Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Mol Carcinog ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352309

RESUMO

The reverse transcriptase subunit of telomerase, TERT, is frequently activated in high-grade dysplasia and invasive cancers of the uterine cervix. Telomerase activation through hypomethylation of the TERT promoter holds promise as a biomarker for cervical cancer progression, however, specific CpG sites involved in cervical cancer risk remain to be fully defined. A recent genome-wide association study on cervical cancer identified genetic polymorphisms at 5p13.33 (close to TERT-CLPTM1L) but the underlying mechanisms are undetermined. We investigated 529 CpG sites within the TERT promoter region and 3 CpG islands nearby, and 21 CpG sites within CLPTM1L in 190 bisulfite-converted cervical tumor DNA samples from BioRAIDs (NCT02428842). We identified eight CpG sites within TERT intron 2 where methylation was significantly associated with the genotypes of cervical cancer risk variants rs27070 and rs459961 in cervical tumors after multiple testing correction (p < 9.4 × 10E-5). Hypermethylation at chr5:1289663 correlated with decreased TERT mRNA levels. In an independent series of 188 normal or dysplastic cervical tissues, rare alleles of rs27070 and rs459961 were associated with low basal CLPTM1L levels and with the absence of TERT mRNA in HPV-negative samples, consistent with their proposed role as protective variants for cervical cancer. HPV infection was associated with increased CLPTM1L and TERT levels. Collectively, our results provide a link between cervical cancer risk variants, methylation, and gene expression and implicate both TERT and CLPTM1L as genes modulated by genomic background and HPV infection during cervical cancer development.

2.
BMC Cardiovasc Disord ; 24(1): 528, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354406

RESUMO

BACKGROUND: Atrioventricular block (AVB) is a heterogeneous group of arrhythmias. AVB can lead to sudden arrest of the heart and subsequent syncope or sudden cardiac death. Few scholars have investigated the underlying molecular mechanisms of AVB. Finding molecular markers can facilitate understanding of AVB and exploration of therapeutic targets. METHODS: Two-sample Mendelian randomization (MR) analysis was undertaken with inverse variance weighted (IVW) model and Wald ratio as the primary approach. Reverse MR analysis was undertaken to identify the associated protein targets and gene targets. Expression quantitative trait loci (eQTL) data from the eQTLGen database and protein quantitative trait loci (pQTL) data from three previous large-scale proteomic studies on plasma were retrieved as exposure data. Genome-wide association study (GWAS) summary data (586 cases and 379,215 controls) for AVB were retrieved from the UK Biobank database. Colocalization analyses were undertaken to identify the effect of filtered markers on outcome data. Databases (DrugBank, Therapeutic Target, PubChem) were used to identify drugs that interacted with targets. RESULTS: We discovered that 692 genes and 42 proteins showed a significant correlation with the AVB phenotype. Proteins (cadherin-5, sTie-1, Notch 1) and genes (DNAJC30, ABO) were putative molecules to AVB. Drug-interaction analyses revealed anticancer drugs such as tyrosine-kinase inhibitors and TIMD3 inhibitors could cause AVB. Other substances (e.g. toxins, neurological drugs) could also cause AVB. CONCLUSIONS: We identified the proteins (cadherin-5, sTie-1, Notch 1) and gene (DNAJC30, ABO) targets associated with AVB pathogenesis. Anticancer drugs (tyrosine-kinase inhibitors, TIMD3 inhibitors), toxins, or neurological drugs could also cause AVB.


Assuntos
Bloqueio Atrioventricular , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fenótipo , Locos de Características Quantitativas , Humanos , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/fisiopatologia , Proteômica , Fatores de Risco , Polimorfismo de Nucleotídeo Único
3.
Evol Appl ; 17(9): e13748, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39310794

RESUMO

Genome-wide scans for selection have become a popular tool for investigating evolutionary responses in wildlife to emerging diseases. However, genome scans are susceptible to false positives and do little to demonstrate specific mechanisms by which loci impact survival. Linking putatively resistant genotypes to observable phenotypes increases confidence in genome scan results and provides evidence of survival mechanisms that can guide conservation and management efforts. Here we used an expression quantitative trait loci (eQTL) analysis to uncover relationships between gene expression and alleles associated with the survival of little brown bats (Myotis lucifugus) despite infection with the causative agent of white-nose syndrome. We found that 25 of the 63 single-nucleotide polymorphisms (SNPs) associated with survival were related to gene expression in wing tissue. The differentially expressed genes have functional annotations associated with the innate immune system, metabolism, circadian rhythms, and the cellular response to stress. In addition, we observed differential expression of multiple genes with survival implications related to loci in linkage disequilibrium with focal SNPs. Together, these findings support the selective function of these loci and suggest that part of the mechanism driving survival may be the alteration of immune and other responses in epithelial tissue.

4.
Cell Genom ; : 100638, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39265573

RESUMO

Human milk is a complex mix of nutritional and bioactive components that provide complete nourishment for the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how milk variation influences infant health. Here, we characterize relationships between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in up to 310 exclusively breastfeeding mother-infant pairs. We identified 482 genetic loci associated with milk gene expression unique to the lactating mammary gland and link these loci to breast cancer risk and human milk oligosaccharide concentration. Integrative analyses uncovered connections between milk gene expression and infant gut microbiome, including an association between the expression of inflammation-related genes with milk interleukin-6 (IL-6) concentration and the abundance of Bifidobacterium and Escherichia in the infant gut. Our results show how an improved understanding of the genetics and genomics of human milk connects lactation biology with maternal and infant health.

5.
bioRxiv ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39314369

RESUMO

MicroRNAs are essential post-transcriptional regulators of gene expression and involved in many biological processes; however, our understanding of their genetic regulation and role in brain illnesses is limited. Here, we mapped brain microRNA expression quantitative trait loci (miR-QTLs) using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex (dlPFC) samples of 604 older adult donors of European ancestry. miR-QTLs were identified for 224 miRNAs (48% of 470 tested miRNAs) at false discovery rate < 1%. We found that miR-QTLs were enriched in brain promoters and enhancers, and that intragenic miRNAs often did not share QTLs with their host gene. Additionally, we integrated the brain miR-QTLs with results from 16 GWAS of psychiatric and neurodegenerative diseases using multiple independent integration approaches and identified four miRNAs that contribute to the pathogenesis of bipolar disorder, major depression, post-traumatic stress disorder, schizophrenia, and Parkinson's disease. This study provides novel insights into the contribution of miRNAs to the complex biological networks that link genetic variation to disease.

6.
Int J Mol Sci ; 25(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39337460

RESUMO

Observational studies indicate that variations in peripheral blood mononuclear cell (PBMC) subsets are associated with an increased risk of pulmonary tuberculosis (PTB) and coronavirus disease 2019 (COVID-19), but causal validation is lacking. Here, we combined single-cell expression quantitative trait locus (sc-eQTL) and two-sample mendelian randomization (MR) analyses to elucidate the causal relationship between PBMC subsets and the occurrence of PTB and COVID-19 and verified by RT-qPCR. We observed an increase in the CD4+ Effective Memory T Cell (CD4+ TEM) cluster in both PTB and COVID-19 patients according to the single-cell transcriptional landscape of PBMC. Through MR analysis using an inverse variance weighted (IVW) method, we found strong evidence of positive correlations between CD4+ TEM cell markers (GBP2, TRAV1-2, and ODF2L) and PTB, and between markers (LAG3 and SLFN5) and COVID-19, especially highlighted by lead eQTL-SNPs of GBP2 (rs2256752, p = 4.76321 × 10-15) and LAG3 (rs67706382, p = 6.16× 10-16). Similar results were observed in validation sets, and no pleiotropy was detected in sensitivity analyses including weighted median (WM), MR-Egger, MR-pleiotropy residual sum and outlier, and leave-one-out analyses (all p > 0.05). We visualized the colocalization of marker-eQTLs and markers of PTB and COVID-19 genome-wide association study (GWAS) associations. Based on CellChat analyses, monocytes communicated predominantly with CD4+ TEM cells positively expressing PTB markers (GBP2, TRAV1-2, and ODF2L) and COVID-19 markers (LAG3 and SLFN5) in both PTB and COVID-19. Our data suggest a causal effect between two key CD4+ TEM cell markers (GBP2 and LAG3) and the risk for PTB and COVID-19 infection. Our findings provide novel insights into the biological mechanism for PTB and COVID-19 infection, but future single-cell studies are necessary to further enhance understanding of this find.


Assuntos
Antígenos CD , Linfócitos T CD4-Positivos , COVID-19 , Proteína do Gene 3 de Ativação de Linfócitos , Análise da Randomização Mendeliana , Locos de Características Quantitativas , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fatores de Risco , Antígenos CD/genética , Antígenos CD/metabolismo , Análise de Célula Única/métodos , Proteínas de Ligação ao GTP/genética , Células T de Memória/imunologia , Células T de Memória/metabolismo , Biomarcadores , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla
7.
Genes (Basel) ; 15(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39336776

RESUMO

SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.


Assuntos
Doença de Parkinson , Locos de Características Quantitativas , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Elementos de DNA Transponíveis/genética , Elementos Alu/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Transcrição Gênica/genética , Regulação da Expressão Gênica/genética , Progressão da Doença , Antígenos de Histocompatibilidade Classe II/genética
8.
Hum Mol Genet ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239979

RESUMO

Common variants in the MicroRNA 137 host gene MIR137HG and its adjacent gene DPYD have been associated with schizophrenia risk and the latest Psychiatric Genomics Consortium (PGC). Genome-Wide Association Study on schizophrenia has confirmed and extended these findings. To elucidate the association of schizophrenia risk-associated SNPs in this genomic region, we examined the expression of both mature and immature transcripts of the miR-137 host gene (MIR137HG) in the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) of postmortem brain samples of donors with schizophrenia and psychiatrically-unaffected controls using qPCR and RNA-Seq approaches. No differential expression of miR-137, MIR137HG, or its transcripts was observed. Two schizophrenia risk-associated SNPs identified in the PGC study, rs11165917 (DLPFC: P = 2.0e-16; sgACC: P = 6.4e-10) and rs4274102 (DLPFC: P = 0.036; sgACC: P = 0.002), were associated with expression of the MIR137HG long non-coding RNA transcript MIR137HG-203 (ENST00000602672.2) in individuals of European ancestry. Carriers of the minor (risk) allele of rs11165917 had significantly lower expression of MIR137HG-203 compared with those carrying the major allele. However, we were unable to validate this result by short-read sequencing of RNA extracted from DLPFC or sgACC tissue. This finding suggests that immature transcripts of MIR137HG may contribute to genetic risk for schizophrenia.

9.
Plant Commun ; : 101130, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39257006

RESUMO

Cotton, an intriguing plant species shaped by polyploidization, evolution, and domestication, holds particular interest due to the complex mechanisms governing fiber traits across its two subgenomes. However, the regulatory elements or transcriptional networks between subgenomes during fiber elongation remain elusive. Here, we analyzed 1,462 cotton fiber samples to reconstruct gene expression regulatory networks influencing fiber cell elongation. Inter-subgenomic eQTLs largely dictate gene transcription, with a notable tendency for the D subgenome to regulate A subgenome eGenes. This regulation showcases synchronized homoeologous gene expression driven by colocalized eQTLs and divergent patterns that diminish genetic correlations, thus leading to preferential expression in the A and D subgenomes. Hotspot456 emerged as a key regulator of fiber initiation and elongation, and artificial selection of trans-eQTLs in hotspot456 positively regulating KCS1 has facilitated cell elongation. To elucidate the roles of trans-eQTL in improved fiber breeding, experimentation confirmed the inhibition of GhTOL9 by a specific trans-eQTL via GhWRKY28, which negatively impacts fiber elongation. We propose a model where the GhWRKY28-GhTOL9 module, through the Endosomal Sorting Complex Required for Transport pathway, regulates this process. This research significantly advances our understanding of cotton's evolutionary, domestication processes, and the intricate regulatory mechanisms underlying significant plant traits.

10.
Animals (Basel) ; 14(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335247

RESUMO

BFT is closely related to meat quality and lean meat percentage in pigs. The BFT traits of European LW pigs significantly differ from those of Chinese indigenous fatty MZ pigs. CNV is a prevalent genetic variation that plays an important role in economically important traits in pigs. However, the potential contribution of CNV to BFT in LW and MZ pigs remains unclear. In this study, whole-genome CNV detection was performed using next-generation sequencing data from LW and MZ pigs, and transcriptome data from back fat tissue of 180-day-old LW and MZ pigs were integrated for expression quantitative trait loci (eQTL) analysis. We identified a copy number variation in the TGFBR3 gene associated with BFT, showing a dose effect between the genome and transcriptome levels of the TGFBR3 gene. In porcine preadipocytes, TGFBR3 expression continuously increased during differentiation. Knockdown of TGFBR3 using specific siRNA inhibited preadipocyte differentiation and proliferation. Our study provides insights into the genetic regulation of pork quality and offers a theoretical basis for improving carcass quality by modulating BFT in pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...