Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Stat Med ; 43(20): 3830-3861, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38922944

RESUMO

The brain functional connectivity can typically be represented as a brain functional network, where nodes represent regions of interest (ROIs) and edges symbolize their connections. Studying group differences in brain functional connectivity can help identify brain regions and recover the brain functional network linked to neurodegenerative diseases. This process, known as differential network analysis focuses on the differences between estimated precision matrices for two groups. Current methods struggle with individual heterogeneity in measuring the brain connectivity, false discovery rate (FDR) control, and accounting for confounding factors, resulting in biased estimates and diminished power. To address these issues, we present a two-stage FDR-controlled feature selection method for differential network analysis using functional magnetic resonance imaging (fMRI) data. First, we create individual brain connectivity measures using a high-dimensional precision matrix estimation technique. Next, we devise a penalized logistic regression model that employs individual brain connectivity data and integrates a new knockoff filter for FDR control when detecting significant differential edges. Through extensive simulations, we showcase the superiority of our approach compared to other methods. Additionally, we apply our technique to fMRI data to identify differential edges between Alzheimer's disease and control groups. Our results are consistent with prior experimental studies, emphasizing the practical applicability of our method.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Simulação por Computador , Modelos Logísticos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Conectoma/métodos
2.
BMC Bioinformatics ; 25(1): 117, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500042

RESUMO

BACKGROUND: A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. RESULTS: We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. CONCLUSION: SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .


Assuntos
Microbiota , Humanos , Microbiota/genética , Software , Análise de Regressão , DNA
3.
BMC Genomics ; 24(1): 687, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974076

RESUMO

BACKGROUND: Advances in sequencing technology and cost reduction have enabled an emergence of various statistical methods used in RNA-sequencing data, including the differential co-expression network analysis (or differential network analysis). A key benefit of this method is that it takes into consideration the interactions between or among genes and do not require an established knowledge in biological pathways. As of now, none of existing softwares can incorporate covariates that should be adjusted if they are confounding factors while performing the differential network analysis. RESULTS: We develop an R package PRANA which a user can easily include multiple covariates. The main R function in this package leverages a novel pseudo-value regression approach for a differential network analysis in RNA-sequencing data. This software is also enclosed with complementary R functions for extracting adjusted p-values and coefficient estimates of all or specific variable for each gene, as well as for identifying the names of genes that are differentially connected (DC, hereafter) between subjects under biologically different conditions from the output. CONCLUSION: Herewith, we demonstrate the application of this package in a real data on chronic obstructive pulmonary disease. PRANA is available through the CRAN repositories under the GPL-3 license: https://cran.r-project.org/web/packages/PRANA/index.html .


Assuntos
RNA , Software , Humanos , Sequência de Bases , Análise de Sequência de RNA
5.
Front Genet ; 14: 1235927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662846

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and deaths worldwide. Understanding the biological mechanisms of SARS-CoV-2 infection is crucial for the development of effective therapies. This study conducts differential expression (DE) analysis, pathway analysis, and differential network (DN) analysis on RNA-seq data of four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their common and unique biological features in response to SARS-CoV-2 infection. DE analysis shows that cell line A549.ACE2 has the highest number of DE genes, while cell line NHBE has the lowest. Among the DE genes identified for the four cell lines, 12 genes are overlapped, associated with various health conditions. The most significant signaling pathways varied among the four cell lines. Only one pathway, "cytokine-cytokine receptor interaction", is found to be significant among all four cell lines and is related to inflammation and immune response. The DN analysis reveals considerable variation in the differential connectivity of the most significant pathway shared among the four lung cell lines. These findings help to elucidate the mechanisms of SARS-CoV-2 infection and potential therapeutic targets.

6.
ArXiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36994149

RESUMO

A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.

7.
BMC Bioinformatics ; 24(1): 8, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624383

RESUMO

BACKGROUND: The differential network (DN) analysis identifies changes in measures of association among genes under two or more experimental conditions. In this article, we introduce a pseudo-value regression approach for network analysis (PRANA). This is a novel method of differential network analysis that also adjusts for additional clinical covariates. We start from mutual information criteria, followed by pseudo-value calculations, which are then entered into a robust regression model. RESULTS: This article assesses the model performances of PRANA in a multivariable setting, followed by a comparison to dnapath and DINGO in both univariable and multivariable settings through variety of simulations. Performance in terms of precision, recall, and F1 score of differentially connected (DC) genes is assessed. By and large, PRANA outperformed dnapath and DINGO, neither of which is equipped to adjust for available covariates such as patient-age. Lastly, we employ PRANA in a real data application from the Gene Expression Omnibus database to identify DC genes that are associated with chronic obstructive pulmonary disease to demonstrate its utility. CONCLUSION: To the best of our knowledge, this is the first attempt of utilizing a regression modeling for DN analysis by collective gene expression levels between two or more groups with the inclusion of additional clinical covariates. By and large, adjusting for available covariates improves accuracy of a DN analysis.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Perfilação da Expressão Gênica/métodos
8.
BMC Cancer ; 22(1): 1070, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253742

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most prevalent cancers worldwide but its etiology remains unclear. Obesity is recognized as a risk factor for BC, and many obesity-related genes may be involved in its occurrence and development. Research assessing the complex genetic mechanisms of BC should not only consider the effect of a single gene on the disease, but also focus on the interaction between genes. This study sought to construct a gene interaction network to identify potential pathogenic BC genes. METHODS: The study included 953 BC patients and 963 control individuals. Chi-square analysis was used to assess the correlation between demographic characteristics and BC. The joint density-based non-parametric differential interaction network analysis and classification (JDINAC) was used to build a BC gene interaction network using single nucleotide polymorphisms (SNP). The odds ratio (OR) and 95% confidence interval (95% CI) of hub gene SNPs were evaluated using a logistic regression model. To assess reliability, the hub genes were quantified by edgeR program using BC RNA-seq data from The Cancer Genome Atlas (TCGA) and identical edges were verified by logistic regression using UK Biobank datasets. Go and KEGG enrichment analysis were used to explore the biological functions of interactive genes. RESULTS: Body mass index (BMI) and menopause are important risk factors for BC. After adjusting for potential confounding factors, the BC gene interaction network was identified using JDINAC. LEP, LEPR, XRCC6, and RETN were identified as hub genes and both hub genes and edges were verified. LEPR genetic polymorphisms (rs1137101 and rs4655555) were also significantly associated with BC. Enrichment analysis showed that the identified genes were mainly involved in energy regulation and fat-related signaling pathways. CONCLUSION: We explored the interaction network of genes derived from SNP data in BC progression. Gene interaction networks provide new insight into the underlying mechanisms of BC.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
9.
Front Immunol ; 13: 977470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311719

RESUMO

Background: The human milk proteome comprises a vast number of proteins with immunomodulatory functions, but it is not clear how this relates to allergy of the mother or allergy development in the breastfed infant. This study aimed to explore the relation between the human milk proteome and allergy of both mother and child. Methods: Proteins were analyzed in milk samples from a subset of 300 mother-child dyads from the Canadian CHILD Cohort Study, selected based on maternal and child allergy phenotypes. For this selection, the definition of "allergy" included food allergy, eczema, allergic rhinitis, and asthma. Proteins were analyzed with non-targeted shotgun proteomics using filter-aided sample preparation (FASP) and nanoLC-Orbitrap-MS/MS. Protein abundances, based on label-free quantification, were compared using multiple statistical approaches, including univariate, multivariate, and network analyses. Results: Using univariate analysis, we observed a trend that milk for infants who develop an allergy by 3 years of age contains higher abundances of immunoglobulin chains, irrespective of the allergy status of the mother. This observation suggests a difference in the milk's immunological potential, which might be related to the development of the infant's immune system. Furthermore, network analysis showed overall increased connectivity of proteins in the milk of allergic mothers and milk for infants who ultimately develop an allergy. This difference in connectivity was especially noted for proteins involved in the protein translation machinery and may be due to the physiological status of the mother, which is reflected in the interconnectedness of proteins in her milk. In addition, it was shown that network analysis complements the other methods for data analysis by revealing complex associations between the milk proteome and mother-child allergy status. Conclusion: Together, these findings give new insights into how the human milk proteome, through differences in the abundance of individual proteins and protein-protein associations, relates to the allergy status of mother and child. In addition, these results inspire new research directions into the complex interplay of the mother-milk-infant triad and allergy.


Assuntos
Hipersensibilidade Alimentar , Leite Humano , Humanos , Lactente , Feminino , Proteoma , Mães , Estudos de Coortes , Espectrometria de Massas em Tandem , Canadá
10.
Viruses ; 14(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458567

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that caused the coronavirus disease 2019 (COVID-19) pandemic. Though previous studies have suggested that SARS-CoV-2 cellular tropism depends on the host-cell-expressed proteins, whether transcriptional regulation controls SARS-CoV-2 tropism factors in human lung cells remains unclear. In this study, we used computational approaches to identify transcription factors (TFs) regulating SARS-CoV-2 tropism for different types of lung cells. We constructed transcriptional regulatory networks (TRNs) controlling SARS-CoV-2 tropism factors for healthy donors and COVID-19 patients using lung single-cell RNA-sequencing (scRNA-seq) data. Through differential network analysis, we found that the altered regulatory role of TFs in the same cell types of healthy and SARS-CoV-2-infected networks may be partially responsible for differential tropism factor expression. In addition, we identified the TFs with high centralities from each cell type and proposed currently available drugs that target these TFs as potential candidates for the treatment of SARS-CoV-2 infection. Altogether, our work provides valuable cell-type-specific TRN models for understanding the transcriptional regulation and gene expression of SARS-CoV-2 tropism factors.


Assuntos
COVID-19 , Redes Reguladoras de Genes , SARS-CoV-2 , Tropismo Viral , Humanos , Pulmão/metabolismo , SARS-CoV-2/genética , Fatores de Transcrição/genética , Tropismo Viral/genética
11.
Geroscience ; 44(2): 1109-1128, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324142

RESUMO

This study defines and estimates the metabolite-lipidic component association networks constructed from an array of 20 metabolites and 114 lipids identified and quantified via NMR spectroscopy in the serum of a cohort of 355 Italian nonagenarians and ultra-nonagenarian. Metabolite-lipid association networks were built for men and women and related to an array of 101 clinical and biochemical parameters, including the presence of diseases, bio-humoral parameters, familiarity diseases, drugs treatments, and risk factors. Different connectivity patterns were observed in lipids, branched chains amino acids, alanine, and ketone bodies, suggesting their association with the sex-related and sex-clinical condition-related intrinsic metabolic changes. Furthermore, our results demonstrate, using a holistic system biology approach, that the characterization of metabolic structures and their dynamic inter-connections is a promising tool to shed light on the dimorphic pathophysiological mechanisms of aging at the molecular level.


Assuntos
Metabolômica , Caracteres Sexuais , Idoso de 80 Anos ou mais , Feminino , Humanos , Lipídeos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Nonagenários
12.
Front Genet ; 12: 760155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858477

RESUMO

Evidences increasingly indicate the involvement of gene network rewiring in disease development and cell differentiation. With the accumulation of high-throughput gene expression data, it is now possible to infer the changes of gene networks between two different states or cell types via computational approaches. However, the distribution diversity of multi-platform gene expression data and the sparseness and high noise rate of single-cell RNA sequencing (scRNA-seq) data raise new challenges for existing differential network estimation methods. Furthermore, most existing methods are purely rely on gene expression data, and ignore the additional information provided by various existing biological knowledge. In this study, to address these challenges, we propose a general framework, named weighted joint sparse penalized D-trace model (WJSDM), to infer differential gene networks by integrating multi-platform gene expression data and multiple prior biological knowledge. Firstly, a non-paranormal graphical model is employed to tackle gene expression data with missing values. Then we propose a weighted group bridge penalty to integrate multi-platform gene expression data and various existing biological knowledge. Experiment results on synthetic data demonstrate the effectiveness of our method in inferring differential networks. We apply our method to the gene expression data of ovarian cancer and the scRNA-seq data of circulating tumor cells of prostate cancer, and infer the differential network associated with platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer. By analyzing the estimated differential networks, we find some important biological insights about the mechanisms underlying platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer.

13.
J Integr Bioinform ; 18(4)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34792303

RESUMO

Differential network analysis has become a widely used technique to investigate changes of interactions among different conditions. Although the relationship between observed interactions and biochemical mechanisms is hard to establish, differential network analysis can provide useful insights about dysregulated pathways and candidate biomarkers. The available methods to detect differential interactions are heterogeneous and often rely on assumptions that are unrealistic in many applications. To address these issues, we develop a novel method for differential network analysis, using the so-called disparity filter as network reduction technique. In addition, we propose a classification model based on the inferred network interactions. The main novelty of this work lies in its ability to preserve connections that are statistically significant with respect to a null model without favouring any resolution scale, as a hard threshold would do, and without Gaussian assumptions. The method was tested using a published metabolomic dataset on colorectal cancer (CRC). Detected hub metabolites were consistent with recent literature and the classifier was able to distinguish CRC from polyp and healthy subjects with great accuracy. In conclusion, the proposed method provides a new simple and effective framework for the identification of differential interaction patterns and improves the biological interpretation of metabolomics data.


Assuntos
Neoplasias Colorretais , Biomarcadores , Neoplasias Colorretais/diagnóstico , Humanos , Metabolômica
14.
Front Genet ; 12: 642759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497631

RESUMO

The tumor microenvironment is composed of tumor cells, stroma cells, immune cells, blood vessels, and other associated non-cancerous cells. Gene expression measurements on tumor samples are an average over cells in the microenvironment. However, research questions often seek answers about tumor cells rather than the surrounding non-tumor tissue. Previous studies have suggested that the tumor purity (TP)-the proportion of tumor cells in a solid tumor sample-has a confounding effect on differential expression (DE) analysis of high vs. low survival groups. We investigate three ways incorporating the TP information in the two statistical methods used for analyzing gene expression data, namely, differential network (DN) analysis and DE analysis. Analysis 1 ignores the TP information completely, Analysis 2 uses a truncated sample by removing the low TP samples, and Analysis 3 uses TP as a covariate in the underlying statistical models. We use three gene expression data sets related to three different cancers from the Cancer Genome Atlas (TCGA) for our investigation. The networks from Analysis 2 have greater amount of differential connectivity in the two networks than that from Analysis 1 in all three cancer datasets. Similarly, Analysis 1 identified more differentially expressed genes than Analysis 2. Results of DN and DE analyses using Analysis 3 were mostly consistent with those of Analysis 1 across three cancers. However, Analysis 3 identified additional cancer-related genes in both DN and DE analyses. Our findings suggest that using TP as a covariate in a linear model is appropriate for DE analysis, but a more robust model is needed for DN analysis. However, because true DN or DE patterns are not known for the empirical datasets, simulated datasets can be used to study the statistical properties of these methods in future studies.

15.
J Stat Softw ; 98(12)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34321962

RESUMO

Gene expression data provide an abundant resource for inferring connections in gene regulatory networks. While methodologies developed for this task have shown success, a challenge remains in comparing the performance among methods. Gold-standard datasets are scarce and limited in use. And while tools for simulating expression data are available, they are not designed to resemble the data obtained from RNA-seq experiments. SeqNet is an R package that provides tools for generating a rich variety of gene network structures and simulating RNA-seq data from them. This produces in silico RNA-seq data for benchmarking and assessing gene network inference methods. The package is available on CRAN and on GitHub at https://github.com/tgrimes/SeqNet.

16.
Front Comput Neurosci ; 15: 659838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093157

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that commonly affects the elderly; early diagnosis and timely treatment are very important to delay the course of the disease. In the past, most brain regions related to AD were identified based on imaging methods, and only some atrophic brain regions could be identified. In this work, the authors used mathematical models to identify the potential brain regions related to AD. In this study, 20 patients with AD and 13 healthy controls (non-AD) were recruited by the neurology outpatient department or the neurology ward of Peking University First Hospital from September 2017 to March 2019. First, diffusion tensor imaging (DTI) was used to construct the brain structural network. Next, the authors set a new local feature index 2hop-connectivity to measure the correlation between different regions. Compared with the traditional graph theory index, 2hop-connectivity exploits the higher-order information of the graph structure. And for this purpose, the authors proposed a novel algorithm called 2hopRWR to measure 2hop-connectivity. Then, a new index global feature score (GFS) based on a global feature was proposed by combing five local features, namely degree centrality, betweenness centrality, closeness centrality, the number of maximal cliques, and 2hop-connectivity, to judge which brain regions are related to AD. As a result, the top ten brain regions identified using the GFS scoring difference between the AD and the non-AD groups were associated to AD by literature verification. The results of the literature validation comparing GFS with the local features showed that GFS was superior to individual local features. Finally, the results of the canonical correlation analysis showed that the GFS was significantly correlated with the scores of the Mini-Mental State Examination (MMSE) scale and the Montreal Cognitive Assessment (MoCA) scale. Therefore, the authors believe the GFS can also be used as a new biomarker to assist in diagnosis and objective monitoring of disease progression. Besides, the method proposed in this paper can be used as a differential network analysis method for network analysis in other domains.

17.
Front Genet ; 12: 630215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093641

RESUMO

Genes often work together to perform complex biological processes, and "networks" provide a versatile framework for representing the interactions between multiple genes. Differential network analysis (DiNA) quantifies how this network structure differs between two or more groups/phenotypes (e.g., disease subjects and healthy controls), with the goal of determining whether differences in network structure can help explain differences between phenotypes. In this paper, we focus on gene co-expression networks, although in principle, the methods studied can be used for DiNA for other types of features (e.g., metabolome, epigenome, microbiome, proteome, etc.). Three common applications of DiNA involve (1) testing whether the connections to a single gene differ between groups, (2) testing whether the connection between a pair of genes differs between groups, or (3) testing whether the connections within a "module" (a subset of 3 or more genes) differs between groups. This article focuses on the latter, as there is a lack of studies comparing statistical methods for identifying differentially co-expressed modules (DCMs). Through extensive simulations, we compare several previously proposed test statistics and a new p-norm difference test (PND). We demonstrate that the true positive rate of the proposed PND test is competitive with and often higher than the other methods, while controlling the false positive rate. The R package discoMod (differentially co-expressed modules) implements the proposed method and provides a full pipeline for identifying DCMs: clustering tools to derive gene modules, tests to identify DCMs, and methods for visualizing the results.

18.
Genet Epidemiol ; 45(6): 604-620, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174112

RESUMO

In the analysis of gene expression data, when there are two or more disease conditions/groups (e.g., diseased and normal, responder and nonresponder, and multiple stages/subtypes), differential analysis has been extensively conducted to identify key differences and has important implications. Network analysis takes a system perspective and can be more informative than that limited to simple statistics such as mean and variance. In differential network analysis, a common practice is to first estimate a gene expression network for each condition/group, and then spectral clustering can be applied to the network difference(s) to identify key genes and biological mechanisms that lead to the differences. Compared to "simple" analysis such as regression, differential network analysis can be more challenging with the significantly larger number of parameters. In this study, taking advantage of the increasing popularity of multidimensional profiling data, we develop an assisted analysis strategy and propose incorporating regulator information to improve the identification of key genes (that lead to the differences in gene expression networks). An effective computational algorithm is developed. Comprehensive simulation is conducted, showing that the proposed approach can outperform the benchmark alternatives in identification accuracy. With the The Cancer Genome Atlas lung adenocarcinoma data, we analyze the expressions of genes in the KEGG cell cycle pathway, assisted by copy number variation data. The proposed assisted analysis leads to identification results similar to the alternatives but different estimations. Overall, this study can deliver an efficient and cost-effective way of improving differential network analysis.


Assuntos
Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Modelos Genéticos
19.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33975339

RESUMO

The mechanisms controlling biological process, such as the development of disease or cell differentiation, can be investigated by examining changes in the networks of gene dependencies between states in the process. High-throughput experimental methods, like microarray and RNA sequencing, have been widely used to gather gene expression data, which paves the way to infer gene dependencies based on computational methods. However, most differential network analysis methods are designed to deal with fully observed data, but missing values, such as the dropout events in single-cell RNA-sequencing data, are frequent. New methods are needed to take account of these missing values. Moreover, since the changes of gene dependencies may be driven by certain perturbed genes, considering the changes in gene expression levels may promote the identification of gene network rewiring. In this study, a novel weighted differential network estimation (WDNE) model is proposed to handle multi-platform gene expression data with missing values and take account of changes in gene expression levels. Simulation studies demonstrate that WDNE outperforms state-of-the-art differential network estimation methods. When applied WDNE to infer differential gene networks associated with drug resistance in ovarian tumors, cell differentiation and breast tumor heterogeneity, the hub genes in the estimated differential gene networks can provide important insights into the underlying mechanisms. Furthermore, a Matlab toolbox, differential network analysis toolbox, was developed to implement the WDNE model and visualize the estimated differential networks.


Assuntos
Algoritmos , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Modelos Genéticos , Neoplasias Ovarianas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
20.
BMC Genomics ; 22(1): 360, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006221

RESUMO

BACKGROUND: Rosaceae species are economically highly relevant crops. Their cultivation systems are constrained by phytopathogens causing severe losses. Plants respond to invading pathogens through signaling mechanisms, a component of which are of them being plant elicitor peptides (Peps). Exogenous application of Peps activates defense mechanisms and reduces the symptoms of pathogen infection in various pathosystems. We have previously identified the Rosaceae Peps and showed, in an ex vivo system, that their topical application efficiently enhanced resistance to the bacterial pathogen Xanthomonas arboricola pv. pruni (Xap). RESULTS: Here we demonstrate the effectiveness of Prunus persica peptides PpPep1 and PpPep2 in protecting peach plants in vivo at nanomolar doses, with 40% reduction of the symptoms following Xap massive infection. We used deep sequencing to characterize the transcriptomic response of peach plants to preventive treatment with PpPep1 and PpPep2. The two peptides induced highly similar massive transcriptomic reprogramming in the plant. One hour, 1 day and 2 days after peptide application there were changes in expression in up to 8% of peach genes. We visualized the transcriptomics dynamics in a background knowledge network and detected the minor variations between plant responses to PpPep1 and PpPep2, which might explain their slightly different protective effects. By designing a P. persica Pep background knowledge network, comparison of our data and previously published immune response datasets was possible. CONCLUSIONS: Topical application of P. persica Peps mimics the PTI natural response and protects plants against massive Xap infection. This makes them good candidates for deployment of natural, targeted and environmental-friendly strategies to enhance resistance in Prunus species and prevent important biotic diseases.


Assuntos
Prunus persica , Peptídeos , Doenças das Plantas/genética , Prunus persica/genética , Transcriptoma , Xanthomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...