during corneal cross-linking in patients with keratoconus and to investigate its possible correlation with presurgical maximal keratometry (Kmax) and pachymetry. Methods: This was a prospective case series. We used a method similar to the Dresden protocol, with the application of hydroxypropyl methylcellulose 0.1% hypo-osmolar riboflavin in corneas between 330 and 400 µm after epithelium removal. Corneal thickness was measured using portable calipers before and immediately after epithelium removal, and 30 and 60 min after the procedure. Results: The 30 patients in this study were followed up for one year. A statistically significant difference was observed in pachymetry values during the intraoperative period (p<0.0001) and an increase of 3.05 µm (95%C1: 0.56-5.54) for each diopter was seen after epithelium removal (p0.019). We found an average Kmax difference of —2.12 D between men and women (p0.013). One year after treatment, there was a statistically significant reduction in pachymetry (p<0.0001) and Kmax (p0.0170) values. Conclusions: A significant increase in pachymetry measurements was seen during the procedure, and most patients showed a regression in Kmax and pachymetry values one year after surgery.

5.
Carbohydr Polym ; 347: 122698, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39486938

RESUMO

Cellulose nanocrystals (CNCs) and cellulose microfibrils (CMFs) are promising materials with the potential to significantly enhance the mechanical properties of electrospun nanofibers. However, the crucial aspect of optimizing their integration into these nanofibers remains a challenge. In this work, we present a method to prepare and electrospin a cellulosic solution, aiming to overcome the existing challenges and realize the optimized incorporation of CNCs into nanofibers. The solution parameters of electrospinning were explored using a combined experimental and simulation (molecular dynamics) approach. Experimental results emphasize the impact of polymer solution concentration on fiber morphology, reinforcing the need for further optimization. Simulations highlight the intricate factors, including the molecular weight of cellulose acetate (CA) polymer chains, electrostatic fields, and humidity, that impact the alignment of CNCs and CMFs. Furthermore, efforts were made to study CNCs/CMFs alignment rate and quality optimization. It is predicted that pure CNCs benefit more from electrostatic alignment, while lower molecular weight CA enables better CNC/CMF alignment.

6.
Carbohydr Polym ; 347: 122739, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39486968

RESUMO

Guar gum (GG), as a non-exudate gum, is extracted from the seed's embryos of Cyamopsis tetragonoloba (a member of Leguminosae family). Recently, this biopolymer has received extensive attention due to its low cost, notable properties, non-toxic biodegradation, ease of availability, and biocompatibility. However, disadvantages such as uncontrolled hydration rate and susceptibility to microbial attack have led many researchers to further modification of guar gum. Further modifications of guar gum heteropolysaccharide have been performed to improve properties and explore and expand its potential. The favorable biostability, improved solubility, and swelling, increased pH sensitivity, and good antibacterial and antioxidant properties indicate the significant advantages of the modified gum structures with different functional groups. In this review, the rapid growth in research on GG derivatives-based materials has been discovered. Besides, the production methods of GG and its derivatives have been discussed in tissue engineering and regenerative medical. Consequently, this review highlights the advances in the production of guar-based products to outline a promising future for this biopolymer by changing its properties and expanding its applications in potential targets.


Assuntos
Galactanos , Mananas , Gomas Vegetais , Engenharia Tecidual , Galactanos/química , Mananas/química , Gomas Vegetais/química , Engenharia Tecidual/métodos , Humanos , Biopolímeros/química , Materiais Biocompatíveis/química , Animais
7.
Eur J Med Chem ; 281: 116970, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39488968

RESUMO

The protein arginine methyltransferase 5 (PRMT5) has emerged as potential target for the treatment of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors targeting either S-adenosyl methionine (SAM) pocket or substrate binding pocket. Here, we rationally designed a series of nucleoside derivatives incorporated with piperazine as novel PRMT5 inhibitors occupying both pockets. The representative compound 36 exhibited highly potent PRMT5 inhibition activity as well as good selectivity over other methyltransferases. Further cellular experiments revealed that compound 36 potently reduced the level of symmetric dimethylarginines (sDMA) and inhibited the proliferation of MOLM-13 cell lines by inducing apoptosis and cell cycle arrest. Moreover, compound 36 had more favorable metabolic stability and aqueous solubility than JNJ64619178 (9). Meanwhile, it obviously suppressed the tumor growth in a MOLM-13 tumor xenograft model. These results clearly indicate that 36 is a highly potent and selective PRMT5 inhibitor worthy for further development.

8.
Eur J Med Chem ; 280: 117000, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39489984

RESUMO

Tubulin is a critical target for cancer therapy, with colchicine binding site inhibitors (CBSIs) being the most extensively researched. A series of quinazoline derivatives designed to target the colchicine binding site of tubulin were synthesized and evaluated for their biological activities. The antiproliferative effects of these compounds were tested against six human cancer cell lines, and compound Q19 demonstrated potent antiproliferative activity against the HT-29 cell line, with an IC50 value of 51 nM. Additionally, further investigation revealed that Q19 effectively inhibited microtubule polymerization by binding to the colchicine binding site on tubulin. Furthermore, compound Q19 arrested the HT-29 cell cycle at the G2/M phase, induced apoptosis in these cells, and disrupted angiogenesis. Finally, compound Q19 exhibited potent inhibitory effects on tumor growth in HT-29 xenografted mice while demonstrating minimal toxic side effects and acceptable pharmacokinetic properties. These findings suggested that Q19 hold promise as a potential candidate for colon cancer therapy targeting tubulin.

9.
Chemosphere ; : 143640, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39490425

RESUMO

Bisphenol A diglycidyl ether (BADGE) is a pre-polymer of BPA widely used in manufacturing of epoxy resins and plastics; due to its high reactivity, unintended by-products, such as chlorinated and hydrolysed products, can reach the human body. This research integrates multiple approaches such as computational predictions, chromatographic experiments, biological assays, and human biomonitoring studies to comprehensively evaluate the toxicological profiles of the parent compound and its derivatives. In silico predictions were first utilized to estimate the toxicological properties and interactions of BADGE derivatives, providing insights into their bioactivity. Biomimetic liquid chromatography was then used to simulate membrane permeability and biodistribution, predicting how these chemicals might cross biological membranes and accumulate in tissues. In vitro experiments assessed cellular toxicity through viability assays, identifying BADGE·2HCl as the most cytotoxic derivative. Reactive Oxygen Species (ROS) production evaluation was performed to assess the oxidative stress induced by these compounds, revealing elevated ROS levels in cells exposed to BADGE and BADGE·2HCl with a consequent significant oxidative damage. Similarly, BADGE and BADGE·2HCl were able to induce cellular death by apoptosis activation. Human serum analysis in a population sample (N=96), showed BADGE·2H2O as the most frequently detected metabolite, indicating a considerable human exposure and metabolic processes. The findings highlight a toxicity of BADGE derivatives similar to that of BADGE; BADGE·2HCl resulted particularly cytotoxic and BADGE·2H2O is the most frequent detected in human serum, underscoring the need for regulatory measures to mitigate potential health risks associated with these compounds.

10.
Bioorg Chem ; 153: 107921, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39492131

RESUMO

Dual-acting µ-opioid receptor (MOR)/sigma-1 receptor (σ1R) ligands have displayed promise in exerting robust antinociceptive effects while reducing opioid-related side effects. To discover safer and more effective analgesics, we designed, prepared, and evaluated 30 benzylpiperidine derivatives as dual MOR and σ1R ligands. The obtained benzylpiperidine analogs were tested for MOR and σ1R binding affinity in vitro. The best compound 52 showed high affinity for both MOR [Ki (MOR) = 56.4 nM] and σ1R [Ki (σ1R) = 11.0 nM] and produced potent antinociceptive effects in the abdominal contraction test (ED50 = 4.04 mg/kg in mice), carrageenan-induced inflammatory pain model (ED50 = 6.88 mg/kg in mice), formalin test (ED50 = 13.98 mg/kg in rats) and complete Freund's adjuvant (CFA)-induced chronic pain model (ED50 = 7.62 mg/kg in mice). Moreover, 52 had less MOR-related adverse effects than oxycodone, including constipation, acute hyperlocomotion and physical dependence. The above results suggested that 52 may be a promising candidate for the development of safer analgesics.

11.
Curr Top Med Chem ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39484762

RESUMO

INTRODUCTION: Cancer is a leading cause of death worldwide, driving the urgent need for new and effective treatments. Benzimidazole and pyrazole derivatives have gained attention for their potential as anticancer agents due to their diverse biological activities. The development of resistance in cancer cells, toxicity concerns, and inconsistent efficacy across different types of cancer are a few of the challenges. To overcome these challenges, optimisation of these nuclei using the structure-activity relationships is necessary. OBJECTIVE: This review aimed to examine various benzimidazole, pyrazole, and their hybrid derivatives by focusing on their structure-activity relationships (SAR) as anticancer agents. Results of the most potent and least potent benzimidazole, pyrazole compounds, and their hybrid derivatives published by researchers were compiled. METHOD: The findings of different researchers working on benzimidazole and pyrazole nuclei were reviewed and analysed for different targets and cell lines. Moreover, substitutions on different positions of pyrazole, benzimidazole, and their hybrid were summarised to derive an optimised pharmacophore. RESULT: Based on our analysis of existing studies, we anticipate that this review will guide researchers in creating potent pyrazole, benzimidazole, and hybrid derivatives crucial for combating cancer effectively. CONCLUSION: Structure-Activity Relationship (SAR) studies can help in developing pyrazolebenzimidazole hybrids that are more powerful and selective in targeting specific aspects of cancer.

12.
Small ; : e2407892, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39487640

RESUMO

Excitation-wavelength-dependent (Ex-De) emitters are a fascinating category of luminescent materials whose emission properties vary with the wavelength of the light used for excitation. Antimony (Sb3+)-doped indium (In)-based metal halides are efficient light emitters; however, the peak fluorescence emission of most Sb3+-activated In-halide remains independent of the excitation wavelength. Here, the study introduces a new Sb3+-doped In-halide cluster, (BDPA)2InCl5:Sb (BDPA+ = C15H18N+, benzyldimethylphenylammonium), which demonstrates efficient Ex-De emission originating from the on-off switchable fluorescence behavior of singlet self-trapped exciton (STE) in 5-coordinate Sb3+ dopant. Interestingly, when excited within the range of 240-370 nm, photoluminescence (PL) spectra of (BDPA)2InCl5:Sb show both singlet and triplet STE emission. However, under excitation wavelengths of 370 to 420 nm, the singlet STE emission is absent, resulting in a noticeable correlated color temperature change from 1700 to 3800 K. The study provides a new approach to designing color-tunable Sb3+-based luminophores, and also presents a novel application scenario for the widely recognized Sb3+ doping strategy.

13.
ACS Appl Bio Mater ; 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39487785

RESUMO

The increasing number of infections caused by pathogenic bacteria has severely affected human society. More and more deaths were originated from Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) infection each year. The potential and excellent bacteriostatic activity and resistance to biofilm formation of pillar[5]arene with different functional groups attract important attention to further study the relationship between antimicrobial activity and cytotoxicity by varying the length of the hydrophobic chain, the number of positive charges, and the hydrophobic/hydrophilic balance of the molecule. In this work, four pyridinium-based cationic pillar[5]arene (PPs) with linear aliphatic chains of different lengths were synthesized. After systematic characterization, their inhibition activities against S. aureus were investigated. It revealed that PP6 (six methylenes in each linker) exhibited excellent inhibition activity against S. aureus (ATCC 6538) with a minimum inhibitory concentration (MIC) of 3.91 µg/mL and a minimum bactericidal concentration (MBC) of 62.50 µg/mL. As expected, PP6 exhibited the strongest antibiofilm ability and negligible antimicrobial resistance even after the 20th passage. A study of the action mechanism of selected PPs on the bacterial membrane depolarization and permeability by transmission electron microscopy (TEM) disclosed that the cationic pyridine groups of PPs inserted into the negatively charged bacterial membranes, thereby leading to membranolysis, cytoplasmic content leakage, and cell death. Importantly, PPs all showed very low toxicity to mammalian cells (L929 and HBZY-1), which provided a significant reference for the construction of hypotoxic antibacterial biomaterials for multiple drug-resistant bacteria based on pyridinium-grafted cationic macrocycles with controllable hydrophobic chain lengths.

14.
Talanta ; 283: 127135, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39488157

RESUMO

It is crucial to develop highly efficient electrochemistry systems for sensitive detection of tumour markers. In this work, naphthalenediimide derivatives with electrochemical application potential were successfully synthesized and characterized. Electrochemistry and calculation of density functional theory (DFT) showed that 2,7-bis(4-(dimethylamino)phenyl)benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI-1) was an ideal candidate for electrochemical probe construction. Subsequently, based on the cyclic catalytic effect between NDI-1 and K2S2O8, a satisfying composite of GO/NDI-1/AuNPs was prepared and used to construct electrochemical probe for the design of ingenious sandwiched electrochemical immunosensor. Taking alpha-fetoprotein (AFP) as the model target biomarker, the designed immunosensor showed good detection performance for AFP, which exhibited wide range of linear response (10 fg/mL - 10 ng/mL), low detection limit (3.3 fg/mL). Moreover, the proposed immunosensor has been successfully applied to AFP detection in human serum, which provides the possibility for clinical applications. The designed electrochemical system provides a new electrochemical probe for the construction of immunosensors and may be extended to the electroanalysis of other biomolecules with recognition units.

15.
Heliyon ; 10(20): e39580, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39498046

RESUMO

Agriculture production yield varies with weather changes. This causes farmers incur loses. For instance, extreme temperature leads to low maize yield. This study describes incomplete temperature weather derivatives in agriculture markets and applies risk management hedging techniques. It focuses on hedging crop yield against extreme temperatures during irrigation, farming which is done without greenhouse. This study's primary goal is to hedge irrigated maize crop yields using temperature derivatives. This is achieved firstly by modelling a daily average temperature stochastical model. Then, deriving statistical properties of the model based on 1990-2020 Kasungu District Temperature historical data. Lastly, pricing temperature derivatives to hedge maize crop yield. This study uses 1990-2020 Kasungu District Temperature historical data. Then a stochastically Ornstein-Uhlenbeck process with the time-varying speed of reversion, seasonal mean, and local volatility that depends on the local average temperature was proposed. Based on the average temperature model, down and output barrier option pricing models for average temperature and growing degree day (GDD) are applied. The study results shows that when the GDD is above the barrier level the barrier option does not knock out. Hence gives the holder the right to buy the underlying asset since it does not reach or fall below a predefined level over the option's lifetime. If the GDD does not exceed the barrier level, then the farmer will not have to pay the premium because the option is invalid. On the same note, the farmer will have to exercise his right by paying the premium of calculated premium when the GDD exceeds the barrier level. In return for this, the farmer gets paid off which happens to be the difference between GDD and barrier multiplied $1. In line with Malawi's 2063 Millennium Development Goals (MDGs), this study acts as an eye opener for the government to put a policy on whether derivatives should be practised in our country hence, increase cash holding by improving the situation of the farmer and country.

16.
Bioorg Med Chem Lett ; 114: 130011, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39486486

RESUMO

SARS-CoV-2 continues to mutate, spread, and impact public health and daily life. The main protease (Mpro) is essential for the replication and maturation of SARS-CoV-2, making it an ideal target for anti-coronaviral drug discovery and development due to its high conservation and lack of homologous proteases in humans. Herein, we designed and synthesized a series of dithiocarbamate derivatives as potent SARS-CoV-2 Mpro inhibitors. Notably, compound L2 exhibited an IC50 value of 9.1 ± 2.0 nM against SARS-CoV-2 Mpro, underscoring its potential as a promising candidate for anti-coronaviral therapy and justifying further research and development.

17.
Angew Chem Int Ed Engl ; : e202417636, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39487093

RESUMO

The efficient construction of chalcogen-atom-based chiral compounds remains a challenge, despite the importance of organoselenium and organosulfur compounds in life and materials science. Chalcogen atoms can form net attractive interactions called chalcogen bonds, but it is an undeveloped tool to assist asymmetric catalysis. Herein, we report an enantioselective insertion platform to install a stereogenic center bearing selanyl and thiocyano functional groups. Our method operates by synergistic catalysis by a chiral guanidine and an achiral dirhodium complex in a three-component or four-component reaction, through Se-S bond insertion into carbene species, competing successfully with the spontaneous racemic process and showing high regioselectivity. As elucidated by spectroscopic experiments and computational studies, a unique mechanism involving chalcogen as well as hydrogen bonding was established to account for the enantiocontrol. The high stereoselectivity holds for a broad array of selanylthiocyanatopropanoates, which showed excellent anti-inflammatory toward IL-1ß and low cytotoxicity.

18.
Chirality ; 36(11): e70000, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39435684

RESUMO

Chiral phenylalanine derivatives are important raw materials and building blocks for the synthesis of peptides and drug molecules. Enantiomerically pure D/L-3-pyridyl- and phenylalanine has shown wide application potential in the synthesis of various drug intermediates. This article focuses on two synthetic routes from different feedstocks. The first approach is an Erlenmeyer-Plöchl route study using N-acetylglycine as starting material, whereas the second is an alkylation route study using diethyl acetamidomalonate as starting material. The key step is the resolution of N-acetamido-alanine esters using different quantities of fairly inexpensive Protamex proteinase to obtain pure enantiomeric D/L-3-pyridyl- and substituted phenylalanine or its derivative, with the ee value and purity of all products exceeding 99%. The different chiral arylalanine derivatives that can be prepared using the above two methods have good versatility.

19.
Artigo em Russo | MEDLINE | ID: mdl-39435786

RESUMO

OBJECTIVE: To evaluate the effect of monocarbonyl analogues of curcumin on changes in the processes of mitophagy and mitochondrial biogenesis in the cerebral cortex of rats with experimental Alzheimer's disease. MATERIAL AND METHODS: Alzheimer's disease was modeled in Wistar rats of both sexes by injection of ß-amyloid fragments into the hippocampus of the animal. Compounds (1E, 4E)-1.5-bis (3.4.5-trimethoxyphenyl) penta-1.4-diene-3-one (AZBAX4 code) and (1E, 4E)-1.5-bis (2.4.6-trimethoxyphenyl) penta-1.4-diene-3-one (AZBAX6 code) at a dose of 20 mg/ kg (orally) and the reference drug donepezil at a dose of 50 mg/kg (orally) were administered for 30 days, after which changes in the activity of succinate dehydrogenase, cytochrome-c oxidase and citrate synthase as enzymatic biomarkers of mitochondrial biogenesis and mitophagy, respectively, were evaluated in the mitochondrial fraction of the cerebral cortex. RESULTS: The administration of AZBAX4 and AZBAX6 compounds led to an increase in the activity of succinate dehydrogenase; cytochrome-c oxidase, as well as citrate synthase in relation to the same indicators of the group of untreated animals. The use of the analyzed compounds was equally effective in both female and male rats. At the same time, it should be noted that the analyzed compounds significantly exceeded the activity level of the reference donepezil. CONCLUSION: AZBAX4 and AZBAX6 contribute to an increase in the intensity of mitochondrial biogenesis and mitophagy reactions in the cerebral cortex of rats with Alzheimer's disease, which makes them potentially effective neuroprotective compounds.


Assuntos
Doença de Alzheimer , Córtex Cerebral , Curcumina , Modelos Animais de Doenças , Mitocôndrias , Mitofagia , Ratos Wistar , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Curcumina/análogos & derivados , Curcumina/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Ratos , Masculino , Feminino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Biogênese de Organelas , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Succinato Desidrogenase/metabolismo , Citrato (si)-Sintase/metabolismo
20.
Chem Biodivers ; : e202402293, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436751

RESUMO

Four new isocoumarin derivatives 12-O-acetyl-isocitreoisocoumarinol (1), (+)-(10R)-O-acetyl-diaportinol (2-a), (-)-(10S)-O-acetyl-diaportinol (2-b), peyroisocoumarin E (3) and new stereoconfigurations of three isocoumarin derivatives desmethyldichlorodiaportinol A (4), threo-monochlorodiaportinol A (5-a), erytheo-monochlorodiaportinol A (5-b), together with nine known ones (6-14), were separated from the rice fermentation of endophytic fungus Diaporthe arengae M2 isolated from Camellia oleifera. The structures of new compounds were determined by extensive spectroscopic analyses including nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectroscopy (HR-ESI-MS). Compounds 4, 7, 8, 12, 13 exhibited definite inhibition against five strains of bacteria with the MIC values range from 16 µg/mL to 64 µg/mL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...