Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Stereotact Funct Neurosurg ; : 1-8, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321769

RESUMO

INTRODUCTION: Photon-counting detector computed tomography (PCD-CT) represents the next generation of CT technology, offering enhanced capabilities for detecting the orientation of directional leads in deep brain stimulation (DBS). This study aims to refine PCD-CT-based lead orientation determination using an automated method applicable to devices from various manufacturers, addressing current methodological limitations and improving neurosurgical precision. METHODS: An automated method was developed to ascertain the orientation of directional DBS leads using PCD-CT data and grayscale model fitting for devices from Boston Scientific, Medtronic, and Abbott. A phantom study was conducted to evaluate the precision and accuracy of this method, comparing it with the stripe artifact method across different lead alignments relative to the CT gantry axis. RESULTS: Except for the Medtronic Sensight™ lead, where detection was occasionally unfeasible if aligned normal to the z-axis of the CT gantry, a clinically very unlikely alignment, the lead orientation could be automatically determined regardless of its position. The accuracy and precision of this automated method was comparable to those of the stripe artifact method. CONCLUSION: PCD-CT enables the automatic determination of lead orientation from leading manufacturers with an accuracy comparable to the stripe artifact method, and it offers the added benefit of being independent of the clinically occurring orientation of the head and, consequently, the lead relative to the CT gantry axis.

2.
Mov Disord Clin Pract ; 11(8): 992-997, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853400

RESUMO

BACKGROUND: In our early experience programming directional deep brain stimulation (d-DBS) in PD, we found the optimal directional segment changed over time in some patients. To determine the frequency/reasons for this we examined whether (1) different programmers would identify the same segment as "optimal"; and (2) the same programmer would select the same "optimal" segment over time. We hypothesized there would be a moderately high level of agreement on optimal electrode selection between different assessors and repeated assessments by the same evaluator. METHODS: This was a prospective, double-blind investigation evaluating the reliability and stability of programming d-DBS. Each patient underwent a mono-polar survey four times (2 time points by 2 separate assessors). The primary aim was the inter-rater agreement of selecting the optimal electrode at 1 and 6 months. The secondary aim was to determine the intra-rater agreement of selecting the optimal electrode from 1 to 6 months. RESULTS: Twenty-one patients were enrolled. There was fair inter-rater agreement at 1 month and moderate at 6 months. There was minimal intra-rater agreement between 1 and 6 months. DISCUSSION: The data refuted our hypothesis. Potential reasons for low agreement include (1) the arduous/subjective nature of identifying the optimal electrode in d-DBS systems, especially in well-placed electrodes; and/or (2) acute changes to the location of stimulation delivery offering temporary improvement in symptoms. Key takeaways gathered were it may, (1) behoove the programmer to explore different electrode montages after a period of time; and (2) be more efficient to review the directional electrode montage only when dictated by clinical symptoms/disease progression.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Feminino , Masculino , Método Duplo-Cego , Pessoa de Meia-Idade , Idoso , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de Tempo
3.
Brain Topogr ; 37(6): 1186-1194, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38662300

RESUMO

Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Núcleo Subtalâmico/diagnóstico por imagem , Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico
4.
Stereotact Funct Neurosurg ; 102(2): 120-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219714

RESUMO

INTRODUCTION: With recent advancements in deep brain stimulation (DBS), directional leads featuring segmented contacts have been introduced, allowing for targeted stimulation of specific brain regions. Given that manufacturers employ diverse markers for lead orientation, our investigation focuses on the adaptability of the 2017 techniques proposed by the Cologne research group for lead orientation determination. METHODS: We tailored the two separate 2D and 3D X-ray-based techniques published in 2017 and originally developed for C-shaped markers, to the dual-marker of the Medtronic SenSight™ lead. In a retrospective patient study, we evaluated their feasibility and consistency by comparing the degree of agreement between the two methods. RESULTS: The Bland-Altman plot showed favorable concordance without any noticeable systematic errors. The mean difference was 0.79°, with limits of agreement spanning from 21.4° to -19.8°. The algorithms demonstrated high reliability, evidenced by an intraclass correlation coefficient of 0.99 (p < 0.001). CONCLUSION: The 2D and 3D algorithms, initially formulated for discerning the circular orientation of a C-shaped marker, were adapted to the marker of the Medtronic SenSight™ lead. Statistical analyses revealed a significant level of agreement between the two methods. Our findings highlight the adaptability of these algorithms to different markers, achievable through both low-dose intraoperative 2D X-ray imaging and standard CT imaging.


Assuntos
Estimulação Encefálica Profunda , Humanos , Raios X , Estudos Retrospectivos , Reprodutibilidade dos Testes , Estimulação Encefálica Profunda/métodos , Algoritmos , Eletrodos Implantados
5.
BMC Neurol ; 23(1): 372, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853327

RESUMO

BACKGROUND: The effectiveness of Deep Brain Stimulation (DBS) therapy for Parkinson's disease can be limited by side-effects caused by electrical current spillover into structures adjacent to the target area. The objective of the STEEred versus RING-mode DBS for Parkinson's disease (STEERING) study is to investigate if directional DBS for Parkinson's disease results in a better clinical outcome when compared to ring-mode DBS. METHODS: The STEERING study is a prospective multi-centre double-blind randomised crossover trial. Inclusion criteria are Parkinson's disease, subthalamic nucleus DBS in a 'classic' ring-mode setting for a minimum of six months, and optimal ring-mode settings have been established. Participants are categorised into one of two subgroups according to their clinical response to the ring-mode settings as 'responders' (i.e., patient with a satisfactory effect of ring-mode DBS) or 'non-responder' (i.e., patient with a non-satisfactory effect of ring-mode DBS). A total of 64 responders and 38 non-responders will be included (total 102 patients). After an optimisation period in which an optimal directional setting is found, participants are randomised to first receive ring-mode DBS for 56 days (range 28-66) followed by directional DBS for 56 days (28-66) or vice-versa. The primary outcome is the difference between ring-mode DBS and directional DBS settings on the Movement Disorders Society Unified Parkinson's Disease Rating Scale - Motor Evaluation (MDS-UPDRS-ME) in the off-medication state. Secondary outcome measures consist of MDS-UPDRS-ME in the on-medication state, MDS-UPDRS Activities of Daily Living, MDS-UPDRS Motor Complications-Dyskinesia, disease related quality of life measured with the Parkinson's Disease Questionnaire 39, stimulation-induced side-effects, antiparkinsonian medication use, and DBS-parameters. Participants' therapy preference is measured at the end of the study. Outcomes will be analysed for both responder and non-responder groups, as well as for both groups pooled together. DISCUSSION: The STEERING trial will provide insights into whether or not directional DBS should be standardly used in all Parkinson's disease DBS patients or if directional DBS should only be used in a case-based approach. TRIAL REGISTRATION: This trial was registered on the Netherlands Trial Register, as trial NL6508 ( NTR6696 ) on June 23, 2017.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Estudos Prospectivos , Estimulação Encefálica Profunda/métodos , Qualidade de Vida , Atividades Cotidianas , Estudos Cross-Over , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
6.
World Neurosurg ; 170: 54-63.e1, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435384

RESUMO

BACKGROUND: The use of directional deep brain stimulation (dDBS) electrodes for the treatment of movement disorders such as Parkinson disease (PD) has become relatively widespread. However, the efficacy of dDBS relative to its omnidirectional deep brain stimulation (oDBS) counterpart is not well characterized. This systematic review aims to synthesize the literature comparing clinical and therapeutic outcomes of dDBS relative to oDBS in patients with PD. METHODS: A systematic literature search for studies with comparative clinical outcome data between dDBS and oDBS was performed across the PubMed, Ovid MEDLINE, and Web of Science databases. Data including therapeutic window (TW) and surrogate measures and the Unified Parkinson's Disease Rating Scale score were collected and summarized across multiple time periods. RESULTS: Ten studies met the eligibility criteria. Three of these studies evaluated motor performance in the form of Unified Parkinson's Disease Rating Scale III, with none finding differences between dDBS and oDBS. Two studies assessed quality-of-life measures with neither finding differences between dDBS and oDBS. TW or a surrogate measure was assessed in 6 studies; 5 studies found an increase or strong trend toward increase in dDBS relative to oDBS. CONCLUSIONS: The current evidence, although limited by bias, does suggest that dDBS in the treatment of PD yields improvements in motor symptoms and quality of life that are comparable to oDBS; TW and surrogate measures are consistently improved in patients with PD under a directional configuration relative to omnidirectional.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Qualidade de Vida , Resultado do Tratamento , Eletrodos
7.
J Pers Med ; 12(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36013173

RESUMO

Directional deep brain stimulation (dDBS) is preferred by patients with advanced Parkinson's disease (PD) and by programming neurologists. However, real-life data of dDBS use is still scarce. We reviewed the clinical data of 53 PD patients with dDBS to 18 months of follow-up. Directional stimulation was favored in 70.5% of dDBS leads, and single segment activation (SSA) was used in 60% of dDBS leads. Current with SSA was significantly lower than with other stimulation types. During the 6-month follow-up, a 44% improvement in the Unified Parkinson's Disease Rating Scale (UPDRS-III) points and a 43% decline in the levodopa equivalent daily dosage (LEDD) was observed. After 18 months of follow-up, a 35% LEDD decrease was still noted. The Hoehn and Yahr (H&Y) stages and scores on item no 30 "postural stability" in UPDRS-III remained lower throughout the follow-up compared to baseline. Additionally, dDBS relieved non-motor symptoms during the 6 months of follow-up. Patients with bilateral SSA had similar clinical outcomes to those with other stimulation types. Directional stimulation appears to effectively reduce both motor and non-motor symptoms in advanced PD with minimal adverse effects in real-life clinical care.

8.
Neurol Ther ; 11(3): 1309-1318, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35776383

RESUMO

INTRODUCTION: Directional deep brain stimulation (d-DBS) axially displaces the volume of tissue activated (VTA) towards the intended target and away from neighboring structures potentially improving benefit and reducing side effects (SE) of stimulation. A clinical trial evaluating d-DBS demonstrated a wider therapeutic window (TW) with directional electrodes. While this seems advantageous, it remains unclear when and why directional stimulation is chosen clinically. To evaluate the implementation of d-DBS in our practice we examined the prevalence of and motivation for directional programming. METHODS: A retrospective review was completed in consecutive patients with Parkinson's disease (PD)/essential tremor (ET) implanted with the Abbott Infinity system from December 2016 to January 2020. At 3, 12, 24, and 36 months we extracted post-DBS stimulation parameters; use of directional electrodes and other advanced programming techniques; and reasons for directional programming. RESULTS: Fifty-six patients with PD and 18 patients with ET (104 and 33 leads, respectively) were identified. The numbers of patients programmed with a directional electrode in at least one DBS lead in PD and ET, respectively, were 22/56 (39%) and 13/18 (72%) at 3 months; 19/48 (40%) and 8/12 (67%) at 12 months; 12/31 (39%) and 5/8 (63%) at 24 months; and 6/9 (67%) and 1/2 (50%) at 36 months. In PD and ET, reasons for using directional stimulation were better symptom control, less SE, or combination of better symptom control/SE; additional reasons in ET were improved battery/TW%. CONCLUSION: Over a 36-month time period 39-68% of patients with PD and 50-72% of patients with ET had at least one lead programmed directionally in order to either improve symptom control or reduce side effects, an option not available with conventional omnidirectional stimulation. Initially directional electrodes were used in ET more frequently than PD, likely because of the less complex nature of programming for a monosymptomatic disorder. However, over time this shifted as we gained directional experience and sought solutions to reduce worsening symptoms.

9.
Brain Stimul ; 15(3): 727-736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35490971

RESUMO

BACKGROUND: Directional subthalamic stimulation in Parkinson's disease can increase stimulation threshold for adverse effects and widen the therapeutic window. However, selection of programming settings is time consuming, requiring a thorough monopolar clinical review. To overcome this, programming may be guided by intraoperatively recording local field potential beta oscillations (13-35 Hz). OBJECTIVES: 1) Evaluate whether the power of beta oscillations recorded intraoperatively can predict the clinically most effective directional contacts; and 2) assess long-term directional stimulation outcomes between patients programmed based on clinical monopolar review and patients programmed based on beta activity. METHODS: We conducted a non-randomized, prospective study with 24 Parkinson's disease patients divided into two groups. In group A (14 patients, 2016-2018), we investigated whether beta activity in the directional contacts correlated with clinical efficacy. Stimulating parameters were selected according to clinical monopolar review and mean follow-up was 27 months. In group B (10 patients, 2018-2019), stimulating parameters were selected according to beta activity and mean follow-up was 13 months. RESULTS: Neurophysiological results showed a strong correlation between clinical efficacy and the low-beta sub-band. Contacts with highest beta peaks increased the therapeutic window by 25%. Selecting the two contacts with highest beta peaks provided an 82% probability of selecting the best clinical contact. Clinical results showed similar improvements in group A (motor score, 72% reduction; levodopa-equivalent daily dose, 65% reduction) and B (72% and 63% reduction, respectively), maintained at long-term follow-up. CONCLUSIONS: Our results validate the long-term efficacy of directional stimulation guided by intraoperative local field potential beta oscillations.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/métodos , Humanos , Levodopa , Doença de Parkinson/terapia , Estudos Prospectivos , Núcleo Subtalâmico/fisiologia
10.
Front Aging Neurosci ; 14: 809972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431895

RESUMO

Background: Current treatments for Alzheimer's disease (AD) modulate global neurotransmission but are neither specific nor anatomically directed. Tailored stimulation of target nuclei will increase treatment efficacy while reducing side effects. We report the results of the first directional deep brain stimulation (dDBS) surgery and treatment of a patient with AD in an attempt to slow the progression of the disease in a woman with multi-domain, amnestic cognitive status. Methods: We aimed to assess the safety of dDBS in patients with AD using the fornix as stimulation target (primary objective) and the clinical impact of the stimulation (secondary objective). In a registered clinical trial, a female patient aged 81 years with a 2-year history of cognitive decline and diagnoses of AD underwent a bilateral dDBS surgery targeting the fornix. Stimulation parameters were set between 3.9 and 7.5 mA, 90 µs, 130 Hz for 24 months, controlling stimulation effects by 18F-fluoro-2-deoxy-D-glucose (18F-FDG) scans (baseline, 12 and 24 months), magnetoencephalography (MEG) and clinical/neuropsychological assessment (baseline, 6, 12, 18, and 24 months). Results: There were no important complications related to the procedure. In general terms, the patient showed cognitive fluctuations over the period, related to attention and executive function patterns, with no meaningful changes in any other cognitive functions, as is shown in the clinical dementia rating scale (CDR = 1) scores over the 24 months. Such stability in neuropsychological scores corresponds to the stability of the brain metabolic function, seen in PET scans. The MEG studies described low functional connectivity at baseline and a subsequent increase in the number of significant connections, mainly in the theta band, at 12 months. Conclusion: The dDBS stimulation in the fornix seems to be a safe treatment for patients in the first stage of AD. Effects on cognition seem to be mild to moderate during the first months of stimulation and return to baseline levels after 24 months, except for verbal fluency. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT03290274], identifier [NCT03290274].

11.
J Neuroradiol ; 49(3): 293-297, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33984378

RESUMO

Knowing the orientation of directional deep brain stimulation electrodes enables imaging-based adjustment of the stimulation settings. A rotational X-ray based examination was developed to determine the electrodes orientation. By identifying the patient´s 0° axis and the electrode´s rotation using the "iron sights"-sign, the exact orientation of the electrode in relation to the ACPC-line is given. The presented imaging approach offers a reliable diagnostic tool for visualization of the implanted DBS electrode orientation in clinical routine.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Humanos , Radiografia , Raios X
12.
Front Neurol ; 12: 785529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819915

RESUMO

Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial.

13.
Clin Neurophysiol ; 132(2): 469-479, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450567

RESUMO

OBJECTIVE: To evaluate motor fluctuations in patients with advanced Parkinson's disease (PD) using a small-sized wearable device for surface electromyography (EMG) with accelerometry (ACC) for 24 hours. METHODS: Seven PD patients with medication were measured once, and nine patients with directional deep brain stimulation (dDBS) twice: before and after the dDBS reprogramming. EMG and ACC parameters were compared with clinical rating scores and patients' home diaries. RESULTS: The combination of EMG and ACC parameters (first principal component PC1) correlated significantly with patient's condition as quantified by the motor score of Unified Parkinson's Disease Rating Scale and it changed significantly with dDBS reprogramming in line with decreased PD symptoms. Monitoring data detected in comparison with the home diaries: 91 % concordance with tremor, 76 % with rigidity, and 74 % with dyskinesia. In the DBS group, the wake-up time with abnormal neuromuscular function was reduced with reprogramming in all except one patient based on measurements. CONCLUSIONS: A wearable device measuring simultaneously both muscle activity and motion can provide continuous and dynamic information about patient's condition and motor fluctuations at home. SIGNIFICANCE: The present method may help to modify pharmacologic management and DBS treatment in advanced PD.


Assuntos
Acelerometria/métodos , Eletromiografia/métodos , Monitorização Ambulatorial/métodos , Movimento , Doença de Parkinson/diagnóstico , Acelerometria/instrumentação , Adulto , Idoso , Estimulação Encefálica Profunda , Eletromiografia/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Ambulatorial/instrumentação , Contração Muscular , Doença de Parkinson/terapia , Dispositivos Eletrônicos Vestíveis
14.
Stereotact Funct Neurosurg ; 99(2): 167-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33049735

RESUMO

BACKGROUND: Directional deep brain stimulation (DBS) enlarges the therapeutic window by increasing side-effect thresholds and improving clinical benefits. To determine the optimal stimulation settings and interpret clinical observations, knowledge of the lead orientation in relation to the patient's anatomy is required. OBJECTIVE: To determine if directional leads remain in a fixed orientation after implantation or whether orientation changes over time. METHOD: Clinical records of 187 patients with directional DBS electrodes were screened for CT scans in addition to the routine postoperative CT. The orientation angle of each electrode at a specific point in time was reconstructed from CT artifacts using the DiODe algorithm implemented in Lead-DBS. The orientation angles over time were compared with the originally measured orientations from the routine postoperative CT. RESULTS: Multiple CT scans were identified in 18 patients and the constancy of the orientation angle was determined for 29 leads at 48 points in time. The median time difference between the observations and the routine postoperative CT scan was 82 (range 1-811) days. The mean difference of the orientation angles compared to the initial measurement was -1.1 ± 3.9° (range -7.6 to 8.7°). Linear regression showed no relevant drift of the absolute value of the orientation angle over time (0.8°/year, adjusted R2: 0.040, p = 0.093). CONCLUSION: The orientation of directional leads was stable and showed no clinically relevant changes either in the first weeks after implantation or over longer periods of time.


Assuntos
Estimulação Encefálica Profunda , Algoritmos , Artefatos , Humanos , Tomografia Computadorizada por Raios X
15.
Stereotact Funct Neurosurg ; 99(1): 65-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33080600

RESUMO

BACKGROUND: Directional leads are increasingly used in deep brain stimulation. They allow shaping the electrical field in the axial plane. These new possibilities increase the complexity of programming. Thus, optimized programming approaches are needed to assist clinical testing and to obtain full clinical benefit. OBJECTIVES: This simulation study investigates to what extent the electrical field can be shaped by directional steering to compensate for lead malposition. METHOD: Binary volumes of tissue activated (VTA) were simulated, by using a finite element method approach, for different amplitude distributions on the three directional electrodes. VTAs were shifted from 0 to 2 mm at different shift angles with respect to the lead orientation, to determine the best compensation of a target volume. RESULTS: Malpositions of 1 mm can be compensated with the highest gain of overlap with directional leads. For larger shifts, an improvement of overlap of 10-30% is possible, depending on the stimulation amplitude and shift angle of the lead. Lead orientation and shift determine the amplitude distribution of the electrodes. CONCLUSION: To get full benefit from directional leads, both the shift angle as well as the shift to target volume are required to choose the correct amplitude distribution on the electrodes. Current directional leads have limitations when compensating malpositions >1 mm; however, they still outperform conventional leads in reducing overstimulation. Further, their main advantage probably lies in the reduction of side effects. Databases like the one from this simulation could serve for optimized lead programming algorithms in the future.


Assuntos
Algoritmos , Simulação por Computador , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Análise de Elementos Finitos , Estimulação Encefálica Profunda/instrumentação , Humanos
16.
Neurosurg Rev ; 44(4): 2349-2353, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33125566

RESUMO

Directional deep brain stimulation (dDBS) electrodes allow to steer the electrical field in a specific direction. When implanted with torque, they may rotate for a certain time after implantation. The aim of this study was to evaluate whether and to which degree leads rotate in the first 24 h after implantation using a sheep brain model. dDBS electrodes were implanted in 14 sheep heads and 3D rotational fluoroscopy (3D-RF) scans were acquired to visualize the orientation of the electrode leads. Electrode leads were clockwise rotated just above the burr holes (180° n = 6, 360° n = 6, 2 controls) and 3D-RF scans were again acquired after 3, 6, 13, 17, and 24 h, respectively. One hundred eighty degree rotated electrodes showed an initial rotation of 83.5° (range: 35.4°-128.3°) and a rotation of 114.0° (range: 57°-162°) after 24 h. With 360° torsion, mean initial rotation was 201° (range: 3.3°-321.4°) and mean rotation after 24 h 215.7° (range 31.9°-334.7°), respectively. Direct postoperative imaging may not be accurate for determining the rotation of dDBS electrodes if torque is present.


Assuntos
Estimulação Encefálica Profunda , Animais , Eletrodos , Fluoroscopia , Ovinos
17.
Front Neurol ; 11: 593798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193061

RESUMO

Background: In Deep Brain Stimulation (DBS), stimulation field steering is used to achieve stimulation spatial specificity, which is critical to obtain clinical benefits and avoid side effects. Multiple Independent Current Control (MICC) and Interleaving/Multi Stim Set (Interleaving/MSS) are two stimulation field steering paradigms in commercially available DBS systems. This work investigates the stimulation field steering accuracy and energy efficiency of these two paradigms in directional DBS. Methods: Volumes of Tissue Activated (VTAs) were generated in silico using pulse widths of 60 µs and five pulse amplitude fractionalizations intended to steer the VTAs radially in 12° steps. For each fractionalization, VTAs were generated with nine pre-defined target radii. Stimulation field steering accuracy was assessed based on the VTAs rotation angle. Energy efficiency was inferred from current draw from battery values, which were calculated based on the pulse amplitudes needed to generate and steer the VTAs, as well as electrode impedance measurements of clinically implanted directional leads. Results: For radial steering, MICC needed a single VTA. In contrast, Interleaving/MSS required the generation of two VTAs, whose union and intersection created an Interleaving/MSS VTA and an Intersection VTA, respectively. MICC VTAs were 6.8 (-3.2-11.8)% larger than Interleaving/MSS VTAs. The Intersection VTAs accounted for 26.2 (16.0-32.8)% of Interleaving/MSS VTAs and were exposed to a higher stimulation frequency. For all VTA radius-fractionalization combinations, steering accuracy was 7.0 (4.5-10.5)° for MICC and 24.0 (9.0-25.3)° for Interleaving/MSS. Pulse amplitudes were 16.1 (9.2-28.6)% lower for MICC than for Interleaving/MSS, leading to a 45.9 (18.8-72.6)% lower current draw from battery for MICC. Conclusions: The results of this work show that in silico, MICC achieves a significantly better stimulation field steering accuracy and has a significantly higher energy efficiency than Interleaving/MSS. Although direct evidence still needs to be generated to translate the results of this work to clinical practice, clinical outcomes may profit from the better stimulation field steering accuracy of MICC and longevity of DBS systems may profit from its higher energy efficiency.

19.
Cureus ; 11(7): e5276, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31576268

RESUMO

This index case report describes the intraoperative use of an eight-contact directional deep brain stimulation (DBS) lead to avoid adjustment and repeat microelectrode passes after the initial pass elicited side-effects that suggested a slightly anteriorly placed lead. While targeting the subthalamic nucleus (STN), intraoperative microelectrode recording (MER) confirmed that lead positioning and macrostimulation resulted in response at 1 mA but sustained dysarthria at 2 mA. This suggested a slightly anteriorly located electrode. The patient was becoming anxious, so instead of lead adjustment, an eight-contact directional DBS lead was placed to take advantage of the directional contacts, noting that a repeat pass could always then be performed. Segmented contact 11C showed symptom response at 0.5 mA and side-effect at 4 mA, resulting in a 3.5 mA therapeutic window. Though no substitute for an accurately placed lead, this result suggests that the flexibility of directional stimulation could be considered in the intraoperative setting.

20.
Clin Neurophysiol ; 130(5): 727-738, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30903826

RESUMO

OBJECTIVE: Functional processes in the brain are segregated in both the spatial and spectral domain. Motivated by findings reported at the cortical level in healthy participants we test the hypothesis in the basal ganglia of Parkinson's disease patients that lower frequency beta band activity relates to motor circuits associated with the upper limb and higher beta frequencies with lower limb movements. METHODS: We recorded local field potentials (LFPs) from the subthalamic nucleus using segmented "directional" DBS leads, during which patients performed repetitive upper and lower limb movements. Movement-related spectral changes in the beta and gamma frequency-ranges and their spatial distributions were compared between limbs. RESULTS: We found that the beta desynchronization during leg movements is characterised by a strikingly greater involvement of higher beta frequencies (24-31 Hz), regardless of whether this was contralateral or ipsilateral to the limb moved. The spatial distribution of limb-specific movement-related changes was evident at higher gamma frequencies. CONCLUSION: Limb processing in the basal ganglia is differentially organised in the spectral and spatial domain and can be captured by directional DBS leads. SIGNIFICANCE: These findings may help to refine the use of the subthalamic LFPs as a control signal for adaptive DBS and neuroprosthetic devices.


Assuntos
Potenciais de Ação/fisiologia , Extremidade Inferior/fisiopatologia , Movimento/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Extremidade Superior/fisiopatologia , Adulto , Idoso , Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...